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Gang Xiang1, Jan Beck1, Raj Kandathi1, Asis Nayak1,

Scott Ferson2, and Janos Hajagos2,3

1NASA Pan-American Center for Earth
and Environmental Studies (PACES)

University of Texas, El Paso, TX 79968, USA
contact email vladik@utep.edu

2Applied Biomathematics
100 North Country Road, Setauket, NY 11733, USA

3Dept. of Ecology and Evolution
State University of New York
Stony Brook, NY 11794, USA

Abstract

In many areas of science and engineering, it is desirable to estimate
statistical characteristics (mean, variance, covariance, etc.) under interval
uncertainty. For example, we may want to use the measured values x(t)
of a pollution level in a lake at different moments of time to estimate
the average pollution level; however, we do not know the exact values
x(t) – e.g., if one of the measurement results is 0, this simply means
that the actual (unknown) value of x(t) can be anywhere between 0 and
the detection limit DL. We must therefore modify the existing statistical
algorithms to process such interval data.

Such a modification is also necessary to process data from statistical
databases, where, in order to maintain privacy, we only keep interval
ranges instead of the actual numeric data (e.g., a salary range instead of
the actual salary).

Most resulting computational problems are NP-hard – which means,
crudely speaking, that in general, no computationally efficient algorithm
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can solve all particular cases of the corresponding problem. In this pa-
per, we overview practical situations in which computationally efficient
algorithms exist: e.g., situations when measurements are very accurate,
or when all the measurements are done with one (or few) instruments.

As a case study, we consider a practical problem from bioinformatics:
to discover the genetic difference between the cancer cells and the healthy
cells, we must process the measurements results and find the concentra-
tions c and h of a given gene in cancer and in healthy cells. This is a
particular case of a general situation in which, to estimate states or para-
meters which are not directly accessible by measurements, we must solve
a system of equations in which coefficients are only known with interval
uncertainty. We show that in general, this problem is NP-hard, and we
describe new efficient algorithms for solving this problem in practically
important situations.

Keywords: intervals and probabilities, environmental analysis, bioinfor-
matics, privacy, statistical databases

Statistical analysis is important. Many aspects of engineering and science
involve statistical uncertainty. It is therefore desirable to estimate statistical
characteristics such as mean, variance, covariance, etc., i.e., compute statistics

such as E(x) =
1
n

(x1 + . . .+xn), V (x) =
1

n− 1
·

n∑
i=1

(xi−E(x))2, and C(x, y) =

1
n− 1

·
n∑

i=1

(xi − E(x)) · (yi − E(y)). For example, in non-destructive testing,

outliers are indications of faults; outliers are often detected as values outside the
interval [E(x)−k0 ·

√
V (x), E(x)+k0 ·

√
V (x)] for k0 = 2, 3, or 6. In geophysics,

outliers indicate possible locations of minerals. In biomedical systems, statistical
analysis often leads to improvements in medical recommendations.

Comment. In many practical situations, e.g., when measuring the magni-
tude and orientation of a magnetic field ~H, what we measure is not a single-
component (scalar) value x ∈ R, but a multi-component value: e.g., a vector
~H ∈ R3. In such situations, it is reasonable to estimate, e.g., the mean value of

the corresponding vector measurements as E( ~H) =
1
n
· ( ~H1 + . . . + ~Hn).

From the physical viewpoint, statistical analysis of the vector data is differ-
ent from the statistical analysis of the scalar data. However, from the purely
computational viewpoint, the problem is largely the same: e.g., for each coor-
dinate α, the α-component Eα( ~H) of the average vector E( ~H) is equal to the
arithmetic average of the corresponding components of ~Hi. Since our objective
is to help in computations, in the following text, we will limit our description
to scalar values xi ∈ R.
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Interval uncertainty. Traditional statistics assumes that we know the exact
sample values x1, . . . , xn. In practice, often, we only know xi with interval
uncertainty: xi ∈ [xi, xi].

For example, values xi usually come from measurements, and we often only
know the upper bounds ∆i on the measurement error ∆xi

def= x̃i − xi. So, the
only information that we have about xi is that xi ∈ [x̃i −∆i, x̃i + ∆i].

Another source of interval uncertainty is the existence of detection limits for
different sensors: if a sensor, e.g., did not detect any ozone, this means that the
ozone concentration is below its detection limit DL, i.e., in the interval [0, DL].

Yet another source of interval uncertainty is discretized data: if we experi-
ment on the fish and watch it daily, and a fish is alive on Day 5 but dead on
Day 6, then all we know about its lifetime is that it is in the interval [5, 6].

Expert estimates often come as intervals.
The need to keep privacy in statistical (e.g., medical) databases also often

leads to the fact that instead of recording, e.g., exact age, what we only record
is the interval [40, 50].

Summarizing, often, instead of the actual values x1, . . . , xn, we only know
the intervals x1 = [x1, x1], . . . ,xn = [xn, xn] that contain xi. Different values
xi ∈ xi lead to different values of the statistic S(x1, . . . , xn). It is desirable to
find the range of such values:

S(x1, . . . ,xn) def= {S(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

Simple and hard cases. The mean E(x) is monotonic, so E(x) =

[E(x), E(x)], where E(x) =
1
n

(x1 + . . . + xn) and E(x) =
1
n

(x1 + . . . + xn).

For other statistics such as variance V (x) or covariance C(x, y), the problem
is, in general, NP-hard [1, 3, 5]. In such cases, in general, we have to use
approximate techniques.

Linearization and its limitations. One of the known approximate tech-
niques is linearization, when we approximate the statistics S with the lin-

ear terms in its Taylor expansion: S ≈ Slin = S0 −
n∑

i=1

Si · ∆xi, where

S0
def= S(x̃1, . . . , x̃n), Si

def=
∂S

∂xi
(x̃1, . . . , x̃n), and ∆xi

def= x̃i − xi. For the

linear function, we get the exact formula for the range: S = [S0−∆S , S0 +∆S ],

where ∆S
def=

n∑
i=1

|Si| ·∆i.

However, linearization is not always acceptable. Sometimes, the intervals
are wide, so that quadratic terms cannot be ignored. Sometimes – e.g., in cases
of bioregulations – we want to guarantee that, e.g., the variance V (x) is below
a given threshold V0. So, we need validated techniques.
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Since we cannot provide efficient algorithms for the general case, we must
find practically useful cases for which an efficient algorithm is possible.

Classes of problems for which efficient algorithms are known:

1. Narrow intervals: no two intervals xi intersect.

2. Slightly wider intervals: for some integer K, no set of K intervals has a
common intersection.

3. Single measuring instrument (MI): no two intervals are subsets of each
other, i.e., [xi, xi] 6⊆ (xj , xj) (non-degenerate results are allowed).

4. Same accuracy measurement: ∆1 = . . . = ∆n.

5. Several MI: intervals are divided into several subgroups each of which
comes from a single MI.

6. Privacy case: intervals are formed from the given partition, e.g., 10 to
20, 20 to 30, etc.; in this case, every two non-degenerate intervals either
coincide or do not intersect.

7. Non-detects: every measurement result is either an exact value or a non-
detect, i.e., an interval [0, DLi] for some real number DLi.

In these cases, we have the following complexity results [4, 6], where Class
0 means the general case (when almost all problems are NP-hard),

L(x) def= E(x)− k0 ·
√

V (x), U(x) def= E(x) + k0 ·
√

V (x),

R(x) is the largest value k0 for which x0 6∈ [L(x), U(x0)], where x0 is a given

value, i.e., R(x) def=
|x0 − E(x)|√

V (x)
, and Mm(x) is m-th central moment: Mm(x) def=

1
n

n∑

i=1

|xi − E(x)|m.

# E(x) V (x), L(x), U(x), R(x),M2p(x) C(x, y) M2p+1(x)
0 O(n) NP-hard NP-hard ?
1 O(n) O(n · log(n)) O(n2) O(n2)
2 O(n) O(n · log(n)) O(n2) O(n2)
3 O(n) O(n · log(n)) ? ?
4 O(n) O(n · log(n)) O(n3) ?
5 O(n) O(nm) ? ?
6 O(n) O(n · log(n)) O(n2) ?
7 O(n) O(n · log(n)) ? ?
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Case when only d out of n data points are non-degenerate intervals.
In this case, we have the following complexity results:

# E(x) V (x), L(x), U(x), R(x),M2p(x) C(x, y) M2p+1(x)
0 O(n) NP-hard NP-hard ?
1 O(n) O(n + d · log(d)) O(n + d2) O(n + d2)
2 O(n) O(n + d · log(d)) O(n + d2) O(n + d2)
3 O(n) O(n + d · log(d)) ? ?
4 O(n) O(n + d · log(d)) O(n + d3) ?
5 O(n) O(n + dm) ? ?
6 O(n) O(n + d · log(d)) O(n + d2) ?
7 O(n) O(n + d · log(d)) ? ?

Other statistics. We have mentioned that an important source of interval
uncertainty is the existence of the lower detection limits for sensors: if a sensor
does not detect any signal this means that the actual value of the measured
quantity is below its detection limit DL, i.e., in the interval [0, DL].

Another practically important source of uncertainty is the fact that many
sensors also have saturation values xmax: if the sensor registers the value x̃i =
xmax, then the only information that we know about the true value x is that
x ≥ xmax, i.e., that x ∈ [xmax,∞). If one of the measurements x̃i is equal to the

saturation value, then, e.g., the arithmetic average E(x) =
1
n
· (x1 + . . . + xn)

of the actual values xi can be arbitrarily large.
For such situations, we need to use different methods for estimating the

expected value (mean) E{x} of a random variable from the sample x1, . . . , xn.
One such method is a median. Median is a particular case of an important class
of statistical L-estimates: we order the values xi into a (non-strictly) increasing

sequence x(1) ≤ x(2) ≤ . . . ≤ x(n), and then estimate E{x} as
n∑

i=1

wi · x(i).

Alternative methods for estimating E{x} are also useful in other practical
situations – e.g., if, in addition to measurement results, the values xi contain
erroneously recorded values. Other widely used alternative methods for esti-
mating E{x} include [7, 8]:

• weighted mean that is defined by the condition
n∑

i=1

(xi − E)2

σ2
→ min

E
, so

Ew =
n∑

i=1

pi · xi, where pi
def=

σ−2
i

n∑

j=1

σ−2
j

;

• M-estimates:
n∑

i=1

ψ(|xi − a|) → max
a

for some function ψ(x); average is a
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particular case of an M-estimate, corresponding to ψ(x) = x2.

They are all monotonic functions of xi, so their ranges can be computed in time
O(n).

Case study: bioinformatics. In cancer research, it is important to find out
the genetic difference between the cancer cells and the healthy cells. In the
ideal world, we should be able to have a sample of cancer cells, and a sample of
healthy cells, and thus directly measure the concentrations c and h of a given
gene in cancer and in healthy cells. In reality, it is very difficult to separate
the cells, so we have to deal with samples that contain both cancer and normal
cells. Let yi denote the result of measuring the concentration of the gene in i-th
sample, and let xi denote the percentage of cancer cells in i-th sample. Then,
we should have xi · c + (1− xi) · h ≈ yi (approximately equal because there are
measurement errors in measuring yi).

Let us first consider an idealized case in which we know the exact percentages
xi. In this case, we can find the desired values c and h by solving a system of
linear equations xi · c + (1− xi) · h ≈ yi with two unknowns c and h.

It is worth mentioning that this system can be somewhat simplified if instead
of c, we consider a new variable a

def= c − h. In terms of the new unknowns a
and h, the system takes the following form: a · xi + h ≈ yi.

The errors of measuring yi are normally i.i.d. random variables, so to esti-

mate a and h, we can use the Least Squares Method (LSM)
n∑

i=1

(a·xi+h−yi)2 →

min
a,h

, according to which a =
C(x, y)
V (x)

and h = E(y) − a · E(x). Once we know

a = c− h and h, we can then estimate c as a + h.
The problem is that the concentrations xi come from experts who manually

count different cells, and experts can only provide interval bounds on the values
xi such as xi ∈ [0.7, 0.8]. Different values of xi in the corresponding intervals
lead to different values of a and h. It is therefore desirable to find the range of
a and h corresponding to all possible values xi ∈ [xi, xi].

Comment. Our motivation for solving this problem comes from bioinformatics,
but similar problems appear in various practical situations where measurements
with uncertainties are available and statistical data is to be processed.

Linear approximation. Let x̃i = (xi+xi)/2 be the midpoint of i-th intervals,
and let ∆i = (xi − xi)/2 be its half-width. For a, we have

∂a

∂xi
=

1
(n− 1) · V (x)

· (yi − E(y)− 2a · xi + 2a · E(x)).
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We can use the formula E(y) = a ·E(x)+h to simplify this expression, resulting

in ∆a =
1

(n− 1) · V (x)

n∑

i=1

|∆yi − a ·∆xi| ·∆i, where we denoted ∆yi
def= yi −

a · xi − h and ∆xi
def= xi − E(x).

Since h = E(y) − a · E(x), we have
∂h

∂xi
= − ∂a

∂xi
· E(x) − 1

n
· a, so ∆h =

n∑
i=1

∣∣∣∣
∂h

∂xi

∣∣∣∣ ·∆i.

Prior estimation of the resulting accuracy. The above formulas provide
us with the accuracy after the data has been processed. It is often desirable to
have an estimate prior to measurements, to make sure that we will get c and h
with desired accuracy.

The difference ∆yi is a measurement error, so it is normally distributed
with 0 mean and standard deviation σ(y) corresponding to the accuracy of
measuring yi. The difference ∆xi is distributed with 0 mean and standard
deviation

√
V (x). For estimation purposes, it is reasonable to assume that the

values ∆xi are also normally distributed. It is also reasonable to assume that
the errors in xi and yi are uncorrelated, so the linear combination ∆yi− a ·∆xi

is also normally distributed, with 0 mean and variance σ2
y + a2 · V (x). It is

also reasonable to assume that all the values ∆i are approximately the same:
∆i ≈ ∆.

For normal distribution ξ with 0 mean and standard deviation σ, the mean
value of |ξ| is equal to

√
2/π · σ. Thus, the absolute value |∆yi − a · ∆xi| of

the above combination has a mean value
√

2/π ·
√

σ2
y + a2 · V (x). Hence, the

expected value of ∆a is equal to
2
π
·

√
σ2

y + a2 · V (x) ·∆
V (x)

.

Since measurements are usually more accurate than expert estimates, we

have σ2
y ¿ V (x), hence ∆a ≈ 2

π
· a ·∆.

Similar estimates can be given for ∆h.

In general, finding the exact range is NP-hard. Let us show that in gen-
eral, finding the exact range for the ratio C(x, y)/V (x) is an NP-hard problem.

The proof is similar to the proof that computing the range for the variance
is NP-hard [1, 3, 5]: namely, we reduce a partition problem (known to be NP-
hard) to our problem. In the partition problem, we are given m positive integers
s1, . . . , sm, and we must check whether there exist values εi ∈ {−1, 1} for which
m∑

i=1

εi ·si = 0. We will reduce this problem to the following problem: n = m+2,

y1 = . . . = ym = 0, ym+1 = 1, ym+2 = −1, xi = [−si, si] for i ≤ m, xm+1 = 1,
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and xm+2 = −1. In this case, E(y) = 0, so C(x, y) =
1

n− 1

n∑

i=1

xi · yi −
n

n− 1
· E(x) · E(y) =

2
m + 2

. Therefore, C(x, y)/V (x) → min if and only if

V (x) → max.

Here, V (x) =
1

m + 1
·
(

m∑

i=1

x2
i + 2

)
− m + 2

m + 1
·
(

1
m + 2

·
m∑

i=1

xi

)2

. Since

|xi| ≤ si, we always have V (x) ≤ V0
def=

1
m + 1

·
(

m∑

i=1

s2
i + 2

)
, and the only

possibility to have V (x) = V0 is when xi = ±si for all i and
∑

xi = 0. Thus,
V (x) = V0 if and only if the original partition problem has a solution. Hence,

C(x, y)/V (x) =
2∑

s2
i + 2

if and only if the original instance of the partition

problem has a solution.
The reduction is proven, so our problem is indeed NP-hard.

Comment. In this proof, we consider the case when the values xi can be neg-
ative and larger than 1, while in bioinformatics, xi is always between 0 and 1.
However, we can easily modify this proof: First, we can shift all the values xi by
the same constant to make them positive; shift does not change neither C(x, y)
nor V (x). Second, to make the positive values ≤ 1, we can then re-scale the
values xi (xi → λ · xi), thus multiplying C(x, y)/V (x) by a known constant.

As a result, we get new values x′i =
1
2
· (1 + xi/K), where K

def= max si, for

which x′i ∈ [0, 1] and the problem of computing C(x, y)/V (x) is still NP-hard.

What can we do? One possibility is to use known algorithms to find the
ranges for C(x, y) and for V (x), and then use the division operation from interval
arithmetic to get the interval that is guaranteed to contain C(x, y)/V (x).
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