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1 Introduction

Optimization and decision making are important. In many industrial engi-
neering problems, we must select a design, select parameters of a process, or,
in general, make a decision. Informally, this decision must be optimal, the
best for the users. In traditional operations research, we assume that we know
the objective function f(x) whose values describe what is best for the users.
For example, for a chemical plant, this function f(x) may represent the profit
resulting from using parameters x.

In such situations, the problem is to find a design (parameters, decision)
x that optimizes (e.g., maximizes) the given function f(x) on the given range
X.

Deterministic case: traditional approaches. Optimization of well-defined func-
tions is what started calculus in the first place: once we know the objective
function f(x), we can use differentiation find its maximum, e.g., as the point
x at which the derivative of f with respect to x is equal to 0.

Sometimes, this equation f’(z) = 0 can be solved directly; sometimes, it is
difficult to solve it directly, so we use gradient-based (i.e., derivatives-based)
techniques to either solve this equation or to optimize the original objective
function f(x).

Case of probabilistic uncertainty. Often, we need to make decisions under un-
certainty. In this case, we cannot predict the exact outcome f(x) of a decision
x; this outcome depends on the unknown factors. If our description of possi-
ble factors is reasonably complete, then, for each value v of these unknown
factors and for each decision x, we can predict the outcome f(z,v) of the de-
cision z under the situation v. In the traditional approach to decision making,
we assume that we can estimate the probability p(v) of each situation v. In
this case, it is reasonable to select a decision x for which the expected utility

f(z) def > p(v) - f(x,v) is the largest possible.
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In many decision-making problems, instead of finitely many situations v,
we have a continuum of possible situations — e.g., we may have one or several
continuous variables like the percentage of sulfur in the oil, the oil price, the
outdoors temperature, etc., that describe possible situations. In such prob-
lems, instead of finitely many probabilities p(v), we have a probability distri-
bution with a probability density p(v), and instead of a sum, we represent the
expected value as an integral f(z) = [, p(v) - f(z,v)dv.

Real-life situations: beyond probabilistic uncertainty. In real life, we often do
not know the probabilities of different possible situations — or at least we only
have partial knowledge about these probabilities.

Interval uncertainty. The simplest case is when we have tolerance-type (inter-
val) uncertainty, i.e., when all we know is that the deviation of actual value x
of the parameter (e.g., thickness of a beam) from the nominal value z cannot
exceed the given tolerance A. In precise terms, this means that x belongs to
the interval [z — A, xg+ 4], an we have no information about the probabilities
within this interval.

Fuzzy uncertainty. In other situations, in addition to the interval that is guar-
anteed to contain x, experts can also provide us with narrower intervals that
contain x with certain degree of confidence a.. Such a nested family of inter-
vals is also called a fuzzy set, because it turns out to be equivalent to a more
traditional definition of fuzzy set [3, 12, 21, 24, 26] (if a traditional fuzzy set is
given, then different intervals from the nested family can be viewed as a-cuts
corresponding to different levels of uncertainty «).

Dealing with interval and fuzzy uncertainty is computationally difficult. The
resulting interval and fuzzy computations techniques have been well devel-
oped, and they are still actively used in many application areas.

For foundations and applications of fuzzy techniques, see, e.g., [3, 4, 12, 26].
For applications of interval computations techniques, see, e.g., [9, 10, 11, 20].

Solving the corresponding data processing and optimization problems is
often computationally difficult (NP-hard), even in the simplest case of interval
uncertainty; see, e.g., [14].

At present, mostly heuristic methods are used. As a result of the above-
mentioned computational difficulty, to handle optimization under interval and
fuzzy uncertainty, researchers mainly use heuristic techniques, techniques that
often modify the techniques used in traditional optimization.

What is the problem with using heuristic techniques. Often, as a result, we
get very heuristic techniques, with no clear understanding of what they are
optimizing and why this particular objective function is selected to represent
the original uncertain situation.
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Towards new mathematical foundations. It is therefore desirable, instead of
modifying techniques, to first modify the basic foundations, the main mathe-
matical methods behind these techniques — and hopefully, justified methods
will come out not just heuristic ones. In this paper, we overview the prelim-
inary results of this research, and describe some useful mathematical tech-
niques in detail.

Specifically:

e to optimize imprecisely defined objective functions, we must extend dif-
ferential formalism to interval-valued and fuzzy-valued functions; our pre-
liminary results are described in [15];

e to find out the utility function, we must extract a function from the data;
here, we usually have linear, quadratic function, Taylor series etc. - a natu-
ral part of calculus; in uncertain case, it is often more beneficial to extract
rules than expressions; see, e.g., [28];

e we must extend the expected utility theory to decision making under par-
tially known preferences; our preliminary results are given in [7, 33];

e finally, we must extend foundations of probability to the case when we
only have partial information about probabilities; this topic is covered in
many monographs and research papers starting with [36]; our research
emphasizes computational-related aspects of these problems; see, e.g., [13,
16, 17].

What we are planning to do. In this paper, we concentrate on extending dif-
ferentiation formalisms to the interval-valued and fuzzy-valued cases.

As we have mentioned, the results of this paper were previously presented
at a conference [15].

2 Extending Differentiation to Interval- and
Fuzzy-Valued Functions: A Problem

In many real-life problems, we want to know the values of the derivatives.
In many areas of science and engineering, we are interested in slopes. For
example, a 1-D landscape is described as a dependence of the altitude y on the
coordinate x; different 1-D landscape features are defined by different values
of the slope dy/dx of this dependence: low values of this slope correspond to
a plain, high values to steep mountains, and medium values to a hilly terrain.

In industrial engineering, we often want to make sure that a certain pa-
rameter of a plant stays within the given range. As we monitor the value of
this parameter, we would like not only to check that this value is within the
range, but we also would like to look at the trend (slope) of this dependence,
to be able to predict what the value of this parameter will be in the future
and thus, to take preventive measures if necessary.
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Interval uncertainty. In the ideal situation, when we know the exact values of
y(z) for every z, we can simply differentiate the corresponding dependence.
In practice, however, the information on y comes from measurements, and
measurements are never exact. E.g., in the landscape example, we measure the
altitudes y1, ...,y at different points z; < ... < x,. Since the measurements
are not exact, the measured values y; are, in general, slightly different from
the the (unknown) actual altitudes y;.

For measuring instruments, we usually have an upper bound A; on the

measurement error Ay; def y; — ;. This upper bound is usually provided by the
manufacturer of this instrument: |Ay;| < A;. Thus, after the measurement,

the only information that we have about the actual (unknown) value y; is

that this value belongs to the interval y, = [gi,yi}, where y, def vi — 4; and

Y; def Ui + A; (for a more detailed description of interval uncertainty, see, e.g.,

[9, 10, 11, 20]).
Thus, the only information that we have about the actual dependence
y = f(x) of y on z is that the (unknown) function f(z) belongs to the class

e {f(x)| f(z;) €ey; foralli=1,...,n}. (1)

We also know that the (unknown) function f(z) is smooth (differentiable) —
because otherwise, the notion of a slope does not make sense.

In many practical applications, the derivative has a physical meaning,
and this meaning implies that it is itself a continuous (or even differentiable)
function. For example, when we monitor the locations y; of a particle at
different moments of time z;, then the derivative dy/dz is a velocity; when
we monitor the values y; of the velocity, then the derivative dy/dz is the
acceleration, etc. Thus, we can assume that the function f is continuously
differentiable.

How can we determine the slopes under such interval uncertainty?

Toward a formal definition. Let us assume that we look for areas where the
slope takes a given value s. In a simplified example, we monitor the location
y; of a car on a highway at different moments of time, and we want to find out
where the car was driving at the maximal allowed speed s (or, alternatively,
where it was driving at an excessive speed s).

Since we only know the values of the unknown function f(x) at finitely
many points x1 < ... < T, it is always possible that the derivative of the
(unknown) function f(z) attains the desired value s at some point between
x; and x;41. For example, if we are checking for the areas where the car was
overspeeding, it is always possible that the car was going very fast when no
one was looking (i.e., in between z; and x;11), for a short period of time, just
for fun, so that the overall traveled distance was not affected.

In other words, for every interval [a,b] (a < b), it is always possible to
have a function f within the class F' (defined by the formula (1)) for which
f(z) = s for some s € [a,b].
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What we are really interested in is not whether it is possible that some-
where, the slope is equal to s (it is always possible), but whether the data
imply that somewhere, the slope was indeed equal to z. This “implies” means
that whatever function f € F we take, there always is a point = € [a,b] for
which f’(z) = s (this point may be different for different functions f € F).

In other words, we say that the slope is guaranteed to attain a given value
s somewhere on a given interval [a, ] if for every function f € F, the range
1'(la, b)) of its derivative f’(x) contains the value s. In mathematical terms,
this means that the value s belongs to the intersection of the ranges f’([a, b))
corresponding to all f € F.

This intersection thus describes the “range of the derivative” of the interval
function F' on the given interval [a, b]. In other words, we arrive at the following
definitions.

From interval to fuzzy uncertainty. As we have mentioned, interval uncer-
tainty is just the simplest possible case of non-probabilistic uncertainty. In
many real life situations, instead of an interval, we have a fuzzy set — i.e.,
nested family of intervals corresponding to different levels of certainty «.

In this case, instead of an “interval function”, i.e., a finite sequence of pairs
(xi,y4) (1 =1,2,...,n), where z; is a real number and y; is an interval, we
have a “fuzzy function”, i.e., a finite sequence of pairs (z;,Y;) (i = 1,2,...,n),
where Y; is a fuzzy number.

Once we define the derivative of an interval-valued function, we can nat-
urally extend this definition to derivatives of fuzzy-valued function: Namely,
for every degree of certainty «, we consider an interval function formed by the
a-cuts of Y;. We can then compute the “derivative” of this interval function.
This derivative, as we will see, is, by itself, also an interval.

So, for each level o, we have a derivative interval corresponding to this
level a. The nested family of these derivative intervals forms a fuzzy number
— which can be thus viewed as a “derivative” of the original fuzzy function.

In view of this comment, once we know how to define and compute deriva-
tives of interval-valued functions, we can naturally extend this definition to
fuzzy-valued functions as well. Because of this fact, in this text, we will concen-
trate on definitions and algorithms corresponding to interval-valued functions.

3 Precise Formulation of the Problem

Definition 1. By an interval function F', we mean a finite sequence of pairs
(xi,y:) (i =1,2,...,n), where for each i, x; is a real number, y; is a non-
degenerate interval, and r1 < xo < ... < Tp.

Definition 2. We say that a function f: R — R from reals to reals belongs
to an interval function F = {{x1,¥1),.-, (&n,¥n)} of f(x) is continuously
differentiable and for every i from 1 to n, we have f(x;) € y;.
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Definition 3. Let F' be an interval function, and let [a,b] be an interval. By
a derivative F'([a,b]), we mean the intersection

F'(la, b)) < () £ ([a,b]),

feF

where f'(x) denotes the derivative of a differentiable function f(x), and

1/ ([a,b]) o {f'(z)|x € [a,b]} is the range of the derivative f'(x) over the

interval [a,b].

Comment. The notation F’([a,b]) looks like the notation of a range for a real-
valued function, but it is not a range: in contrast to range, if an interval is
narrow enough, we can have F”([a,b]) = 0 (see examples below).

This newly defined derivative does share some properties of the range. For
example, it is well known that the range is inclusion-monotonic — in the sense
that [a, b] C [¢,d] implies f’([a,b]) C f'([e, d]). From this property of the range,
we can conclude that [a,b] C [, d] implies F'([a,b]) C F'([¢,d]) —i.e., that the
newly defined derivative is also inclusion-monotonic. Thus, if the union AU B
of two intervals is also an interval, we have F'(AU B) D F'(A) U F'(B).

Formulation of the problem. How can we compute the derivative of an interval
function? The above definition, if taken literally, requires that we consider all
(infinitely many) functions f € F' — which is computationally excessive. Thus,
we must find an efficient algorithm for computing this derivative. This is what
we will do in this paper.

We will try our best to make sure that these algorithms are not simply
tricks, that the ideas behind these algorithms are clear and understandable.
Therefore, instead of simply presenting the final algorithm, we will, instead,
present our reasoning in a series of auxiliary results that eventually leads to
the asymptotically optimal algorithms for computing the desired derivative
F'([a,b)).

Previous work. In our research, we were guided by results from two related
research directions:

First, we were guided by different definitions of differentiation of an interval
function that have been proposed by interval computations community [2, 10,
19, 22, 23, 27, 29, 30, 31, 32]. The main difference from our problem is that
most of these papers assume that we have intervals y for all z, while we
consider a more realistic situation when the interval bounds on f(x) are only
known for finitely many values x1, ..., Zy.

Second, we were guided by a paper [34] in which an algorithm was devel-
oped to check for local maxima and minima of an interval function f. This
result has been applied to detecting geological areas [1, 5, 6] and to finan-
cial analysis [8]. This result can be viewed as detecting the areas where the
derivative is equal to 0 — and, in this sense, as a particular case of our current
problem.
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4 First Auxiliary Result: Checking Monotonicity

Definition 4. We say that a function f(x) is strongly increasing if f'(z) > 0
for all x.

Comment. Every strongly increasing function is strictly increasing, but the
inverse is not necessarily true: the function f(x) = 2? is strictly increasing
but not strongly increasing.

Proposition 1. For every interval function F, the existence of a strongly
increasing function f € F with f'(x) > 0 is equivalent to

y, <y forall i <. (2)

Proof. If f € F and f(x) is strongly increasing, then it is also strictly increas-
ing hence for every i < j, the inequality x; < z; implies that f(z;) < f(z;).
Since f € F, we have f(z;) € y; = [gi,yi] and f(z;) € yi = [gj,yj]. Thus,
from y. < f(2;) < f(x;) <¥;, we conclude that y, <¥;, which is exactly the
inequality (2).

Vice versa, let us assume that the inequalities (2) are satisfied, and let us
design the corresponding strictly increasing function f € F. We will first build
a piece-wise linear strictly increasing function fo(z) for which fo(z;) € yi,
and then we will show how to modify fo(x) into a continuously differentiable
strongly increasing function f € F.

According to the inequalities (2), all the differences ; — Y, (i < j) are
positive. Since all intervals are non-degenerate, the differences 7, — y, are also
positive. Let us denote the smallest of these positive numbers by A. For every
1, let us denote

def }
- — A
b S max(y, o oy) + 5 3)

We will then design fy(x) as a piece-wise linear function for which fo(x;) = y;.
To show that fy(x) is the desired piece-wise linear function, we must show
that for every ¢, y; € y;, and that this function is strictly increasing, i.e., that
i < j implies y; < y;.

That ¢ < j implies y; < y; is clear: the first (maximum) term in the
formula (3) can only increase (or stay the same) when we replace i by j, and
the second term increases. Thus, it is sufficient to prove that y; € y; = [y 7.1,
i.e., that Y, < vi and y; < ;. We will actually prove a stronger statement:
that Y, < and y; < 7;.

The first inequality y, < y; follows directly from the formula (3 (3): by defini-
tion of a maximum, max(yl, Sy, ) > Y, and when we add a positive number
to this maximum, the result only i increases. So, y; is actually larger than Y,

Let us now prove that y; < ¥;. Indeed, by definition of A, for all k < i, we
have y, + A <7, hence (since (i/2n) - A < A) y, + (z/Qn)A < Y,;. Thus, y; —
which is the largest of the values y, + (i/2n)A — is also smaller than ;. So,
the desired fo(z) is designed.
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Let us now show how to build the corresponding continuously differentiable
function f(x). For the piece-wise linear function fy(x), the first derivative
fi(x) is piece-wise constant; since the function fy(x) is strictly increasing, the
values fi(z) are all positive. Around each discontinuity point x;, replace the
abrupt transition with a linear one; as we integrate the resulting function,
we get a new function f(z) that is continuously differentiable and — since the
new values of the derivative are still everywhere positive — strongly increasing.
When the replacement is fast enough, the change in the value f(x;) is so small
that f(x;) is still inside the desired interval y;. The proposition is proven.

Similarly, we can prove the following results:

Definition 5. We say that a function f(x) is strongly decreasing if f'(z) < 0
for all .

Proposition 2. For every interval function F, the existence of a strongly
decreasing function f € F is equivalent to

Y > Y, for all © < j. (4)

Proposition 3. For every interval function F and for every interval [a,b],
the existence of a function f € F that is strongly increasing on the interval
[a,b] is equivalent to

y, <yj for all i < j for which z;,z; € [a, b]. (5)

Proposition 4. For every interval function F and for every interval [a,b],
the existence of a function f € F that is strongly decreasing on the interval
[a, b] is equivalent to

Y, > Y, for all i < j for which x;,x; € [a,b]. (6)

5 Second Auxiliary Result: Checking Whether
0 € F'([a, b])

Proposition 5. For every interval function F' and for every interval [a, b], 0 €
F'([a,b]) if and only if neither conditions (5) not conditions (6) are satisfied.

Proof. Let us first show that if either the conditions (5) or the conditions (6)
are satisfied, then 0 ¢ F’([a, b]).

Indeed, according to Proposition 3, if the conditions (5) are satisfied, then
there exists a function f € F that is strongly increasing on [a,b]. For this
function, f'(z) > 0 for all z € [a,b]; therefore, f'([a,b]) C (0,00). Since
F'(Ja, b)) is defined as the intersection of such range sets, we have F'([a,b]) C
1'(la,b]) C (0,00) hence 0 ¢ F'([a, b]).

Similarly, if the conditions (6) are not satisfied, then 0 ¢ F'([a, b]).
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Vice versa, let us assume that neither the conditions (5) nor the conditions
(6) are satisfied, and let us show that then 0 € F'([a, b]). Indeed, let f € F
be an arbitrary function from the class F. Since the conditions (5) are not
satisfied, the function f(z) cannot be strongly increasing; therefore, there must
be a point x; € [a,b] for which f’(z1) < 0. Similarly, since the conditions (6)
are not satisfied, the function f(x) cannot be strongly decreasing; therefore,
there must be a point o € [a, b] for which f'(z2) > 0.

Since the function f(z) is continuously differentiable, the continuous
derivative f’(x) must attain the 0 value somewhere on the interval [z1,z2] C
[a,b]. In other words, 0 € f'([a,b]) for all f € F. Thus, 0 belongs to intersec-
tion F'([a,b]) of all possible ranges f’([a,b]). The proposition is proven.

6 Third Auxiliary Result and Final Description of
F'([a, b])

Definition 6. Let F' = {{z1,y1),...,{Zn,¥n)} be an interval function, and
let v be a real number. Then, we define a new interval function FF — v - x as
follows:

F—v-z={(z,y1 —v-21), .., (Tn,¥n — v Tn)},
where, for an interval y = [y,7] and for a real number c, the difference y — ¢

is defined as [y — ¢,y — ¢].

It is easy to prove the following auxiliary result:

Proposition 6. For every interval function F and for every interval [a,b],
v € F'([a,b]) if and only if 0 € (F — v -x)'([a,b]).

This results leads to the following description of the derivative F’([a, b]):

Proposition 7. For every interval function F and for every interval [a,b],
let i9 and jo be the first and the last index of the values x; inside [a,b]. Then
F'([a,b]) = [F Fiyj,), where

=—1i0,J0’
def . —-< - def
Fi;, = min Ay, Fi; = max A, (7)
i0<1<5<jo 10<i<j<Jjo
A et YT Y o der Vi T Y,
iy — ) 3y ) (8)
xj — X; Stl‘j — X

and [p, q] def {z|p < x&xz < q} — so when when p > q, the interval [p,q| is
the empty set.

Comment. The above expression is rather intuitively reasonable because the
ratios Aij and A;; are finite differences — natural estimates for the derivatives.
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Comment. As a corollary of this general result, we can conclude that if the
interval [a, b] contains a single point x; (or no points at all), then

F'([a,b]) = 0.

Mathematically, this conclusion follows from our general result because in
this case, there is no pair ¢ < j, so the minimum and the maximum are
taken over an empty set. By definition, the minimum of an empty set is
infinite, so Fmgo = +oo; similarly, Fiojo = —oo. Here, F,; . > F; ., so
the interval is empty. Intuitively, however, this conclusion can be understood
without invoking minima and maxima over an empty set.

Indeed, let us assume that the given interval [a, b] contains only one point
x; from the original list z1,...,z,. Then, for any real number s, we can take,
as f € F, a function that takes an arbitrary value y; € y; for £ = x; and that
is linear with a slope s on [a,b] — i.e., the function

f@)=yits (z—a)

For this function f(z), the range f’([a,b]) of the derivative f’(z) on the in-
terval [a,b] consists of a single point s. Thus, if we take two such functions
corresponding to two different values of s, then the intersection of their ranges
is empty. Therefore, the range F’([a, b]) — which is defined (in Definition 3) as
the intersection of all such ranges f’([a,b]) — is also empty.

Proof. The fact that conditions (5) are not satisfied means that there exist
value ig < @ < j < jo for which y. > 7;. The fact that the conditions (6)
are not satisfied means that there exist values ig < i < j < jo for which
yz/ < ij

Similarly, the fact that the conditions (5) and (6) are not satisfied for the
interval function F' — v - x mean that

Fi,j(lo<i<j<jo&y,—v -z =2Y; —v- ;) 9)

and
3,5 (i <i' <j < jo&Fy —v-wy < Y, —v-x). (10)

The inequality Y, —v-x; 2Y; —v-x;can be described in the equivalent form
v (zj —x) > Y — y,, l.e., since ¥; < ;, in the form v > A;j. Thus, the
existence of 7 and j as expressed by the formula (9) can be described as  the
existence of ¢ and j for which v is larger than the corresponding value A,
i.e., as o
v > min AU
10<1<j<Jjo
Similarly, the condition (10) is equivalent to

v< max A
10<i<j<jo

The proposition is proven.
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7 Towards a Faster Algorithm

Proposition 7 provides an explicit formula for computing F’([a,b]) for each
interval [a,b]. For each [a,b], we need to compute O(n?) values of A,; and

Aij-

In problem like locating landscape features, we are not so much interested
in knowing whether a given type of landscape exists in a given zone, but
rather in locating all types of landscape. In other words, we would like to
be able to find the values F’([a,b]) for all possible intervals [a,b]. According
to Proposition 7, it is sufficient to find all the values F’([x;,,xj,]) for all
i0,jo = 1,...,n for which iy < jo. There are n-(n+1)/2 = O(n?) such values.
If we use the formula from Proposition 7 — that takes O(n?) computational
steps — to compute each of these O(n?) values, we will need an overall of
O(n?) - O(n?) = O(n*) steps.

For large n — e.g., for n ~ 10% — we need n* ~ 10?* computational steps;
this is too long for even the fastest computers. Let us show that we can
compute the interval derivative faster, actually in O(n?) time. Since we must
return O(n20 results, we cannot do it in less than O(n?) computational steps
— so this algorithm is (asymptotically) optimal.

Proposition 8. There exists an algorithm that, given an interval function
F = {{z1,y1),. -, {(Tn,¥n)}, computes all possible values of the derivative
F'(la,b]) in O(n?) computational steps.

Proof. At first, we compute O(n?) values 4,; and A;j by using the formulas
(8); this requires O(n?) steps.

Let us now show how to compute all n? values F;,;, in O(n?) steps.

First, for each i, we sequentially compute the “vertical” maxima 7j; def
max(4; ; 1, --,4,;;) corresponding to j = i+1,i+2,...,n as follows: U; ;11 =
A, 41 and T = max(myj_l,éij) for j > i+ 1. For each ¢ = 1,...,n, to
compute all these values, we need < n computational steps. Thus, to compute
all such values v;; for all i and j, we need < n-n = O(n?) computational
steps.

Then, for every jo, we sequentially compute the values Fi, jo for io = jo —
17]‘072, ey 1 as follows: Fj0_17j0 = yj0_1,j0 and FioJO = InaX(FiO+1,jO7@i07jO)
(it is easy to see that this formula is indeed correct). For each jo = 1,...,n, to
compute all these values, we need < n computational steps. Thus, to compute
all such values F,»j for all igp and jy, we need < n-n = O(nz) computational
steps.

Similarly, by using Zij instead of 4,; and min instead of max, we can

compute all n? values F; . in O(n?) steps. The proposition is proven.

100
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8 This Same Differential Formalism Also Serves an
Alternative Definition of Zones

In some practical problems, a zone is defined not by an exact value of the
derivative v, but an interval v = [v, 7] of possible values. In this case, it makes
sense to say that an interval [a, b] contains a zone if for every function f € F,
there is at least one point = € [a,b] for which f'(z) € v. In other words, we
say that the interval [a, b] contains a zone of a given type if f/([a,b]) N v #£ 0
for all functions f € F.

It turns out that the above notion of a derivative can help us detect such
zones as well. Namely, the following statement is true:

Proposition 9. For every interval function F and for every two intervals
[a,b] and v, the following properties are equivalent to each other:

e for every function f € F, we have f'([a,b]) Nv # 0;
o F <7 and F > .

=i0Jo ©0J0

Proof. We will prove the equivalence of the two opposite statements:

e there exists a function f € F for which f'([a,b]) Nv = 0;
o I, . >vor [, <uv.

=—0Jo
Indeed, let us assume that there exists a function f € F' for which f'([a,b]) N
v = (). Since every function f € F is continuously differentiable, its derivative
f/(x) is a continuous function, hence the range f’([a,b]) is an interval. There
are two possible situations when this interval range does not intersect with v:

e cither all the values from this range are > v,
e or all the values from this range are < v.

In the first case, we have f'(z) > v for all x € [a,b]. Therefore, for the

function g(x) def f(x) —v -z, we get ¢’'(x) > 0 for all z, i.e., the function
g(z) is strongly increasing. Since f € F', we have g € G ' F %2 Due

to Proposition 1, the existence of a strongly increasing function g € G means
that y, —v-2; <y; —v-x; for all i < j. This inequality, in its turn, means
that Zij > v for all ¢ < j. Thus, v is smaller than the smallest of the values
Zij7 Le., smaller than F; ..

Similarly, in the second case, we have f'(x) < v for all x € [a,b], hence
Fiojo <.

Vice versa, let I; ;> v. By definition of F; ; as the minimum, this means
that A;; > v for all 4, j for which ig < i < j < jo. Substituting the definition
of Zij, multiplying both sides of the inequality by a positive term z; — x;
and moving terms to another side, we conclude that Y, — 0.2 <Y; —U- x5

for all i < j. This inequality, in its turn, means that for the interval function

G Fr_3. x, formula (2) holds and thus, due to Proposition 1, there exist

a strongly monotonic function g € G for which ¢'(x) > 0 for all . Then, for
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the function f(z) def g(x)+v-x, we have f € F and f'(z) =¢'(z) +7>7

for all z — hence, f([a,b]) N v = 0.
Similarly, if F; ;, < v, there exists a function f € F for which f’([a,b]) N
v = (). The proposition is proven.

9 Open Problems

What if we take into consideration uncertainty in measuring x? In the above
text, we took into consideration the uncertainty of measuring y, but assumed
that we know x exactly. In real life, there is also some uncertainty in measuring
x as well. How can we take this uncertainty into consideration?

For the problem of finding local minima and maxima, this uncertainty
was taken into consideration in [18]. It is desirable to extend this approach to
finding the range of the derivatives.

Parallelization. In the above text, we described how to compute the derivative
of an interval function in time O(n?), where n is the number of observations,
and showed that this algorithm is (asymptotically) optimal in the sense that
no algorithm can compute this derivative faster.

For reasonable n, e.g., for n ~ 103, n? computational steps means a million
steps; it is quite doable on modern computers. However, for large n, e.g., for
n ~ 10% n? computational steps is 10'? steps, so on a modern Gigaherz
machine, the corresponding computations will take 10% sec — almost an hour.

How can we further speed up the corresponding computations? Our op-
timality result shows that we cannot achieve a drastic speed-up if we use
sequential computers. Thus, the only way to speed up the corresponding com-
putations is to use parallel computers.

For the problem of finding local minima and local maxima, parallel com-
puters can indeed speed up the corresponding computations; see, e.g., [35].
An important question is therefore: How can speed up the computation of the
corresponding derivative by using parallel computers?
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