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Abstract—According to the traditional probability theory, all equations are invariant with respect to changing the order
events with a positive but very small probability can occur of time flow (¢ — —t). So, if we have a process that goes
(although very rarely). For example, from the purely mathe- om stated to stateB, then, if while atB, we revert all the

matical viewpoint, it is possible that the thermal motion of all lociti f all th t il get that
the molecules in a coffee cup goes in the same direction, so thisV€'0¢I€S o all the aloms, we will get a process that goes

cup will start lifting up. from B to A.
In contrast, physicists believe that events with extremely small  However, in real life, many processes are clearly irre-

probability cannot occur. In this paper, we show that to get vyersible: an explosion can shatter a statue but it is hard to
a consistent formalization of this belief, we need, in addition j,5ine an inverse process: an implosion that glues together
to the original probability measure, to also consider a maxitive . . .
(possibility) measure. shattered pieces into a statue. Boltzmann himself, the 19th
century author of statistical physics, explicitly stated that such
|. PHYSICISTS ASSUME THAT INITIAL CONDITIONS AND  nverse processes “may be regarded as impossible, even though
VALUES OF PARAMETERS ARE NOT ABNORMAL from the viewpoint of probability theory that outcome is only

To a mathematician, the main contents of a physical theoeytremely improbable, not impossible.” [1].
is the equations. The fact that the theory is formulated in terms . . . .
of well-defined mathematical equations means that the act mple 3. If we toss a fair coin 100 times in a row, and

field must satisfy these equations. However, this fact cads get heads all the time, then a person who is knowledgeable in
! ; Eﬂrobability would say that it is possible — since the probability

Is still positive. On the other hand, a physicist (or any person
who uses common sense reasoning) would say that the coin is
Example 1. At any temperature greater than absolute zeret fair — because if it is was a fair coin, then this abnormal
particles are randomly moving. It is theoretically possible that/ent would be impossible.

all the particles start moving in one direction, and, as a result,

a person starts lifting up into the air. The probability of this In all these cases, physicists (implicitly or explicitly) require
event is small (but positive), so, from the purely mathematicilat the actual values of the physical quantities must not only
viewpoint, we can say that this event is possible but highfigtisfy the equations but they must also satisfy the additional
unprobable. However, the physicists say plainly that such gandition: that the initial conditions shouttbt be abnormal
abnormal event igmpossible(see, e.g., [3]).

sense. Let us give three examples:

Comment.In all these examples, a usual mathematician’s

Example 2.Another example from statistical physics: Suppos@sponse to physicists’ calling some low-probability events

that we have a two-chamber camera. The left chamber“igipossible”, is just to say that the physicists use imprecise
empty, the right one has gas in it. If we open the door betwelmguage.

the chambers, then the gas would spread evenly between thi is indeed true that the physicists use imprecise language,
two chambers. It is theoretically possible (under appropriatedynd it is also true that in the vast majority of practical ap-

chosen initial conditions) that the gas that was initially evenlglications, a usual probabilistic interpretation of this language
distributed would concentrate in one camera. However, phyperfectly well describes the intended physicists’ meaning. In
cists believe this abnormal event to be impossible. This is ather words, the probability language is perfectly OK for most

example of a “micro-reversible” process: on the atomic levgbhysical applications.



However, there are some situations when the physicissgquences of 100 heads and tails as physically impossible.
intuition seem to differ from the results of applying traditionaHowever, anyone can toss a coin 100 times, and this proves
probability techniques: that some such sequences are physically possible.

» From the p.robability theory viewpoint, there i§.no fUNyistorical commentThis problem was first noticed by Kyburg
damental difference between such low-probability events, 4o the name ofottery paradox[5]: in a big (e.g., state-
as a person winning a lottery and the same person beWﬂie) lottery, the probability of winning the Grand Prize is so

lifted up into the air PV the Broyvman motion. _If a Persof |l that a reasonable person should not expect it. However,
plays the lottery again and again, then — provided that tl‘ggme people do win big prizes
person lives for millions of years — he will eventually win. '

Similarly, if a person stands still every morning, then — IV. KOLMOGOROV' S IDEA: USE COMPLEXITY

provided that this person lives long enough — this person . i )
will fly up into the air. Crudely speaking, the main problem arises because we

« On the other hand, from the physicist viewpoint, therselect the same threshojg) for all events. For example, if

is a drastic difference between these two low-probabilityf® 19SS a fair coin 100 times then a sequence consisting of all
events: yes, a person will win a lottery but no, a persd?{aads should not be_ _p055|ble, and itis a reafsongble conclus_lon
will never lift up into the air no matter how many timesPecause th_e probability that tossing a fair coin will lead to this
this person stands still. sequence is extremely smalir 10,

We have just mentioned that the traditional mc";lthematici%lOn the other hand, whatever specific sequence of heads and

approach is to treat this difference of opinion as simpl causedIS we get after tossing a coin, this sequence also has the
pp P Ply Same small probabilitp—1°°. In spite of this, it does not seem

by the imprecision of the physicists’ language. What we platg be reasonable to dismiss such sequences.

to show is that if we take this difference more seriously .
. Several researchers thought about this, one of them A.
and develop a new formalism that more accurately captur(%s

the phvsicists’ reasoning. then we mav end up with resuts Kolmogorov, the father of the modern probability theory.
Py 9 Y P olmogorov came up with the following idea: the probability

and directions that are, in our opinion, of potential intere§hreshold #(E) below which an event® is dismissed as

to foundations of physics. In other words, what we plan t|ompossible must depend on the event’s complexity. The event

show is that if we continue to use the traditional probabilityE . ; : .
L ; . 1 in which we have 100 heads is easy to describe and
approach, it is perfectly OK but if we try to formalize the enerate; so for this event, the thresheld,) is higher. If

physicists’ opinion more closely, we may sometimes get ev? ¥,) > 2-190 then, within this Kolmogorov’'s approach, we

better results. conclude that the everf; is impossible. On the other hand,
Il. A SEEMINGLY NATURAL FORMALIZATION OF THIS IDEA the eventE; corresponding to the actual sequence of heads
nd tails is much more complicated; for this evdil, the
hresholdt(E,) should be much lower. f(E,) < 27100, we
conclude that the evert, is possible.

The above-mentioned property of being “not abnormal
(“typical”) has a natural formalization: if a probability( E)

3(far?/nsr?"|vaellnfr£hst’)rr£” ?r?:rlljgt]r?i’sIé%éé%(cg)r]rifﬁ;g;esr?me The general fact that out & equally probable sequences

In other words theor’e exists the “smallest possible p.robabqf n 0s and 1s some are f‘truly random“ and some are not truly
I ! fandom was the motivation behind Kolmogorov and Martin-
ity” po such that Lof’s formalization of randomness (and behind the related

» if the computed probability of some event is larger thanpotion of Kolmogorov complexity; the history of this discovery

Po, then this event can occur, while is described in detail in [6]).
« if the computed probability is < po, the event cannot  This notion of Kolmogorov complexity was introduced
occur. independently by several people: Kolmogorov in Russia and

For example, the probability that a fair coin falls heads 108olomonoff and Chaitin in the US. Kolmogorov defined com-
times in a row is27'%, so, if the threshold probability, plexity K (x) of a binary sequence as the shortest length
satisfies the inequality, > 2719, then we will be able to of a program which produces this sequence. Thus, a sequence
conclude that such an event is impossible. consisting of all 0Os or a sequence 010101...both have very
small Kolmogorov complexity because these sequences can
be generated by simple programs; on the other hand, for a
sequence of results of tossing a coin, probably the shortest
In the previous section, we described a seemingly natuggbgram is to writeprint(0101...) and thus reproduce the
formalization of the notion “typical” (“not abnormal”): if a entire sequence. Thus, whéfi(z) is approximately equal to
probability of an event is small enough, i.es, pg for some the lengthlen(x) of a sequence, this sequence is random, oth-
very smallpg, then this event cannot happen. erwise it is not. (The best source for Kolmogorov complexity
The problem with this approach is thawery sequence is a book [6].)
of heads and tails has exactly the same probability. So, ifHowever, the existing Kolmogorov complexity theory does
we choosep, > 27190 we will thus exclude all possible not yet lead to a formalism describing when low-probability

Ill. THE ABOVE FORMALIZATION OF THE NOTION OF
“TYPICAL"” IS NOT ALWAYS ADEQUATE



events do not happen; we must therefore extend the original

Kolmogorov’s idea so that it would cover this case as well. ' :
9 Proof. Let us first prove that every ratio measure(E)

V. FORMALIZATION AND THE MAIN RESULT is indeed a maxitive measure. By definition of a maxitive

Let us start with motivations. We have mentioned thdp€asure, we need to prove thatiif, is a family of sets from
we cannot consistently claim that an eveftis possible if theo-algebraA for which the unionX = UX, also belongs
and only its probabilityp(E) exceeds a certain threshalg; 10 A, we havemn(X) = supm(Xa).
instead, we must take into consideration that “complexity” Let us prove this inequality by reduction to a contradiction.
c¢(E) of an event, and claim, e.g., that an evénis possible Let us assume that(X) # supm(X,). In this case, we have
if and only if p(E) > p(]~§£F), i.e., equivalentlym(E) > po, two options: o
where we denotedh(E) = p(E)/c(E). « m(X) > supm(X.) and

CommentTo handle events with O probability, we must extend m(X) < sﬁp m(X.a).

the ratiom(E) to such events — otherwise, e.g., for the uniform o
distribution on the interval0, 1], we would havep({z}) = Let us show that in both cases, we have a contradiction.
0 < po - c¢({z}) hence no point: would be possible. Indeed, by definition of a ratio measure, for evegy there

_ . . exists a sef’ such that for every sef, we havem(F) >
We would like to characterize the “ratio measures{E) (po) y (E)

for which this definition is, in some reasonable sense, consié- if-and only if £0T(po) > 0. .
tent for all possible thresholds,. In order to do that, let us I m(X) < S‘;p m(Xa), let us selecpo for which
first find out how to formalize the notion of consistency.

Let X be the set of all possible outcomes. Aventis then
simply a subseFl’ of the setX, andp is a probability measure Since m
on ac-algebra of sets fronk.

Let ' C X be the set of all outcomes that are actuall
possible. Then, an eveti is possible if and only if there is X 0T (po) = 0. )
a possible outcome that belongs to the Bei.e., if and only On other hand, sincg, < supm(X,), there exists a value
if ENT #0.

Now, we are ready for the main definition:

m(X) < po < supm(Xa).

(X) < po, we conclude that the everX is not
gossible, ie.,

ap for which py < m(XaO)(.! For this o, by definition of

a ratio measure, the evet,, is possible, so there exists
Definition 1. Let X be a set, and let be a probability measure an outcomer from X, that also belongs to the s&t(p,)

on ac-algebra A C 2X of subsets of the sdf. By aratio of possible events. However, sincE = UX,, we have
measuremn we mean a mapping froml to the set of non- = € X, sox € X NT(py) — which contradicts our previous
negative real numbers (and, possibly a valec) such that conclusion (2). This contradiction shows that the inequality
for every real numbep, > 0, there exists a seT'(pg) for m(X) < supm(X,) is impossible.

which If m(X)a> supm(X,), let us selecpy for which
VE € A(m(E) > po < ENT(po) #0). (1) “

m(X) > po > supm(X,).

To describe our main result, we need to recall the definitidfincem(X) > po, we conclude that the ever is possible,
of a maxitive (possibility) measure [2], [7], [8]: i.e., there exist an outcome that belongs both taX and
to T'(po). Since X is the union of the sef,, this eventz

Definition 2. A mappingm from sets to real numbers (andbelongs to one of the sefé.,. Thus, Xo N7 (po) # 0, SO by
possibly a valuet-oo) is called amaxitive (possibility) mea-  j oo of o complexity moeasure, we should hav,e
sure if for every family of set, for which m(X,) and '

m(UX,) are defined, we have m(Xag) > Do (3)
P X for this «y. However, from our assumptionn(X) >
m | JXa | = Sgpm( a)- supm(X,) and from the fact thatupm(X,) > m(Xa,),

(03 [e3
we conclude thain(X,,) < po — a contradiction with our

Theorem 1.For agiven probabmty measurp(E), a function .preViOU.S conclusion (3) ThlS Contra-diction. shows that the
m(E) is a ratio measure if and only if it is a maxitiveinequalitym(X) > supm(X,) is also impossible.

(possibility) measure. Thus, every ratioc measure:(E) is indeed a maxitive
CommentSincem(E) = p(E)/c(E) is a possibility measure, Measure.
we thus have:(E) = m(E)/p(E). In other words, To complete the proof of Theorem 1, we must now prove
. possibility that if m(E) is a maxitive measure, then it is a ratio measure.
complexity=

probability To prove this, we will show that for every positive real number



po, there exists a séf(py) that satisfies the condition (1). We

Theorem 2. A universal complexity measure is impossible.

will show that as such a set, we can take a complement to the

union of all setsS € A for which m(S) < py, i.e.,
T(po) = —U{S € A[m(S) < po}- (4)

We must prove that for everf € A, ENT(py) # 0 if and
only if m(E) > po. Actually, we will prove an equivalent
statement: that for every € A, ENT(py) = O if and only
if m(E) < po.

If m(E) < po, thenE is completely contained in the union
U{S € A|m(S) < po}, thus, E cannot have common points
with the complement’(py) to this union.

Vice versa, let us assume that for some evBne A, we
have ENT(py) = 0. This means that the sét is completely
contained in the complement ®(py), i.e., that

E CU{S € Alm(S) < po}-

Thus,
E=U{SNE|SeA&m(S) <po}. (5)

If the setS and E' belongs to ar-algebra, then their intersec-
tion and their difference also belong to thealgebra. From
S = (SNE)U(S—F) and the definition of a maxitive measure
we thus conclude that(S) = max(m(S N E),m(S — E))
hencem(S N E) < m(S). So, if m(S) < po, we have
m(SNE)<m(S) <py hencem(SNE) < pp.

Applying the definition of a maxitive measure to the formulg o .
(5), we can now conclude that(E) = supm(SNE), where ¢ .\ hich p

supremum is taken over afl € A for which m(S) < po. We
have already shown that for all suéh we havem(SNE) <

Proof. To prove this theorem, we will assume that a universal
complexity measure:(E) exists, and from this assumption,
we will deduce a contradiction.

First, let us show that ifA C B are two sets from the-
algebraA for which B # X, thenc(A) > ¢(B). Indeed, let
us prove that ifc(A) < ¢(B), then we get a contradiction.

If ¢(A) < ¢(B), then we can set up a probability measure
p for which p(4) = ¢(B) > 0 andp(B — A) = 0. For this
probability measurep(B) = p(A) +p(B — A) = ¢(B), hence
p(B) < ¢(B) and p(B) > 0. By definition of a universal
complexity measure, this means that the Bdtas no common
points with 7'(p). Since A is a subset ofB, it also has no
common points withT'(p); due top(A) > 0, we should
have p(A) < c(A). However, p(A) ¢(B) > ¢(A) — a
contradiction shows that the cased) < ¢(B) is impossible.

Let us now show ifA C B andc¢(B) > 0, thenc(A)
¢(B). We already know that(A) > ¢(B). Thus, it is sufficient
to show that ifc(A) > ¢(B), then we get a contradiction.

" Indeed, sincex(B) > 0 and B — A C B, we have

¢(B—A)>c(B)>0.

(A) > ¢(B), then we can set up a probability measpre
(A) =c¢(A) and

0<p(B—A)<c(B- A).

po. Thus,m(E) is the supremum of a set of numbers each of

which is < py. We can therefore conclude that(E) < py.
The theorem is proven.

V1. AUXILIARY RESULT

A

Our definition of complexity depends on the choice of thg,
probability measure. In other words, complexity of an eveqt(p) their union B = AU (B — A)
depends on the problem that we are trying to solve. This mak@cﬁnr,non points withZ'(

For this probability measurey(A) < ¢(A) andp(A4) > 0,
hence the sefl cannot have any common points wiif(p).
Similarly, since0 < p(B — A) < ¢(B — A), the setB —
cannot have any common points wiifi{p). Since neither
e setA nor the setB — A can have common points with
also cannot have any
p). According to the definition of a

sense because what we are looking for is complexity relevaiversal complexity measure and the fact thaB) > 0, this

to the problem.

However, a natural question is: is it possible to have
“universal” complexity measure, i.e., a complexity measu
that will serve all possible probability measurg&F)? The
answer is “no”, even if, instead of all possible threshalgs
we just consider a single one. This result is true evenXor
equal to the standard intervl, 1].

Let us describe this result in precise terms.

Definition 3. Let X = [0, 1], and let.A C 2% be ac-algebra
of all Lebesgue-measurable sets. Byumiversal complexity
measurec we mean a mapping fromd to the interval[0, 1]
for which 0 < ¢([a,b]) < 1 for every interval[a,b], and for
every probability measurg on A, there exists a sef'(p) for
which

VE € A(p(E) >0 — (p(E) > c¢(F) < ENT(p) #0)).

would mean thaip(B) < ¢(B), but p(B) > c¢(A) > ¢(B).
The contradiction shows that the cased) > ¢(B) is also
ifhpossible.

So,A C B andc¢(B) > 0 imply thatc(A) = ¢(B).

Let [a,b] be an arbitrary intervaj [0,1]. Then, by defi-
nition, ¢([a,b]) > 0, so, for every sett C [a,b], we have
¢(E) ¢([a,b]). Let us select an integet > 1/c¢([a,b])
and divide the intervala,b] into n subintervals of equal
size. For the uniform distribution on the interval, b], the
probability p(E) of each subintervaF is equal tol /n. Since
n > 1/c¢(]a,b]), we thus conclude thap(E) = 1/n <
c([a, b)), i.e.,p(E) < ¢(E) = ¢([a, b]). Thus, none of these
subintervals can contain elements frdfifp). On the other
hand, p([a,b]) = 1 > ¢([a,b]) hence the uniona,b] of
thesen subintervals does contain elements frdnip) — a
contradiction.

The theorem is proven.
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