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Abstract— According to the traditional probability theory,
events with a positive but very small probability can occur
(although very rarely). For example, from the purely mathe-
matical viewpoint, it is possible that the thermal motion of all
the molecules in a coffee cup goes in the same direction, so this
cup will start lifting up.

In contrast, physicists believe that events with extremely small
probability cannot occur. In this paper, we show that to get
a consistent formalization of this belief, we need, in addition
to the original probability measure, to also consider a maxitive
(possibility) measure.

I. PHYSICISTS ASSUME THAT INITIAL CONDITIONS AND

VALUES OF PARAMETERS ARE NOT ABNORMAL

To a mathematician, the main contents of a physical theory
is the equations. The fact that the theory is formulated in terms
of well-defined mathematical equations means that the actual
field must satisfy these equations. However, this fact doesnot
mean thatevery solution of these equations has a physical
sense. Let us give three examples:

Example 1. At any temperature greater than absolute zero,
particles are randomly moving. It is theoretically possible that
all the particles start moving in one direction, and, as a result,
a person starts lifting up into the air. The probability of this
event is small (but positive), so, from the purely mathematical
viewpoint, we can say that this event is possible but highly
unprobable. However, the physicists say plainly that such an
abnormal event isimpossible(see, e.g., [3]).

Example 2.Another example from statistical physics: Suppose
that we have a two-chamber camera. The left chamber is
empty, the right one has gas in it. If we open the door between
the chambers, then the gas would spread evenly between the
two chambers. It is theoretically possible (under appropriately
chosen initial conditions) that the gas that was initially evenly
distributed would concentrate in one camera. However, physi-
cists believe this abnormal event to be impossible. This is an
example of a “micro-reversible” process: on the atomic level,

all equations are invariant with respect to changing the order
of time flow (t → −t). So, if we have a process that goes
from stateA to stateB, then, if while atB, we revert all the
velocities of all the atoms, we will get a process that goes
from B to A.

However, in real life, many processes are clearly irre-
versible: an explosion can shatter a statue but it is hard to
imagine an inverse process: an implosion that glues together
shattered pieces into a statue. Boltzmann himself, the 19th
century author of statistical physics, explicitly stated that such
inverse processes “may be regarded as impossible, even though
from the viewpoint of probability theory that outcome is only
extremely improbable, not impossible.” [1].

Example 3. If we toss a fair coin 100 times in a row, and
get heads all the time, then a person who is knowledgeable in
probability would say that it is possible – since the probability
is still positive. On the other hand, a physicist (or any person
who uses common sense reasoning) would say that the coin is
not fair – because if it is was a fair coin, then this abnormal
event would be impossible.

In all these cases, physicists (implicitly or explicitly) require
that the actual values of the physical quantities must not only
satisfy the equations but they must also satisfy the additional
condition: that the initial conditions shouldnot be abnormal.

Comment.In all these examples, a usual mathematician’s
response to physicists’ calling some low-probability events
“impossible”, is just to say that the physicists use imprecise
language.

It is indeed true that the physicists use imprecise language,
and it is also true that in the vast majority of practical ap-
plications, a usual probabilistic interpretation of this language
perfectly well describes the intended physicists’ meaning. In
other words, the probability language is perfectly OK for most
physical applications.



However, there are some situations when the physicists’
intuition seem to differ from the results of applying traditional
probability techniques:

• From the probability theory viewpoint, there is no fun-
damental difference between such low-probability events
as a person winning a lottery and the same person being
lifted up into the air by the Brownian motion. If a person
plays the lottery again and again, then – provided that this
person lives for millions of years – he will eventually win.
Similarly, if a person stands still every morning, then –
provided that this person lives long enough – this person
will fly up into the air.

• On the other hand, from the physicist viewpoint, there
is a drastic difference between these two low-probability
events: yes, a person will win a lottery but no, a person
will never lift up into the air no matter how many times
this person stands still.

We have just mentioned that the traditional mathematical
approach is to treat this difference of opinion as simply caused
by the imprecision of the physicists’ language. What we plan
to show is that if we take this difference more seriously
and develop a new formalism that more accurately captures
the physicists’ reasoning, then we may end up with results
and directions that are, in our opinion, of potential interest
to foundations of physics. In other words, what we plan to
show is that if we continue to use the traditional probability
approach, it is perfectly OK but if we try to formalize the
physicists’ opinion more closely, we may sometimes get even
better results.

II. A SEEMINGLY NATURAL FORMALIZATION OF THIS IDEA

The above-mentioned property of being “not abnormal”
(“typical”) has a natural formalization: if a probabilityp(E)
of an eventE is small enough, i.e., ifp(E) ≤ p0 for some
very small thresholdp0, then this event cannot happen.

In other words, there exists the “smallest possible probabil-
ity” p0 such that:

• if the computed probabilityp of some event is larger than
p0, then this event can occur, while

• if the computed probabilityp is ≤ p0, the event cannot
occur.

For example, the probability that a fair coin falls heads 100
times in a row is2−100, so, if the threshold probabilityp0

satisfies the inequalityp0 ≥ 2−100, then we will be able to
conclude that such an event is impossible.

III. T HE ABOVE FORMALIZATION OF THE NOTION OF

“ TYPICAL” IS NOT ALWAYS ADEQUATE

In the previous section, we described a seemingly natural
formalization of the notion “typical” (“not abnormal”): if a
probability of an event is small enough, i.e.,≤ p0 for some
very smallp0, then this event cannot happen.

The problem with this approach is thatevery sequence
of heads and tails has exactly the same probability. So, if
we choosep0 ≥ 2−100, we will thus exclude all possible

sequences of 100 heads and tails as physically impossible.
However, anyone can toss a coin 100 times, and this proves
that some such sequences are physically possible.

Historical comment.This problem was first noticed by Kyburg
under the name ofLottery paradox[5]: in a big (e.g., state-
wide) lottery, the probability of winning the Grand Prize is so
small that a reasonable person should not expect it. However,
some people do win big prizes.

IV. K OLMOGOROV’ S IDEA: USE COMPLEXITY

Crudely speaking, the main problem arises because we
select the same thresholdp0 for all events. For example, if
we toss a fair coin 100 times then a sequence consisting of all
heads should not be possible, and it is a reasonable conclusion
because the probability that tossing a fair coin will lead to this
sequence is extremely small:2−100.

On the other hand, whatever specific sequence of heads and
tails we get after tossing a coin, this sequence also has the
same small probability2−100. In spite of this, it does not seem
to be reasonable to dismiss such sequences.

Several researchers thought about this, one of them A.
N. Kolmogorov, the father of the modern probability theory.
Kolmogorov came up with the following idea: the probability
threshold t(E) below which an eventE is dismissed as
impossible must depend on the event’s complexity. The event
E1 in which we have 100 heads is easy to describe and
generate; so for this event, the thresholdt(E1) is higher. If
t(E1) > 2−100 then, within this Kolmogorov’s approach, we
conclude that the eventE1 is impossible. On the other hand,
the eventE2 corresponding to the actual sequence of heads
and tails is much more complicated; for this eventE2, the
thresholdt(E2) should be much lower. Ift(E2) < 2−100, we
conclude that the eventE2 is possible.

The general fact that out of2n equally probable sequences
of n 0s and 1s some are “truly random” and some are not truly
random was the motivation behind Kolmogorov and Martin-
Löf’s formalization of randomness (and behind the related
notion of Kolmogorov complexity; the history of this discovery
is described in detail in [6]).

This notion of Kolmogorov complexity was introduced
independently by several people: Kolmogorov in Russia and
Solomonoff and Chaitin in the US. Kolmogorov defined com-
plexity K(x) of a binary sequencex as the shortest length
of a program which produces this sequence. Thus, a sequence
consisting of all 0s or a sequence 010101. . . both have very
small Kolmogorov complexity because these sequences can
be generated by simple programs; on the other hand, for a
sequence of results of tossing a coin, probably the shortest
program is to writeprint(0101. . . ) and thus reproduce the
entire sequence. Thus, whenK(x) is approximately equal to
the lengthlen(x) of a sequence, this sequence is random, oth-
erwise it is not. (The best source for Kolmogorov complexity
is a book [6].)

However, the existing Kolmogorov complexity theory does
not yet lead to a formalism describing when low-probability



events do not happen; we must therefore extend the original
Kolmogorov’s idea so that it would cover this case as well.

V. FORMALIZATION AND THE MAIN RESULT

Let us start with motivations. We have mentioned that
we cannot consistently claim that an eventE is possible if
and only its probabilityp(E) exceeds a certain thresholdp0;
instead, we must take into consideration that “complexity”
c(E) of an event, and claim, e.g., that an eventE is possible
if and only if p(E) > p0 ·c(E), i.e., equivalently,m(E) > p0,

where we denotedm(E) def= p(E)/c(E).

Comment.To handle events with 0 probability, we must extend
the ratiom(E) to such events – otherwise, e.g., for the uniform
distribution on the interval[0, 1], we would havep({x}) =
0 ≤ p0 · c({x}) hence no pointx would be possible.

We would like to characterize the “ratio measures”m(E)
for which this definition is, in some reasonable sense, consis-
tent for all possible thresholdsp0. In order to do that, let us
first find out how to formalize the notion of consistency.

Let X be the set of all possible outcomes. Aneventis then
simply a subsetE of the setX, andp is a probability measure
on aσ-algebra of sets fromX.

Let T ⊆ X be the set of all outcomes that are actually
possible. Then, an eventE is possible if and only if there is
a possible outcome that belongs to the setE, i.e., if and only
if E ∩ T 6= ∅.

Now, we are ready for the main definition:

Definition 1. LetX be a set, and letp be a probability measure
on a σ-algebraA ⊆ 2X of subsets of the setE. By a ratio
measurem we mean a mapping fromA to the set of non-
negative real numbers (and, possibly a value+∞) such that
for every real numberp0 > 0, there exists a setT (p0) for
which

∀E ∈ A (m(E) > p0 ↔ E ∩ T (p0) 6= ∅). (1)

To describe our main result, we need to recall the definition
of a maxitive (possibility) measure [2], [7], [8]:

Definition 2. A mappingm from sets to real numbers (and
possibly a value+∞) is called amaxitive (possibility) mea-
sure if for every family of setsXα for which m(Xα) and
m(∪Xα) are defined, we have

m

(⋃
α

Xα

)
= sup

α
m(Xα).

Theorem 1.For a given probability measurep(E), a function
m(E) is a ratio measure if and only if it is a maxitive
(possibility) measure.

Comment.Sincem(E) = p(E)/c(E) is a possibility measure,
we thus havec(E) = m(E)/p(E). In other words,

complexity=
possibility
probability

.

Proof. Let us first prove that every ratio measurem(E)
is indeed a maxitive measure. By definition of a maxitive
measure, we need to prove that ifXα is a family of sets from
the σ-algebraA for which the unionX = ∪Xα also belongs
to A, we havem(X) = sup

α
m(Xα).

Let us prove this inequality by reduction to a contradiction.
Let us assume thatm(X) 6= sup

α
m(Xα). In this case, we have

two options:

• m(X) > sup
α

m(Xα) and

• m(X) < sup
α

m(Xα).

Let us show that in both cases, we have a contradiction.
Indeed, by definition of a ratio measure, for everyp0, there

exists a setT (p0) such that for every setE, we havem(E) >
p0 if and only if E ∩ T (p0) > 0.

If m(X) < sup
α

m(Xα), let us selectp0 for which

m(X) < p0 < sup
α

m(Xα).

Since m(X) < p0, we conclude that the eventX is not
possible, i.e.,

X ∩ T (p0) = ∅. (2)

On other hand, sincep0 < sup
α

m(Xα), there exists a value

α0 for which p0 < m(Xα0). For this α0, by definition of
a ratio measure, the eventXα0 is possible, so there exists
an outcomex from Xα0 that also belongs to the setT (p0)
of possible events. However, sinceX = ∪Xα, we have
x ∈ X, so x ∈ X ∩ T (p0) – which contradicts our previous
conclusion (2). This contradiction shows that the inequality
m(X) < sup

α
m(Xα) is impossible.

If m(X) > sup
α

m(Xα), let us selectp0 for which

m(X) > p0 > sup
α

m(Xα).

Sincem(X) > p0, we conclude that the eventX is possible,
i.e., there exist an outcomex that belongs both toX and
to T (p0). SinceX is the union of the setXα, this eventx
belongs to one of the setsXα0 . Thus,Xα ∩T (p0) 6= ∅, so by
definition of a complexity measure, we should have

m(Xα0) > p0 (3)

for this α0. However, from our assumptionm(X) >
sup

α
m(Xα) and from the fact thatsup

α
m(Xα) ≥ m(Xα0),

we conclude thatm(Xα0) < p0 – a contradiction with our
previous conclusion (3). This contradiction shows that the
inequalitym(X) > sup

α
m(Xα) is also impossible.

Thus, every ratio measurem(E) is indeed a maxitive
measure.

To complete the proof of Theorem 1, we must now prove
that if m(E) is a maxitive measure, then it is a ratio measure.
To prove this, we will show that for every positive real number



p0, there exists a setT (p0) that satisfies the condition (1). We
will show that as such a set, we can take a complement to the
union of all setsS ∈ A for which m(S) ≤ p0, i.e.,

T (p0) = − ∪ {S ∈ A |m(S) ≤ p0}. (4)

We must prove that for everyE ∈ A, E ∩ T (p0) 6= ∅ if and
only if m(E) > p0. Actually, we will prove an equivalent
statement: that for everyE ∈ A, E ∩ T (p0) = ∅ if and only
if m(E) ≤ p0.

If m(E) ≤ p0, thenE is completely contained in the union
∪{S ∈ A |m(S) ≤ p0}, thus,E cannot have common points
with the complementT (p0) to this union.

Vice versa, let us assume that for some eventE ∈ A, we
haveE ∩ T (p0) = ∅. This means that the setE is completely
contained in the complement toT (p0), i.e., that

E ⊆ ∪{S ∈ A |m(S) ≤ p0}.
Thus,

E = ∪{S ∩ E |S ∈ A& m(S) ≤ p0}. (5)

If the setS andE belongs to aσ-algebra, then their intersec-
tion and their difference also belong to theσ-algebra. From
S = (S∩E)∪(S−E) and the definition of a maxitive measure,
we thus conclude thatm(S) = max(m(S ∩ E),m(S − E))
hencem(S ∩ E) ≤ m(S). So, if m(S) ≤ p0, we have
m(S ∩ E) ≤ m(S) ≤ p0 hencem(S ∩ E) ≤ p0.

Applying the definition of a maxitive measure to the formula
(5), we can now conclude thatm(E) = sup m(S ∩E), where
supremum is taken over allS ∈ A for which m(S) ≤ p0. We
have already shown that for all suchS, we havem(S ∩E) ≤
p0. Thus,m(E) is the supremum of a set of numbers each of
which is≤ p0. We can therefore conclude thatm(E) ≤ p0.

The theorem is proven.

VI. A UXILIARY RESULT

Our definition of complexity depends on the choice of the
probability measure. In other words, complexity of an event
depends on the problem that we are trying to solve. This makes
sense because what we are looking for is complexity relevant
to the problem.

However, a natural question is: is it possible to have a
“universal” complexity measure, i.e., a complexity measure
that will serve all possible probability measuresp(E)? The
answer is “no”, even if, instead of all possible thresholdsp0,
we just consider a single one. This result is true even forX
equal to the standard interval[0, 1].

Let us describe this result in precise terms.

Definition 3. Let X = [0, 1], and letA ⊆ 2X be aσ-algebra
of all Lebesgue-measurable sets. By auniversal complexity
measurec we mean a mapping fromA to the interval[0, 1]
for which 0 < c([a, b]) < 1 for every interval[a, b], and for
every probability measurep onA, there exists a setT (p) for
which

∀E ∈ A (p(E) > 0 → (p(E) > c(E) ↔ E ∩ T (p) 6= ∅)).

Theorem 2. A universal complexity measure is impossible.

Proof. To prove this theorem, we will assume that a universal
complexity measurec(E) exists, and from this assumption,
we will deduce a contradiction.

First, let us show that ifA ⊂ B are two sets from theσ-
algebraA for which B 6= X, thenc(A) ≥ c(B). Indeed, let
us prove that ifc(A) < c(B), then we get a contradiction.

If c(A) < c(B), then we can set up a probability measure
p for which p(A) = c(B) > 0 and p(B − A) = 0. For this
probability measure,p(B) = p(A)+p(B−A) = c(B), hence
p(B) ≤ c(B) and p(B) > 0. By definition of a universal
complexity measure, this means that the setB has no common
points with T (p). SinceA is a subset ofB, it also has no
common points withT (p); due to p(A) > 0, we should
have p(A) ≤ c(A). However, p(A) = c(B) > c(A) – a
contradiction shows that the casec(A) < c(B) is impossible.

Let us now show ifA ⊂ B and c(B) > 0, then c(A) =
c(B). We already know thatc(A) ≥ c(B). Thus, it is sufficient
to show that ifc(A) > c(B), then we get a contradiction.

Indeed, sincec(B) > 0 andB −A ⊆ B, we have

c(B −A) ≥ c(B) > 0.

Let c(A) > c(B), then we can set up a probability measurep
for which p(A) = c(A) and

0 < p(B −A) ≤ c(B −A).

For this probability measure,p(A) ≤ c(A) and p(A) > 0,
hence the setA cannot have any common points withT (p).
Similarly, since0 < p(B − A) ≤ c(B − A), the setB −
A cannot have any common points withT (p). Since neither
the setA nor the setB − A can have common points with
T (p), their unionB = A ∪ (B − A) also cannot have any
common points withT (p). According to the definition of a
universal complexity measure and the fact thatp(B) > 0, this
would mean thatp(B) ≤ c(B), but p(B) > c(A) > c(B).
The contradiction shows that the casec(A) > c(B) is also
impossible.

So, A ⊆ B andc(B) > 0 imply that c(A) = c(B).
Let [a, b] be an arbitrary interval6= [0, 1]. Then, by defi-

nition, c([a, b]) > 0, so, for every setE ⊆ [a, b], we have
c(E) = c([a, b]). Let us select an integern > 1/c([a, b])
and divide the interval[a, b] into n subintervals of equal
size. For the uniform distribution on the interval[a, b], the
probabilityp(E) of each subintervalE is equal to1/n. Since
n > 1/c([a, b]), we thus conclude thatp(E) = 1/n ≤
c([a, b]), i.e., p(E) < c(E) = c([a, b]). Thus, none of thesen
subintervals can contain elements fromT (p). On the other
hand, p([a, b]) = 1 > c([a, b]) hence the union[a, b] of
thesen subintervals does contain elements fromT (p) – a
contradiction.

The theorem is proven.
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Wärmtheorie”,Wiener Ber. II, 1877, Vol. 75, pp. 62–100.

[2] D. Dubois and H. Prade,Possibility Theory: An Approach to Comput-
erized Processing of Uncertainty, Plenum Press, New York, 1988.

[3] R. P. Feynman,Statistical Mechanics, W. A. Benjamin, 1972.
[4] V. Kreinovich and A. M. Finkelstein, “Towards Applying Computational

Complexity to Foundations of Physics”,Notes of Mathematical Seminars
of St. Petersburg Department of Steklov Institute of Mathematics(to
appear).

[5] H. E. Kyburg, Jr.,Probability and the logic of rational belief, Wesleyan
Univ. Press, 1961.

[6] M. Li and P. M. B. Vitanyi,An Introduction to Kolmogorov Complexity,
Springer, N.Y., 1997.

[7] A. Puhalskii, Large Deviations and Idempotent Probability, Chapman
and Hall/CRC, Boca Raton, 2001.

[8] L. Zadeh, “Fuzzy sets as a basis for a theory of possibility”,Fuzzy Sets
and Systems, 1978, Vol. 1, pp. 3–28.


