2005 Conference on Information Sciences and Systems, The Johns Hopkins University, March 16-18, 2005

On Inverse Halftoning : Computational Complexity and Interval
Computations

S. D. Cabrera and K. Iyer!
Department of Electrical and
Computer Engineering
University of Texas at El Paso
El Paso, Texas 79968
e-mail: cabrera®ece.utep.edu,
kish_199@yahoo.com

Abstract — We analyze the problem of inverse half-
toning. This problem is a particular case of a class
of difficult-to-solve problems: inverse problems for re-
constructing piece-wise smooth images. We show that
this general problem is NP-hard. We also propose a
new idea for solving problems of this type, including
the inverse halftoning problem.

I. INTRODUCTION

Need for halftoning

Inside the computer, a gray-scale image is represented by as-
signing, to every pixel (n1,n2), the intensity f(ni,n2) of the
color at this pixel. Usually, 8 bits are used to store the in-
tensity, so we have 28 = 256 possible intensity levels for each
pixel.

For color images, we must represent the intensity of each
color component.

A laser printer cannot print the points of different intensity;
at any pixel, it either prints a black (or a colored) dot, or it
does not print anything at all. Therefore, when we print an
image, we must first transform it into the form b(n1,n2) in
which at every pixel (n1,n2), we only have 0 or 1: 0 if we do
not print a black dot at this location, and 1 if we do. This
transformation from the original continuous image to the two-
level (“halftone”) image is called halftoning.

Crudely speaking, the level of intensity at a pixel is repre-
sented by the relative frequency of black spots around it:

e if the original image was black, then all the neighboring
pixels are black;

e if the original image was white, then none the neighbor-
ing pixels are black, they are all white;

e any level between absolute black and absolute white
means that some pixels in the neighborhood are black
and some are white; the larger the intensity, the more
black pixels there is.

Halftoning techniques: a brief reminder

There exist many halftoning algorithms; see, e.g., [23]. One of
the most widely used halftoning algorithms is the error diffu-

1This work was supported by a scholarship from the Texas In-
struments Foundation

2This work was supported in part by NASA under coopera-
tive agreement NCC5-209, by NSF grants EAR-0112968, EAR-
0225670, and EIA-0321328, by NIH grant 3T34GMO008048-20S1,
and by Army Research Lab grant DATM-05-02-C-0046

G. Xiang and V. Kreinovich?

Department of Computer Science

University of Texas at El Paso
El Paso, Texas 79968
e-mail: gxiang@utep.edu,
vladik@cs.utep.edu

sion algorithm [23], in which we start with the original image
u(ni,n2) := f(n1,n2) and sequentially update the processed
image u(ni,n2) and quantize the processed value u(ni,n2)
into the halftone image b(n1,n2) = Q(u(n1,n2)), where:

e Q(u) =0 for u < 0.5 and
e Q(u) =1 for u>0.5.

Once the pixel is quantized, the quantization error

e(ni,n2) et b(ni,n2) — u(ni,n2) is spread out (“diffused”)
to the values u(n1,n2) at neighboring pixels, so that the pro-
cessed value u(ni,n2) eventually becomes equal to

u(ni,n2) = f(ni,n2) — Z h(mi,m2)-e(n1 —mi,n2 —ma).

mi1,m2

Need for reverse halftoning

Visually, the halftone image printed on a high-quality laser
printer looks practically identical to the original gray-scale
image that we can see on the computer screen. So, visually,
once we have a halftone image b(ni,n2), we can tell which
original multi-level image f(n1,n2) it came from. However,
this intuitive understanding is difficult to describe in precise
terms.

Once we have a printed image, we can digitally scan it and
get the halftone values b(ni,n2) from this printed page. From
these halftone values, we would like to reconstruct the original
image. Our eyes can do it, but it is not so easy to describe
this ability in algorithmic terms.

The need for such a representation also comes from the
need to manipulate the original image, e.g., rotate it or zoom
on it. These operations are easy to perform on the original
image, but it is not clear how to perform them on a halftone
image. So, if we want to go from a printed image to a printed
zoomed and/or rotated image, we can do it in this way:

e first, we use the halftone image b(n1,n2) to reconstruct
the original image f(ni,n2);

e then, we apply the appropriate zoom and/or rotation
operations to the reconstructed image f(n1,nz2), result-
ing in a transformed image f*(n1,n2);

e finally, we halftone the transformed image f*(ni,ns2),
and print the resulting halftone image b*(ni,n2).

In all these cases, we must reverse the halftoning procedure.



Halftoning is an ill-posed problem: a reminder

Our objective is to reverse the halftoning operation. By defi-
nition, halftoning transforms the original gray-scale image in
which we stored at least 8 bits per pixel, into a black-and-
white image in which we store only one bit per pixel. Thus,
halftoning loses information and is, therefore, a lossy compres-
sion.

Hence, there may be several different images that lead to
the same halftoned image.

Existing inverse halftoning techniques: POCS

There exist several different techniques for inverse halftoning:

One class of such techniques is based on the iterative pro-
jection onto convex set (POCS); see, e.g., [7, 15]. Crudely
speaking, the main idea behind these methods is that each
value b(n1,n2) of a halftone image represents a constraint on
the original image f(n1,n2). In most halftoning methods like
error diffusion halftoning, the relation between the original
image f(n2,n2) and the halftone image b(n1,n2) is described
by convex transformations, so for each value b(n1,n2), the set
of all the images that lead to this particular value is a convex
set.

Thus, the set of all the images f(n1,n2) which are consis-
tent with the halftone image b(ni1,n2) is also a convex set.
Among these images, we want to find an image that satisfies
certain reasonable properties, e.g., an image that is sufficiently
smooth. For many properties, the set S of such images is con-
vex. We would like to find, among all the images from the
class S, the closest to b(ni,n2) (e.g., in L* metric) that is
consistent with the halftone image b(n1, n2).

(From the geometric viewpoint, we have a point b(n1,n2)
in the function space, and we want to find the closest element
to this point in the convex set that is the intersection of the
set S of all desirable images and the convex sets formed by all
the images that lead to this very halftone image. It is known
that to get this projection, we can:

e project our point onto the first of the intersected convex
sets, then

e project the resulting point onto the second,
e etc.,

iterating the procedure if necessary. In terms of constraint
propagation, we need to satisfy several constraints, so we:

e first minimally modify the original halftone image so
that it satisfies the first constraint,

e then minimally modify the modification so that it sat-
isfies the second constraint,

e etc.

The resulting projection on convex sets method indeed leads
to a good quality inverse halftoning.

Ezisting inverse halftoning techniques: wavelet techniques

Another class of techniques for inverse halftoning uses wavelet
transform, a techniques that, as the experience of JPEG2000
has shown (see, e.g., [20]), best captures the visual quality of
images uncompressed after a lossy compression (and halfton-
ing is, as we have mentioned, an example of lossy compres-
sion).

Wavelet-based techniques for inverse halftoning are pre-
sented, e.g., in [15]. In accordance with the JPEG2000 experi-
ence, wavelet-based inverse halftoning techniques lead to visu-
ally the best reconstruction among all known inverse halfton-
ing methods.

Ezisting inverse halftoning techniques: fast techniques
based on adaptive filtering

As we have just mentioned, the wavelet-based inverse halfton-
ing techniques lead to visually the best reconstruction among
all known inverse halftoning methods. The only reason why
these methods are not universally used is that these methods
require a lot of computations.

In view of this fact, researchers have been trying to design
faster inverse halftoning techniques that would still lead to
similar quality image reconstruction.

The main idea behind such techniques is that, as we have
mentioned, the intensity of the original image f(ni,n2) can
be reconstructed from the density of black pixels in the neigh-
borhood of a given pixel (n1,n2). In engineering terms, this
means that the original image f(n1,n2) can be obtained from
the halftone image b(n1,n2) by low-pass filtering.

If the image consists of a single object, with intensity
smoothly changing from pixel to pixel, then we can indeed
apply a low-pass filter to the half-tone image and get a reason-
able reconstruction. However, in real life, images have edges.
When applied to an image with edges, a low-pass filter cor-
rectly reconstructs the intensity within each smooth zone, but
blurs the edge.

A natural way to avoid this blurring is to detect the edges
and to apply different filters (with different spatial radius) at
different parts of the image, so that:

e a filter applied inside each zone would have a larger
radius and thus, have a greater smoothing effect, while

e a filter applied closer to the edge would have a smaller
radius, and thus, would preserved the edge.

Of course, ideally, instead of just two levels inside-edge, we
should have a filter radius adjusted to the estimated gradient
of intensity at the given pixel (n1,n2).

This idea has been successfully implemented in inverse
halftoning; see, e.g., [12]. The resulting method is much faster
than the wavelet-based reconstruction, while the visual qual-
ity of the reconstructed images is almost as good as for the
wavelet-based reconstruction.

Inverse halftoning: remaining problem

The remaining problem is that the existing methods are still
not optimal. They are optimized with respect to selection of
parameters, but the consensus of researchers is that there is
still room for improvement, especially when we are looking
for methods of low computational intensity that can be easily
implemented within the existing printing devices.

What we are planning to do

In this paper, we show that the problem of inverse half-toning
is a particular case of a class of difficult-to-solve problems: in-
verse problems for reconstructing piece-wise smooth images.
We show that this general problem is NP-hard. We also pro-
pose a new idea for solving problems of this type, including
the inverse halftoning problem.



II. INVERSE HALFTONING IS A PARTICULAR CASE OF
A GENERAL CLASS OF INVERSE PROBLEMS OF
RECONSTRUCTING PIECEWISE SMOOTH IMAGES

Inverse halftoning is an ill-posed problem

We have mentioned that the inverse halftoning problem is ill-
posed in the sense that, from the purely mathematical view-
point, there are many different images that are consistent with
the same observed data — in this case, with the given halftone
image b(n1,n2).

Most inverse problems in science and engineering are ill-
posed

The above ill-posedness of the inverse halftoning problem is
a common feature in applications: most inverse problems in
science and engineering are ill-posed; see, e.g., [21].

Smoothness: traditional approach to solving ill-posed in-
verse problem

A typical way to solve an inverse problem is to find a nat-
ural physically meaningful property of actual solution, and
use this a priori information to select a single most physi-
cally meaningful solution among many mathematically possi-
ble ones. This process is called regularization.

Typically, in inverse problems, this natural property is
smoothness. Smoothness can be naturally described in pre-
cise mathematical terms. For example, when we reconstruct a
1-D signal z(t), then the degree of smoothness can be defined
as follows. At a given moment of time ¢, the larger the abso-
lute value |z'(t)| of the derivative z'(t), the less smooth the
signal is. Thus, at a given time ¢, the value |z'(¢)| is a natu-
ral degree of the signal’s non-smoothness. Overall, a natural
degree of non-smoothness can be defined as a mean square

of these degrees corresponding to different moments ¢, i.e., as
def

J= [(2'(t)*dt.

Most regularization techniques try to find, among many sig-
nals that are consistent with given observations, the smoothest
signal, i.e., the signal with the smallest possible value of the
degree of non-smoothness J.

Smoothness: discrete case

In real life, we only have the values z(¢1), z(t2), ..., of the
signal z(t) at discrete moment of time t1, to = t1 + At, ...,
tiv1 = t; + At, ...Based on this discrete data, we can ap-
T(tit1) — x(ti)
At ’
so minimizing the integral J is equivalent to minimizing the

proximate the derivative z’(t) as a difference

corresponding integral sum Jygiscr def Z(l’(ti+1) — a:(ti))2.

k3

Smoothness: 2-D case

For a 2-D image f(n1,n2), similarly, a natural assumption is
that this image is smooth. Similarly to the 1-D case, a natural
way to describe the degree of smoothness of a given image is

to use the integral sum

def
J =

DI (a+1m2) = f(n1,12)) 4 (f (na,na+1) = f(n1,n2))).

ni,n2

Alternatively, we can describe this criterion as the sum of the
squares of the differences in intensity between all possible pairs
(p,p’) of neighboring pixels p = (n1,n2) and p’ = (nf,ns):

> (f(p) — F('))*.

p,p’ are neighbors

J =

Smoothness makes problems computationally solvable

A practically useful property of the above degrees of non-
smoothness J is that the expression J is a convex function
of the signal z(t;) or f(ni,n2). Thus, if the conditions de-
scribing the fact that the unknown images is consistent with
the observations is also described by linear or, more generally,
smooth inequalities, then the problem of finding the regular-
ized solution can be reformulated as a problem of minimizing
a convex function J on the convex set.

Similarly, if we fix the degree of non-smoothness and look,
among all the solutions with a given degree of non-smoothness,
for the one that is the closest to the original approximate solu-
tion, we also have a problem of minimizing a convex function
(distance) on the convex set (of all functions that are con-
sistent with the observations and have the desired degree of
smoothness).

It is known that, in general, the problems of minimizing
convex functions over convex domains are algorithmically solv-
able (see, e.g., [22]), and smoothness-based regularization has
indeed been efficiently implemented; see, e.g., [21].

For image reconstruction, we only have piecewise smooth-
ness

We have already mentioned that in images, we have a smooth
change from pixel to pixel only within an object; between ob-
jects, we may have a sharp edge in which there is no smooth-
ness at all.

Many other inverse problems can also be characterized by
piecewise smoothness. For example, in the inverse problem
of geophysics, we use the results of ultrasound waves passing
through the earth to find out how the density change with
depth and location. In geophysics, we have clear layers of
different rocks with sharp edges between different layers, so we
also face an inverse problem with only piecewise smoothness;
see, e.g., [19].

Traditional smoothness measures are not adequate for
piecewise smoothness

In the piecewise smooth case, the above measure of non-
smoothness is not applicable, because it would include neigh-
boring pixels on the different sides of the edge.

Appropriate smoothness measures for piecewise smooth-
ness case

To avoid the above problem, we need to only take into account
the pairs of neighboring pixels that belong to the same zone,
i.e., consider the sum

p,p’ are neighbors in the same zone

J(Z) = (fp) = f(')*

where Z denotes the information about the zones. This mea-
sure makes computational sense only if we know beforehand



where the zones are — i.e., where is the border between the
two zones.

However, in real life, finding the edge is a part of the prob-
lem. In this case, we can use the same smoothness criterion
not only to reconstruct the original image, but also to find the
edge location. Specifically, we want to look for the zone distri-
bution and for the zone location for which the above criterion
J takes the smallest possible value.

In terms of an image, we fix the number of zones, and we
characterize the non-smoothness of an image by a criterion

J = min J(Z).
all possible divisions Z into zones

The resulting problem is no longer convex

The resulting functional is no longer convex, because the di-
vision into zones is a discrete problem. It is known that non-
convex problems are, in general, more computationally diffi-
cult than the corresponding convex ones (see, e.g., [11]), and
adding discrete variables makes the problems even more com-
putationally difficult; see, e.g., [18].

What we are planning to do

In the following section, we show that in general, the in-
verse problem for piecewise smooth case is computationally
intractable (NP-hard) even when the relation expressing the
consistency between the measured results and the desired im-
age is linear.

This proof will follow the proof of NP-hardness of different
image and signal processing problems described in our previ-
ous publications [14].

III. COMPLEXITY OF INVERSE PROBLEMS OF
RECONSTRUCTING PIECEWISE SMOOTH IMAGES

Let us prove that in general, the inverse problem for piece-
wise smooth case is computationally intractable (NP-hard).

Main idea of the proof: reduction to a subset problem

To prove NP-hardness of our problem, we will reduce a known
NP-hard problem to the problem whose NP-hardness we try
to prove: namely, to the inverse problem for piecewise smooth
images.

Specifically, we will reduce, to our problem, the following
subset sum problem [14, 18] that is known to be NP-hard:

o Given:

e m positive integers s1, ..., Sm and

e an integer s > 0,

e check whether it is possible to find a subset of this set
of integers whose sum is equal to exactly s.

For each i, we can take x; = 0 if we do not include the i-th
integer in the subset, and z; = 1 if we do. Then the subset
problem takes the following form: check whether there exist
values z; € {0,1} for which Z Si - T; = S.

We will reduce each instance of this problem to the corre-
sponding piecewise smooth inverse problem.

Reduction to a subset problem: details

Let us consider the following problem. We want to reconstruct
an m X m image f(ni,n2). Let d = [m/2]. We want a
piecewise smooth image f(ni,n2) that consists of two zones.

The following linear constraints describe the consistency
between the observations and the desired image:

e f(ni,n2) =1 for ny > d;

m

e > s f(i,d) = s; and
=1

e f(ni,n2) =0 for ny < d.

The problem that we consider is to find the solution with
the smallest possible value of smoothness J* among all the
images that satisfy these linear constraints.

Let us show that the minimum of J* is 0 if and only if the
original instance of the subset problem has a solution. Indeed,
if J* is 0, this means that all the values within each zone must
be the same. Since we have values 1 for no > d and values
0 for n2 < d, we must therefore have every value to be equal
either to 0 or to 1. Thus, if we have such a solution, the
corresponding values f(i,d) € {0,1} provide the solution to
the original subset problem Y s; - z; = s.

Vice versa, if the selected instance of the original subset
problem has a solution z;, then we can take f(i,d) = z; and
get the solution of the inverse problem for which the degree
of non-smoothness is exactly 0.

So, if we can solve the inverse problem for piecewise smooth
images, we will thus be able to solve the subset sum problem.

This reduction proves that the inverse problem for piece-
wise smooth images is indeed NP-hard.

IV. INTERVAL COMPUTATIONS AND INVERSE
HALFTONING

Every halftoning algorithm includes a thresholding step

For every halftoning algorithm, including the error diffusion
algorithm, there is a thresholding step where we replace the
original continuous value with the quantized value. Usually, to
decide whether the halftoned value b(n1,n2) at a pixel (n1,n2)
will be 0 (white pixel) or 1 (black pixel), we do some processing
on the original image f(n1,n2), and then apply thresholding
to the resulting value u(ni,n2). For example, in the error
diffusion halftoning, we compute the auxiliary value u(ni,ns),
and then compute the halftone as b(ni,n2) = Q(u(ni,n2)),
where:

e Q(u)=01if u < 0.5 and
o Q(u)=1ifu>05.

New idea: instead of selecting a single original image,
produce the whole range of possible original images

We have already mentioned that halftoning loses information
and is, therefore, a lossy compression. Hence, there may be
several different images that lead to the same halftoned image.

In the existing methods, we reverse the halftoning proce-
dure by selecting one of such images. However, it may be
beneficial to present not just a single possible original image,
but the whole range of images that could lead to the given
halftoned image.

For example, in the above halftoning procedure, if we know
that b(n1,n2) = 0, this means that the signal u(ni,n2) could



have any value from the interval (0.0,0.5), while if we know
that b(n1,n2) = 1, this means that the signal u(n1,n2) could
have any value from the interval [0.5,1.0).

Result: interval-valued image

If we follow this idea, then instead of the image in which the
intensity f(n1,n2) at every pixel has an exact value, we come
up with an “interval-valued” image in which, at each pixel

(n1,n2), we only know the interval [f(n1,n2), f(n1,n2)] of
possible values of intensity.

A similar idea of interval-valued quantities has been suc-
cessfully used in science and engineering

The idea of using interval-valued quantities to represent un-
certainty in engineering and scientific applications is not new:
it has been known since the 1950s when R. E. Moore from
Lockheed used it to analyze trajectories of intercontinental
missiles and spaceship under interval uncertainty; see, e.g.,
[16]. Since then, interval computations have been widely ap-
plied in different engineering problems; see, e.g., [8, 9, 10, 17].

Interval techniques have been actively used in robust con-
trol [9], and in image and data processing [4, 13]. We believe
that interval techniques can be applied to the inversion of
halftoning as well.

Interval methods may provide one more explanation for
the efficiency of wavelets

In particular, there exists an interval-based justification of
wavelet techniques in image processing [4].

This explanation makes us believe that interval methods
may be able to explain why wavelet-based inverse halftoning
techniques lead, at present, to the most accurate (albeit not
the fastest) inverse halftoning.

V. TOWARDS NEW INTERVAL-MOTIVATED INVERSE
HALFTONING TECHNIQUES: FIRST ALGORITHM

As we have mentioned, low-pass filtering of the halftone
(binary) image b(n1,n2) provides a good first approximation
£(n1,mn2) to the original image. However, the resulting lowpass
filtered image is usually still different from the original image
f(n1,m2): €(na,n2) # f(na,n2).

One reason for this difference is that, as we have mentioned,
halftoning is a lossy compression. Due to this lossiness, several
different images f(ni,n2) lead to the same halftone image
b(n1,m2), so we cannot reconstruct the original image exactly.

However, there is another reason why £(n1,n2) # f(ni,n2):
namely, when we apply the original halftoning to the result
£(n1,m2) of applying the low-pass filter to the halftone image
b(n1,n2), we do not exactly get back the same halftone image.
In this sense, the lowpass filtered image is not the true inverse
to the halftoning procedure.

It is therefore desirable to modify the lowpass filtered image
so that the modified image wil be inverse to halftoning, in the
sense that if we apply the halftoning procedure to the mod-
ified image g(ni,n2), we will get exactly the halftone image
b(n1, ’I’Lz).

An Interval Consistency algorithm: description

Let us show how we can use interval ideas to design a desired
image modification procedure. We will apply these ideas to
the most widely used halftoning algorithm — error diffusion.
In error diffusion, in order to process a pixel (n1,n2), we must
have the results of halftoning of pixels (n1 —mi, ng —mg) with
smaller values of the coordinates. Thus, in this halftoning
procedure, we start processing the image with the pixel (1,1),
and then we proceed with pixels (n1, n2) with increasing values
of n1 and na.

To invert the halftone image, we similarly start with the
pixel (1,1). The result b(1,1) of halftoning this pixel depends
only on the intensity f(ni,n2) at this pixel: b(ni,n2) =0 for
f(ni,n2) < 0.5 and b(n1,n2) = 1 for f(ni,n2) > 0.5. So,
to check whether halftoning of £(n1,n2) produces the correct
value of b(1, 1), it is sufficient to apply the above thresholding
to the value £(1,1). If the result of this thresholding coincides
with b(1, 1), we keep the lowpass filtered value £(1,1), i.e., we
set g(1,1) = £(1,1).

On the other hand, if the result of thresholding £(1,1) is
different from the halftone value b(1, 1), then we would prefer
to select g(1,1) from the corresponding interval (0.0,0.5) or
[0.5,1.0) of values that lead to the correct b(1,1). As we have
mentioned, ideally, we should keep the entire interval as an
interval of possible values of the original image; however, in
this first algorithm, we select a single point g(1,1) within this
interval — the point which is the closest to the lowpass filtered
value £(1,1).

In other words:

e if (1,1) = 0 and £(ni,n2) > 0.5, then we take
g(ni,n2) = 0.5 — € (where ¢ is a small positive num-
ber, e.g., the smallest positive floating point number
representable in the given computer), and

e if (1,1) = 1 and £(n1,n2) < 0.5, then we take
g(ni,n2) =0.5.

After producing g(1, 1), we proceed to the next pixel, etc.
Once we get to the pixel (ni,n2), this means that we have
already processed the previous pixels. This means that we
have already produced the values g(nf,n3) for all the coordi-
nates n} < n1 and n5 < n2, and, correspondingly, the values
u(ni,ny) and e(n’,n5) (see the description of error diffusion
halftoning in Section I).

We want to select g(ni,n2) at the pixel (n1,n2) in such a
way that:

e first, the result of halftoning g(ni,n2) is exactly the
value b(n1,ns2);

e second, if there are several such values g(ni,n2), then
among these values, we would like to select the value
that is the closest to the lowpass filtered image £(n1, n2).

As we have mentioned in Section I, the value b(ni,n2) of
halftoning g(ni,n2) is the result of thresholding the linear
combination u(ni,n2) = g(ni,n2) — go(ni, n2), where

go(n1,n2) def Z h(mi, m2) - e(n1 — mi,na — ma).
mi,m2
So, if g(n1,n2) = £(ni,n2) leads to the correct halftoning,

i.e., if the thresholding of u(ni,n2) = £(ni,n2) — go(n1,n2)
leads to the desired value b(n1,n2), then we select g(n1,n2) =
f(nl, Tlg).



On the other hand, if the result of thresholding g(n1,n2) =
£(n1,m2) + go(ni,n2) is different from b(n1,n2), then we take,
as g(n1,n2), the closest value from the corresponding interval.

When b(n1,n2) = 1, then the corresponding interval for
g(n1,n2) + go(ni,n2) is [0.5,1.0), so the interval of desired
values of g(n1, n2) is [0.5—go(n1,n2), 1.0). Thus, if the lowpass
filtered value £(ni,m2) is not in this interval, we select, as
g(n1,n2), the closest value from this interval, i.e., g(n1,n2) =
05 + go(nl, 77,2).

Similarly, when b(n1,n2) = 0 and £(n1,n2) does not be-
long to the corresponding interval (0.0,0.5 — go(n1,n2)), we
select, as g(n1,n2), the closest value from this interval, i.e.,
g(ni,n2) = 0.5 — go(ni,n2) —e.

A POCS iterative procedure

The interval consistency algorithm just described is evaluated
in a POCS iterative procedure so that its impact can be eval-
uated using the Floyd-Steinberg algorithm for error diffusion
based halftoning. The input halftoned image is first lowpass
filtered using a 5x5 Gaussian lowpass mask. The low pass fil-
tering removes the high frequency halftoning noise as well as
all other high frequency information available in the halftoned
original. The image as a result of lowpass filtering is not only
blurred but is no longer a valid candidate image. That is,
the difference between the original halftoned image and the
rehalftoned version is not zero. The lowpass filtered image
is then processed by the interval consistency algorithm that
will make it a candidate image. This limiting step induces
some large local differences in gray level which can be fused
back into the image by a projection step that replaces the
low-part of the frequency spectrum with that of the halftone
input image. This step is called frequency swapping which
is implemented using the two-dimensional DFT. The limiting
and frequency swapping steps are then repeated a few times
to produce the final output image.

Results and future work

The main advantage of the interval consistency based halfton-
ing algorithm is that it is simple and should require less com-
putations than other methods. For example, fast techniques
from [12] requires several hundred arithmetic operations per
pixel.

The related disadvantage of our algorithm is that, while it
produces an image g(ni,n2) whose halftoning produces the
exact same result as the original image f(ni,n2), for stan-
dard benchmark images f(n1,n2), the visual difference be-
tween g(n1,n2) and f(n1,n2) is higher than, e.g., for methods
from [12].

It is therefore desirable to come up with intermediate tech-
niques that may take a little bit longer than the above-
described fast algorithm but provide images which are visually
closer to the original ones.

REFERENCES

[1] B. R. Barmish, New Tools for Robustness of Linear Systems,
McMillan, New York, 1994.

[2] S.P. Bhattacharyya, H. Chapellat, and L. Keel, Robust Control:
The Parametric Approach, Prentice-Hall, Englewood Cliffs,
New Jersey, 1995.

[3] G. Bozkurt-Unal and A. E. Cetin, “Restoration of Error-
Diffused images using Projection onto Convex Sets”, IEEE
Trans. Image Processing, Vol. 10, No. 12, pp. 1836—1841, De-
cember 2001.

[4] A. E. Brito and O. Kosheleva, “Interval + Image = Wavelet:
For Image Processing under Interval Uncertainty, Wavelets are
Optimal”, Reliable Computing, 1998, Vol. 4, No. 3, pp. 291-301.

[6] N. Damera-Venkata, T. D. Kite, M. Venkataraman, and
B. L. Evans, “Fast Blind Inverse Halftoning”, Proc. IEEE Int.
Conf. on Image Processing, Oct. 4—7, 1998, Chicago, IL, vol. 2,
pp. 64-68.

[6] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and
A. C. Bovik, “Image Quality Assessment Based on a Degrada-
tion Model”, IEEE Transactions on Image Processing, Vol. 9,
No. 4, pp. 636-650, Apr. 2000.

[7] S. Hein and A. Zakhor, “Halftone to Continuous Tone Conver-
sion of Error-Diffusion Coded Images,” IEEE Transactions on
Image Processing, Vol. 4, No. 2, pp. 208-216, February 1995.

[8] Interval computations website
http://wuw.cs.utep.edu.interval-comp

[9] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied inter-
val analysis: with examples in parameter and state estimation,
robust control and robotics, Springer Verlag, London, 2001.

[10] R. B. Kearfott and V. Kreinovich (eds.), Applications of in-
terval computations, Kluwer, Dordrecht, 1996.

[11] R. B. Kearfott and V. Kreinovich, “Beyond Convex? Global
Optimization Is Feasible Only for Convex Objective Functions:
A Theorem”, Journal of Global Optimization (to appear).

[12] T.D. Kite, N. Damera-Venkata, B. L. Evans, and A. C. Bovik,
“A Fast, High-Quality Inverse Halftoning Algorithm for Error
Diffused Halftones”, IEEE Transactions on Image Processing,
Vol. 9, No. 9, pp. 1583-1592, Sep. 2000.

[13] O. Kosheleva, S. Cabrera, B. Usevitch, and E. Vidal, Jr.,
“Compressing 3D Measurement Data under Interval Uncer-
tainty”, Proceedings of the Workshop on State-of-the-Art in
Scientific Computing PARA’04, Lyngby, Denmark, June 20—
23, 2004, Vol. 1, pp. 79-85.

[14] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computa-
tional complexity and feasibility of data processing and interval
computations, Kluwer, Dordrecht, 1997.

[15] M. Mese and P. P. Vaidyanathan, “Optimized halftoning using
dot diffusion and methods for inverse halftoning”, IEEE Trans-
actions on Image Processing, Vol. 9, No. 4, pp. 691-709, Apr.
2000.

[16] R. E. Moore, Automatic error analysis in digital computa-
tion, Technical Report Space Div. Report LMSD84821, Lock-
heed Missiles and Space Co., 1959.

[17] R. Muhanna and R. Mullen (eds.), Proceedings of the NSF
Workshop on Reliable Engineering Computing, Savannah,
Georgia, September 15-17, 2004.

[18] C. H. Papadimitriou and K. Steiglitz, Combinatorial Op-
timization: Algorithms and Complexity, Dover Publications,
Inc., Mineola, New York, 1998.

[19] R. L. Parker, Geophysical Inverse Theory, Princeton Univer-
sity Press, Princeton, New Jersey, 1994.

[20] D. S. Taubman and M. W. Marcellin, JPEG2000 Image
Compression Fundamentals, Standards and Practice, Kluwer,
Boston, Dordrecht, London, 2002.

[21] A.N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Prob-
lems, W. H. Whinston & Sons, Washington, D.C., 1977.

[22] S. A. Vavasis, Nonlinear Optimization:
Oxford University Press, New York, 1991.

[23] P. W. Wong, “Image quantization, halftoning, and printing”,
In: A. Bovik (ed.), Handbook of Image and Video Processing,
Academic Press, New York, 2000, pp. 657—667.

Complexity Issues,



