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1. Introduction
Due to the continuing progress in science and engineering, we are able to measure more and more

different quantities with a better and better accuracy. New ideas and techniques are used to develop
new sensors and new measuring instruments.

Designing each new measuring instrument, each innovative measuring system is a difficult and
time-consuming task. It is desirable to utilize our experience of designing such systems and come up
with a general methodology that would help in designing individual measuring systems.

The required generalization is easier for some parts of the measuring system but much more difficult
for other parts. In a nutshell, a measuring system consists of:

• sensors that transform the measured quantity into an electric signal;
• analog-to-digital transformers (ADT) that transform the electric signal into the binary code,

and
• processors that convert the (raw) binary code into the desired measurement result.

No matter what physical quantity we measure, the ADTs and processors perform the same function.
The designs may differ. For example, an ADT design for a highly dynamic system is mainly concerned
with the ability to process many readings per second, while an ADT for a very accurate measurement
of a stable signal is more about achieving cutting-edge accuracy. However, because of the similarity
in function, these designs also have similar features, so it is possible to have a general methodology
for designing ADTs and specialized processors.

In contrast to ADTs and processors, sensors vary drastically. Different sensors measure different
physical quantities, they may be based on completely different physical and engineering principles;
as a result, they have few things in common except for the fact that all the sensors transform the
value of the measured quantity into an electric signal. This variety of sensors is what prevents us
from developing general methodologies for designing measuring instruments. So, to develop such
methodologies, we just have a general way of describing sensors.

Such a description is easy for simplified sensors, like the ones described in the Introduction to
Measurement classes. These simplified sensors transform a static input x (e.g., temperature) into an
electric signal y, and within a certain range, the dependence of y on x can be safely assumed to be
linear: y = a0 + a1 · x. Within this simplified model, to completely describe every sensor (at least
within a given range), all we need to do is to describe the two coefficients a0 and a1 of this linear
dependence. In other words, for simplified sensors, this linear dependence serves as a desired universal
sensor model.

The simplified sensor model is a reasonable first approximation to actual sensors, an approximation
that works reasonably well if we consider measurements of low and medium accuracy. However, the
main purpose of the newly designed measurement systems is to go beyond this situation, to aim
either for high accuracy measurements, or for measuring highly dynamical inputs. As a result, for
the cutting-edge measuring systems, the dependence of the resulting electric signal y on the signal x
differs from the above simplified model:

• First, while the dependence of y on x is often close to linear, it is not exactly linear. So, to
accurately describe the sensor, we need to take this non-linearity into consideration.

• Second, the simplified sensor model assumes that the measured quantity is the only factor that
affects the resulting sensor’s signal. In reality, different characteristics of the sensor, of the
object, and of the environment all affect each other.



From the purely theoretical viewpoint, it is possible to take all these deviations from the simplified
sensor model into consideration.

For example, to describe a general non-linear dependence y = f(x) of y on x, we can use polyno-
mials (corresponding, e.g., to the Taylor expansion of f(x)). It is known that an arbitrary continuous
dependence can be approximated by polynomials with arbitrary accuracy – the higher the accuracy,
the more terms we need in the approximation. From the practical viewpoint, however, such descrip-
tions require too many parameters and are, as a result, not very practically useful.

It is desirable to come up with a universal sensor model that would require only a few parameters
and at the same time provide a good description of the existing sensors. In this paper, we provide a
brief description of such a model. Specifically, in the following sections, we will show how our model
takes into account all the aspects of sensor complexity: non-linearity and the interaction between the
sensor, the object, and the environment.

2. How to take sensor nonlinearity y(x) into consideration
Many advanced sensors do not directly transform the quantity into the electric current; instead,

they perform a sequence of transformations that starts with the original quantity (signal) and end
up with the electric signal. On each step of this transformation, we may have deviations from non-
linearity. The resulting non-linear transformation is thus a composition of several nonlinear transfor-
mation functions.

Our objective is to approximate such dependences by a family of non-linear functions that can be
described by a small number of parameters. Since the sensor’s nonlinear transformation is often a
composition of two such nonlinear functions, it is reasonable to select this family in such a way that a
composition of two functions from this family also belongs to this family. Since some transformations
are reversible, it is also reasonable to require that the inverse transformation also belong to the same
family. In mathematical terms, this means that these transformations form a group. It can be shown
that there is only one group that contains all linear transformations – the group of all fractional linear
transformations. Thus, we arrive at the idea to describe the sensor’s nonlinearity by a fractional-
linear transformation [1,4]. Such transformations indeed provide a reasonably good description of
close-to-linear transformations.

To improve the accuracy, measuring instruments often combine several sensors and return, e.g., the
average of their measured results. For example, the standard of time is based on several super-precise
maser clocks whose readings are then combined to improved the accuracy. In real-life situations,
different sensors are, in general, non-linear, and moreover, different sensors are, in general, described
by different fractional-linear functions. As a result, the non-linear transformation function of such
a combined sensor can no longer be described by a single fractional linear function; instead, it is
best described by a linear combination of fractional linear functions – i.e., equivalently, by a sum of
fractional-linear functions.

It turns out that such sums indeed provide a good description of sensors’ non-linearity. For
example, for the platinum thermo-resistor – a sensor that is used to implement the international
practical temperature scale – the dependence of the resistance R(t) at the temperature t◦C to the
resistance R(0) at zero temperature can be described by the following formula:

R(t)
R(0)

=
−2.244 · 104

t + 2.768 · 103
+

2.925
t + 280.063

+
−7.227 · 104

t− 7.947 · 103
.

This formula holds for all the temperatures from −259◦C to +660◦C with a mean square error 0.7◦C,
i.e., 0.08% – accurate enough for most practical applications.

For a platinum-Rhodium thermo-pair 30% Rh – 6% Rh, the dependence of the thermo-pair char-
acteristic E on the temperature t can be described as

E =
−4.514 · 106 + 5.287 · 107 · i
t− 186.827− 2.807 · 103 · i −

4.514 · 106 + 5.287 · 107 · i
t− 186.827 + 2.807 · 103 · i −

4.86 · 108

t− 1.302 · 104

with a mean square accuracy accuracy 0.3% for temperatures from 0◦C to 1, 600◦C.
In both cases, we use very few parameters and get a very accurate description of non-linearity.



How can we get a general approximation of this type? For that, we can start, e.g., by approximating

the desired nonlinear dependence y(x) with a rational (fractional-polynomial) function y(x) =
P (x)
Q(x)

,

where P (x) =
m∑

i=0

ai ·xi and Q(x) =
n∑

i=0

bi ·xi. Once we know the outputs y1, . . . , yN corresponding to

different inputs x1, . . . , xN , we can form equations P (xk) ≈ yk ·Q(xk), i.e.,
m∑

i=0

ai · xi
k ≈

n∑
i=0

bi · yk · xi
k.

These equations are linear in ai and bi; thus, by using, e.g., the Least Square Method, we can find the
values ai and bi for which the corresponding rational function is the best fit. To be able to represent
the original dependence as a sum of fractional linear functions, we should use m ≤ n + 1.

In the general case, all n roots α1, . . . , αn of the n-th order polynomial Q(x) are different (these
roots are, in general, complex numbers). It is known that for such polynomials, the rational function
P (x)
Q(x)

can be represented as a sum of a linear term and fractional linear terms
n∑

i=1

Ai

x− αi
, where

Ai
def=

P (αi)
Q′(αi)

.

3. How to describe deviations of the sensor signal y from its “average”
(non-linear) value y(x)

The non-linear calibration function y(x) describes the dependence of the “average” sensor signal
y on the value x of the measured quantity. The actual signal y deviates from this “average” value
y(x). This deviation contributes to the inaccuracy of the resulting measuring instrument. Therefore,
when we design a measuring instrument, it is important to know how different characteristics of this
deviation change with design.

These characteristics include characteristics that describe both systematic and random deviations.
Let us consider one of such characteristics zy.

In the ideal case, the sensor’s signal depends only on the value of the measured quantity. Real-
istically, not only the sensor is influenced by the measured object, but the measured object itself is
influenced by the sensor, and, as a result, the value of the measured quantity may be slightly changed
during the measurement process. In addition, the environment affects (and is affected) both by the
sensor and by the measured object.

Let xi be the parameters that characterize the sensor, the measured object, and the environment:

x1- -y

←− environment −→

measured
object sensor ADT and

processor

Let zxi, 1 ≤ i ≤ n, be the characteristics of the sensor, the object, and the environment that
describe their deviations – both systematic and random – from their ideal behavior. For example,
this list of characteristics may include the standard deviation of the environment noise, the difference
between the actual and the nominal resistances of the sensor, etc.

For each sensor design, we know how these characteristics zxi affect the value zy. In some situations,
we have an explicit formula for this dependence; in more complex situations, we have a numerical
algorithm that, given zxi, computes zy. In all these cases, we know how to compute this dependence,
i.e., we know the (explicit or implicit) function zy = zy(zx1, . . . , zxn) that describes this dependence.

Do we really need to know the values of all the characteristics zx1, . . . , zxn to find the desired
value zy? In the simplest case, when the entire system (consisting of the sensor, the object, and the
environment) is linear, random and systematic errors do not influence each other, so we can treat them
separately. In this simple case, if we are interested in knowing the characteristic of a systematic error



zy, then it is sufficient to only consider characteristics zxi that describe systematic deviations, and
vice versa, if we are interested in knowing the characteristic of a random error zy, then it is sufficient
to only consider characteristics zxi that describe random deviations.

Realistically, however, as we have mentioned, to get a an adequate description of a high-accuracy
measurement, we must take non-linearity into consideration. Because of the non-linearity, we must
take random characteristics zxi into consideration when computing a systematic characteristic zy, and
vice versa, we must take systematic characteristics zxi into consideration when computing a random
characteristic zy.

Let us explain this on the simplest possible case of non-linearity. Indeed, the simplest possible
non-linear terms are quadratic terms, where y(x) = a0 + a1 · x + a2 · x2. For a linear sensor for which
y(x) = a0 + a1 · x, the average value E[y] of the output signal is equal to E[y] = a0 + a1 ·E[x], i.e., it
depends only by the average value E[x] of the measured quantity and does not depend on the level of
random fluctuations of this quantity. Thus, if the signal fluctuation is the only reason why the sensor
signal y deviates from y(x), then for the largest possible values ∆x and ∆y of such deviations, we get
the dependence ∆y = |a1| ·∆x. However, for a quadratic sensor, we have

E[y] = a0 + a1 · E[x] + a2 · E[x2] = a0 + a1 · E[x] + a2 · (E[x]2 + V [x]).

Thus, the output signal E[y] depends not only on the average value E[x] of the measured quantity,
but also on the variance V [x] = σ2

x of this quantity – i.e., on the level of its random fluctuations. In
this case, ∆y = |a1| ·∆x + |a2| · (∆2

x + σ2
x).

In the sensor design, we are interested in how the changes in the characteristics zxi would affect
the value of the desired characteristic zy. In other word, for each of the n characteristics zxi, we are

interested in knowing the derivative
dzy

dzxi
. In the simplest case when all the values zxi are independent

– in the sense that they do not affect each other – we can find this value by simply differentiating

the dependence zy = zy(zx1, . . . , zxn) with respect to zxi:
dzy

dzxi
=

∂zy

∂zxi
. In real life, however, as we

have mentioned, the sensor, the object, and the environment are inter-related; as a result, all the n
parameters are inter-related, and the change in one of them causes others to change as well. As a
result, instead of the above simple formula, we have to use a general chain rule formula to describe
the desired derivative:

dzy

dzxi
=

n∑

j=1

∂zy

∂zxj
· ∂zxj

∂zxi
.

In sensor design, it is desirable to know not only the overall value of this derivative, but also which
part of it comes from what exactly interaction. In other words, we need to know the values aij

def=
∂zy

∂zxj
· ∂zxj

∂zxi
. We will call this tensor (matrix) an affinor.

An affinor describes the relation between the different input variables zxi and the output variable
zy. Specifically, the value aij describes how the change in i-th input quantity zxi affects zy via its
influence on zxj .

We have mentioned that in the linearized case, the characteristics that describe systematic and
random deviations do not influence each other, i.e., the corresponding values aij are 0. We can use this
feature of the matrix aij to simplify computations related to this matrix if we order the characteristics
in such a way that systematic characteristics come first and random characteristics come next. In

this ordering, the matrix aij takes the following form:
1 2
3 4

Here, submatrix 1 reflects systematic-

systematic interactions, submtarix 4 reflects random-random interactions, and submatrices 2 and 3
reflect random-systematic interaction.

In the linear case, both submtarix 2 and submtarix 3 are 0s. In a more accurate model, there is
some dependence between these characteristics, but still, in general, the values aij that correspond to
the interaction between systematic and random characteristics are much smaller than the values aij

that correspond to systematic-systematic and random-random interaction, so submatrices 2 and 3 are
still much smaller than submatrices 1 and 4.



The actual values of aij depend on which characteristic we use. For example, if we are interested
in the (absolute) difference zy = y − y(0) between the actual value y of the output signal and the
“ideal” value y(0) = f(x(0)) determined the the nominal value x(0) of the input and by the non-linear
calibration function f(x), and we use the absolute differences zxi = xi−x

(0)
i as the input parameters,

then aij =
∂y

∂xj
· ∂xj

∂xi
. If we want to describe how the relative deviation of the output zy =

y − y(0)

y(0)

depends on the absolute deviations of the input, then we get aij =
1
y
· ∂y

∂xj
· ∂xj

∂xi
. Finally, if we

want to know how the relative change in the output depends on the relative changes in the input

zxi =
xi − x

(0)
i

x
(0)
i

, then we get aij =
xi

y
· ∂y

∂xj
· ∂xj

∂xi
. For example, if xj is one of the sensor’s parameters,

then:

• a small value ajj < 1 means that changes in xj do not lead to strong changes in the output,
while

• ajj > 1 means that this parameter strongly affects the sensor output, so when designing a sensor,
we must impose high requirements on the stability of this parameter xj .

For random-random interactions, formulas become more complex; e.g. (see [3] for details):

aij =

1
|y(xi)| · ρ(xi)

· ∂y

∂xj
· ∂xj

∂xi

+
1

|y(xi)| · ρ(xi)
· ∂y

∂xj
· ∂xj

∂xi

1
|xi| · ρ(xi)

+
1

|xi| · ρ(xi)

,

where xi and xi are the lower and upper endpoint of the confidence interval for xi, and ρ(xi) is the
probability density for xi.

Another example is a dynamic sensor, for which the dependence on the systematic change in

frequency takes the form aii = ω ·
(

1
S(ω)

· ∂S(ω)
∂ω

+ j · ∂ϕy

∂ω

)
, where j =

√−1, S(ω) is the sensor’s

amplitude-frequency characteristic, and ϕy is the phase of the output signal. For a random change in
ω, we similarly have [3]:

aii =

1
S(ω)

·
(

1
ρ(ω)

·
∣∣∣∣
∂S(ω)

∂ω

∣∣∣∣ +
1

ρ(ω)
·
∣∣∣∣
∂S(ω)

∂ω

∣∣∣∣
)

+ j ·
(

1
ρ(ω)

·
∣∣∣∣
∂ϕy

∂ω

∣∣∣∣ +
1

ρ(ω)
·
∣∣∣∣
∂ϕy

∂ω

∣∣∣∣
)

1
|ω| · ρ(ω)

+
1

ω · ρ(ω)

.

4. Combining quantities: towards metric spaces
Sometimes, the sensor directly measures the quantity y in which we are interested. However, often,

it is difficult (or even impossible) to directly measure the desired quantity. In such situations, we can
measure y indirectly: namely, we measure the quantities y1, . . . , ym that are related to y by a known
relation y = f(y1, . . . , ym), and then use the measured values ỹ1, . . . , ỹm of the measured quantities
to provide an estimate ỹ = f(ỹ1, . . . , ỹm) for y.

Systematic and random errors of the direct measurements lead to the errors in y. It is therefore
desirable to estimate the systematic and random characteristics of the error ∆y

def= ỹ − y of the
indirect measurement. Thus, when we design a universal sensor model, it is desirable that this model
describe not only individual measurements by this sensor, but also how the resulting measurement
errors combine with errors from different sensors.

As we have mentioned, we are interested in the analysis and design of cutting-edge high accuracy
sensors. For such sensors, the outputs ỹi are very close to the (correspondingly rescaled) actual values
yi of the measured quantities: ỹi ≈ yi, so ∆yi

def= ỹi − yi ¿ yi. Since the values ∆yi are small, we can
expand the dependence ∆y = f(. . . , ỹi, . . .)− f(. . . , ỹi −∆yi, . . .) into Taylor series in ∆yi and safely
ignore quadratic and higher order terms in this expansion. As a result, we arrive at the linearized

formula ∆y =
n∑

i=1

ci · ∆yi, where ci
def=

∂f

∂yi
. Since the values ∆yi are determined modulo rescaling



anyway, we can simplify the problem by assuming that each input yi in already rescaled in such a

way that ci = 1, so that ∆y =
m∑

i=1

∆yi. In this formulation, the question is: we know the metrological

characteristics of n signals ∆yi, we must find the corresponding characteristic of their sum ∆y.
For example, for the standard deviations σi and σ, if all the measurement errors are independent,

we get a standard formula σ2 =
n∑

i=1

σ2
i . This formula has a natural geometric interpretation: we can

describe each possible collection of m corresponding sensors by a vector (σ1, . . . , σm), then σ is the
Euclidean distance between the starting point 0 of the coordinate system (the point corresponds to
ideal perfect sensors) and the point corresponding to the actual sensors.

If we take correlations rij into account, then σ2 =
m∑

i=1

m∑
j=1

rij · σi · σj . This formula can also

be interpreted as a distance in Euclidean space – but in non-orthogonal (affine) coordinates. The
coefficients rij in the formula for a metric form a metric tensor.

For actual sensors, we may have different values of the correlation on different ranges of the
measured quantities. So, we may have different metric tensors at different points – a metric tensor
field; see, e.g., [3]. In geometry and space-time physics, such spaces are called Riemann spaces, so we
need Rimann spaces to describe sensor interaction.

In some cases, we even end up with non-quadratic formulas for the metric; in geometric terms,
these formula correspond to Finsler spaces, a generalization of Riemann spaces.

5. Conclusion
The main objective for our universal sensor model was to provide a general description that would

help in designing sensors and sensor-based measuring systems. In this model, to fully describe a
sensor, we must describe both the corresponding non-linear calibration function y(x) and the affinor
aij that describes how the deviation of the sensor’s output signal y from the “average” output y(x)
depends on the parameters of the sensor, of the measured object, and of the environment.

For the existing sensors, the calibration characteristics y(x) is the most important part of this
description. In most cases, to provide a metrological analysis of a measuring system that uses such a
sensor, it is sufficient to know this characteristics and the overall metrological characteristics that limit
possible systematic and random deviations of the actual output signal from y(x). For such systems,
it is sufficient to know the overall values of these deviations, and there is no need to know the values
aij that describe which part of this deviation is caused by which factor.

However, in some cases, we need to use a sensor under the conditions which are different from
those described in the sensor’s documentation. In such cases, to predict the sensor’s accuracy under
these new conditions, we must use the complete model including the values aij .

We implemented our methodology in MathCAD, and we tested it on the examples of an acceleration
sensor and a sensor for detecting electromagnetic field. For each of the selected sensors, there exists a
detailed and reasonably accurate computer-based simulation model. So, to test our methodology, we
compared the results of our computations with the simulation model. Our results turned out to be in
good accordance with this simulation model.
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