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Abstract

Since the 1960s, many algorithms have been designed
to deal with interval uncertainty. In the last decade,
there has been a lot of progress in extending these
algorithms to the case when we have a combination of
interval and probabilistic uncertainty. We provide an
overview of related algorithms, results, and remaining
open problems.
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1 Main Problem

1.1 Why indirect measurements?

In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or
impossible to measure directly. Examples of such
quantities are the distance to a star and the amount
of oil in a given well. Since we cannot measure y
directly, a natural idea is to measure y indirectly.
Specifically, we find some easier-to-measure quanti-
ties x1, . . . , xn which are related to y by a known re-
lation y = f(x1, . . . , xn); this relation may be a sim-
ple functional transformation, or complex algorithm
(e.g., for the amount of oil, numerical solution to an
inverse problem). Then, to estimate y, we first mea-
sure the values of the quantities x1, . . . , xn, and then
we use the results x̃1, . . . , x̃n of these measurements to
to compute an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n).

For example, to find the resistance R, we measure cur-
rent I and voltage V , and then use the known relation
R = V/I to estimate resistance as R̃ = Ṽ /Ĩ.

Computing an estimate for y based on the results of
direct measurements is called data processing; data
processing is the main reason why computers were in-
vented in the first place, and data processing is still
one of the main uses of computers as number crunch-
ing devices.

Comment. In this paper, for simplicity, we consider
the case when the relation between xi and y is known
exactly; in some practical situations, we only known
an approximate relation between xi and y.

1.2 Why interval computations? From
computing to probabilities to intervals

Measurement are never 100% accurate, so in reality,
the actual value xi of i-th measured quantity can
differ from the measurement result x̃i. Because of
these measurement errors ∆xi

def= x̃i − xi, the result
ỹ = f(x̃1, . . . , x̃n) of data processing is, in general,
different from the actual value y = f(x1, . . . , xn) of
the desired quantity y.

It is desirable to describe the error ∆y
def= ỹ−y of the

result of data processing. To do that, we must have
some information about the errors of direct measure-
ments.

What do we know about the errors ∆xi of direct mea-
surements? First, the manufacturer of the measuring
instrument must supply us with an upper bound ∆i

on the measurement error. If no such upper bound
is supplied, this means that no accuracy is guaran-
teed, and the corresponding “measuring instrument”
is practically useless. In this case, once we performed
a measurement and got a measurement result x̃i, we
know that the actual (unknown) value xi of the mea-
sured quantity belongs to the interval xi = [xi, xi],
where xi = x̃i −∆i and xi = x̃i + ∆i.

In many practical situations, we not only know the
interval [−∆i, ∆i] of possible values of the measure-
ment error; we also know the probability of different
values ∆xi within this interval. This knowledge un-
derlies the traditional engineering approach to esti-
mating the error of indirect measurement, in which
we assume that we know the probability distributions
for measurement errors ∆xi.

In practice, we can determine the desired probabili-



ties of different values of ∆xi by comparing the re-
sults of measuring with this instrument with the re-
sults of measuring the same quantity by a standard
(much more accurate) measuring instrument. Since
the standard measuring instrument is much more ac-
curate than the one use, the difference between these
two measurement results is practically equal to the
measurement error; thus, the empirical distribution
of this difference is close to the desired probability
distribution for measurement error. There are two
cases, however, when this determination is not done:

• First is the case of cutting-edge measure-
ments, e.g., measurements in fundamental sci-
ence. When a Hubble telescope detects the light
from a distant galaxy, there is no “standard”
(much more accurate) telescope floating nearby
that we can use to calibrate the Hubble: the Hub-
ble telescope is the best we have.

• The second case is the case of measurements on
the shop floor. In this case, in principle, every
sensor can be thoroughly calibrated, but sensor
calibration is so costly – usually costing ten times
more than the sensor itself – that manufacturers
rarely do it.

In both cases, we have no information about the prob-
abilities of ∆xi; the only information we have is the
upper bound on the measurement error.

In this case, after we performed a measurement and
got a measurement result x̃i, the only information
that we have about the actual value xi of the mea-
sured quantity is that it belongs to the interval xi =
[x̃i−∆i, x̃i+∆i]. In such situations, the only informa-
tion that we have about the (unknown) actual value
of y = f(x1, . . . , xn) is that y belongs to the range
y = [y, y] of the function f over the box x1× . . .×xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on
the input intervals xi is called interval computations;
see, e.g., [29, 52].

1.3 Interval computations techniques: brief
reminder

Historically the first method for computing the en-
closure for the range is the method which is some-
times called “straightforward” interval computations.
This method is based on the fact that inside the com-
puter, every algorithm consists of elementary oper-
ations (arithmetic operations, min, max, etc.). For
each elementary operation f(a, b), if we know the in-
tervals a and b for a and b, we can compute the exact

range f(a,b). The corresponding formulas form the
so-called interval arithmetic. For example,

[a, a]+[b, b] = [a+b, a+b]; [a, a]−[b, b] = [a−b, a−b];

[a, a] · [b, b] =

[min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)].
In straightforward interval computations, we repeat
the computations forming the program f step-by-
step, replacing each operation with real numbers by
the corresponding operation of interval arithmetic. It
is known that, as a result, we get an enclosure Y ⊇ y
for the desired range.

In some cases, this enclosure is exact. In more com-
plex cases (see examples below), the enclosure has ex-
cess width.

There exist more sophisticated techniques for pro-
ducing a narrower enclosure, e.g., a centered form
method. However, for each of these techniques, there
are cases when we get an excess width. Reason: as
shown in [38], the problem of computing the exact
range is known to be NP-hard even for polynomial
functions f(x1, . . . , xn) (actually, even for quadratic
functions f).

1.4 Practical problem

In some practical situations, in addition to the lower
and upper bounds on each random variable xi, we
have some additional information about xi.

So, we arrive at the following problem:

• we have a data processing algorithm
f(x1, . . . , xn), and

• we have some information about the uncertainty
with which we know xi (e.g., measurement er-
rors).

We want to know the resulting uncertainty in the re-
sult y = f(x1, . . . , xn) of data processing.

In interval computations, we assume that the uncer-
tainty in xi can be described by the interval of possi-
ble values. In real life, in addition to the intervals, we
often have some information about the probabilities
of different values within this interval. What can we
then do?

2 What is the Best Way to Describe
Probabilistic Uncertainty?

In order to describe how uncertainty in xi affects y,
we need to know what is the best way to represent
the corresponding probabilistic uncertainty in xi.



In probability theory, there are many different ways of
representing a probability distribution. For example,
one can use a probability density function (pdf), or
a cumulative distribution function (CDF), or a prob-
ability measure, i.e., a function which maps different
sets into a probability that the corresponding random
variable belongs to this set. The reason why there
are many different representations is that in different
problems, different representations turned out to be
the most useful.

We would like to select a representation which is the
most useful for problems related to risk analysis. To
make this selection, we must recall where the infor-
mation about probabilities provided by risk analysis
is normally used.

2.1 How is the partial information about
probabilities used in risk analysis?

The main objective of risk analysis is to make deci-
sions. A standard way of making a decision is to select
the action a for which the expected utility (gain) is
the largest possible. This is where probabilities are
used: in computing, for every possible action a, the
corresponding expected utility. To be more precise,
we usually know, for each action a and for each actual
value of the (unknown) quantity x, the corresponding
value of the utility ua(x). We must use the probabil-
ity distribution for x to compute the expected value
E[ua(x)] of this utility.

In view of this application, the most useful character-
istics of a probability distribution would be the ones
which would enable us to compute the expected value
E[ua(x)] of different functions ua(x).

2.2 Which representations are the most
useful for this intended usage? General
idea

Which characteristics of a probability distribution are
the most useful for computing mathematical expecta-
tions of different functions ua(x)? The answer to this
question depends on the type of the function, i.e., on
how the utility value u depends on the value x of the
analyzed parameter.

2.3 Smooth utility functions naturally lead
to moments

One natural case is when the utility function ua(x)
is smooth. We have already mentioned, in Section I,
that we usually know a (reasonably narrow) interval
of possible values of x. So, to compute the expected
value of ua(x), all we need to know is how the func-
tion ua(x) behaves on this narrow interval. Because

the function is smooth, we can expand it into Taylor
series. Because the interval is narrow, we can safely
consider only linear and quadratic terms in this ex-
pansion and ignore higher-order terms:

ua(x) ≈ c0 + c1 · (x− x0) + c2 · (x− x0)2,

where x0 is a point inside the interval. Thus, we can
approximate the expectation of this function by the
expectation of the corresponding quadratic expres-
sion:

E[ua(x)] ≈ E[c0 + c1 · (x− x0) + c2 · (x− x0)2],

i.e., by the following expression:

E[ua(x)] ≈ c0 + c1 · E[x− x0] + c2 · E[(x− x0)2].

So, to compute the expectations of such utility func-
tions, it is sufficient to know the first and second mo-
ments of the probability distribution.

In particular, if we use, as the point x0, the average
E[x], the second moment turns into the variance of the
original probability distribution. So, instead of the
first and the second moments, we can use the mean
E and the variance V .

2.4 In risk analysis, non-smooth utility
functions are common

In engineering applications, most functions are
smooth, so usually the Taylor expansion works pretty
well. In risk analysis, however, not all dependencies
are smooth. There is often a threshold x0 after which,
say, a concentration of a certain chemical becomes
dangerous.

This threshold sometimes comes from the detailed
chemical and/or physical analysis. In this case, when
we increase the value of this parameter, we see the
drastic increase in effect and hence, the drastic change
in utility value. Sometimes, this threshold simply
comes from regulations. In this case, when we in-
crease the value of this parameter past the threshold,
there is no drastic increase in effects, but there is a
drastic decrease of utility due to the necessity to pay
fines, change technology, etc. In both cases, we have a
utility function which experiences an abrupt decrease
at a certain threshold value x0.

2.5 Non-smooth utility functions naturally
lead to CDFs

We want to be able to compute the expected value
E[ua(x)] of a function ua(x) which changes smoothly
until a certain value x0, then drops it value and con-
tinues smoothly for x > x0. We usually know the



(reasonably narrow) interval which contains all possi-
ble values of x. Because the interval is narrow and the
dependence before and after the threshold is smooth,
the resulting change in ua(x) before x0 and after x0

is much smaller than the change at x0. Thus, with a
reasonable accuracy, we can ignore the small changes
before and after x0, and assume that the function
ua(x) is equal to a constant u+ for x < x0, and to
some other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In
this case, the desired expected value E[u(0)

a (x)] coin-
cides with the probability that x < x0, i.e., with the
corresponding value F (x0) of the cumulative distri-
bution function (CDF). A generic function ua(x) of
this type, with arbitrary values u− and u+, can be
easily reduced to this simplest case, because, as one
can easily check, ua(x) = u−+(u+−u−) ·u(0)(x) and
hence, E[ua(x)] = u− + (u+ − u−) · F (x0).

Thus, to be able to easily compute the expected val-
ues of all possible non-smooth utility functions, it is
sufficient to know the values of the CDF F (x0) for all
possible x0.

3 How to Represent Partial
Information about Probabilities

3.1 General idea

In many cases, we have a complete information about
the probability distributions that describe the uncer-
tainty of each of n inputs.

However, a practically interesting case is how to deal
with situations when we only have partial informa-
tion about the probability distributions. How can we
represent this partial information?

3.2 Case of cdf

If we use cdf F (x) to represent a distribution, then full
information corresponds to the case when we know the
exact value of F (x) for every x. Partial information
means:

• either that we only know approximate values of
F (x) for all x, i.e., that for every x, we only know
the interval that contains F (x); in this case, we
get a p-box;

• or that we only know the values of F (x) for some
x, i.e, that we only know the values F (x1), . . . ,
F (xn) for finitely many values x = x1, . . . , xn; in
this case, we have a histogram.

It is also possible that we know only approximate
values of F (x) for some x; in this case, we have an

interval-valued histogram.

3.3 Case of moments

If we use moments to represent a distribution, then
partial information means that we either know the
exact values of finitely many moments, or that we
know intervals of possible values of several moments.

4 Resulting Problems

This discussion leads to a natural classification of pos-
sible problems:

• If we have complete information about the dis-
tributions of xi, then, to get validated estimates
on uncertainty of y, we have to use Monte-Carlo-
type techniques; see, in particular, papers by D.
Lodwick et al.

• If we have p-boxes, we can use methods proposed
by S. Ferson et al.

• If we have histograms, we can use methods pro-
posed by D. Berleant et al.

• If we have moments, then we can use methods
proposed by S. Ferson, V. Kreinovich, et al.

There are also additional issues, including:

• how we get these bounds for xi?

• specific practical applications, like the appear-
ance of histogram-type distributions in problems
related to privacy in statistical databases,

• etc.

5 Case Study

5.1 Practical problem

In some practical situations, in addition to the lower
and upper bounds on each random variable xi, we
know the bounds Ei = [Ei, Ei] on its mean Ei.

Indeed, in measurement practice (see, e.g., [11]), the
overall measurement error ∆x is usually represented
as a sum of two components:

• a systematic error component ∆sx which is de-
fined as the expected value E[∆x], and

• a random error component ∆rx which is defined
as the difference between the overall measure-
ment error and the systematic error component:

∆rx
def= ∆x−∆sx.



In addition to the bound ∆ on the overall measure-
ment error, the manufacturers of the measuring in-
strument often provide an upper bound ∆s on the
systematic error component: |∆sx| ≤ ∆s.

This additional information is provided because, with
this additional information, we not only get a bound
on the accuracy of a single measurement, but we also
get an idea of what accuracy we can attain if we use
repeated measurements to increase the measurement
accuracy. Indeed, the very idea that repeated mea-
surements can improve the measurement accuracy is
natural: we measure the same quantity by using the
same measurement instrument several (N) times, and
then take, e.g., an arithmetic average

x̄ =
x̃(1) + . . . + x̃(N)

N

of the corresponding measurement results

x̃(1) = x + ∆x(1), . . . , x̃(N) = x + ∆x(N).

• If systematic error is the only error component,
then all the measurements lead to exactly the
same value x̃(1) = . . . = x̃(N), and averaging does
not change the value – hence does not improve
the accuracy.

• On the other hand, if we know that the system-
atic error component is 0, i.e., E[∆x] = 0 and
E[x̃] = x, then, as N → ∞, the arithmetic av-
erage tends to the actual value x. In this case,
by repeating the measurements sufficiently many
times, we can determine the actual value of x
with an arbitrary given accuracy.

In general, by repeating measurements sufficiently
many times, we can arbitrarily decrease the random
error component and thus attain accuracy as close to
∆s as we want.

When this additional information is given, then, after
we performed a measurement and got a measurement
result x̃, then not only we get the information that
the actual value x of the measured quantity belongs
to the interval x = [x̃ − ∆, x̃ + ∆], but we can also
conclude that the expected value of x = x̃−∆x (which
is equal to E[x] = x̃ − E[∆x] = x̃ −∆sx) belongs to
the interval E = [x̃−∆s, x̃ + ∆s].

If we have this information for every xi, then, in addi-
tion to the interval y of possible value of y, we would
also like to know the interval of possible values of E[y].
This additional interval will hopefully provide us with
the information on how repeated measurements can
improve the accuracy of this indirect measurement.
Thus, we arrive at the following problem:

5.2 Precise formulation of the problem

Given an algorithm computing a function
f(x1, . . . , xn) from Rn to R, and values x1, x1,
. . . , xn, xn, E1, E1, . . . , En, En, we want to find

E
def= min{E[f(x1, . . . , xn)] | all distributions of

(x1, . . . , xn) for which

x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn],

E[x1] ∈ [E1, E1], . . . E[xn] ∈ [En, En]};
and E which is the maximum of E[f(x1, . . . , xn)] for
all such distributions.

In addition to considering all possible distributions,
we can also consider the case when all the variables
xi are independent.

5.3 How we solve this problem

The main idea behind straightforward interval com-
putations can be applied here as well. Namely, first,
we find out how to solve this problem for the case
when n = 2 and f(x1, x2) is one of the standard arith-
metic operations. Then, once we have an arbitrary
algorithm f(x1, . . . , xn), we parse it and replace each
elementary operation on real numbers with the corre-
sponding operation on quadruples (x, E,E, x).

To implement this idea, we must therefore know how
to, solve the above problem for elementary operations.

For addition, the answer is simple. Since E[x1 +x2] =
E[x1]+E[x2], if y = x1+x2, there is only one possible
value for E = E[y]: the value E = E1+E2. This value
does not depend on whether we have correlation or
nor, and whether we have any information about the
correlation. Thus, E = E1 + E2.

Similarly, the answer is simple for subtraction: if y =
x1−x2, there is only one possible value for E = E[y]:
the value E = E1 − E2. Thus, E = E1 −E2.

For multiplication, if the variables x1 and x2 are in-
dependent, then E[x1 · x2] = E[x1] · E[x2]. Hence,
if y = x1 · x2 and x1 and x2 are independent, there
is only one possible value for E = E[y]: the value
E = E1 · E2; hence E = E1 ·E2.

The first non-trivial case is the case of multiplication
in the presence of possible correlation. When we know
the exact values of E1 and E2, the solution to the
above problem is as follows:

Theorem 1. For multiplication y = x1 · x2, when we
have no information about the correlation,

E = max(p1 + p2 − 1, 0) · x1 · x2+



min(p1, 1− p2) · x1 · x2 + min(1− p1, p2) · x1 · x2+

max(1− p1 − p2, 0) · x1 · x2;

and
E = min(p1, p2) · x1 · x2+

max(p1 − p2, 0) · x1 · x2 + max(p2 − p1, 0) · x1 · x2+

min(1− p1, 1− p2) · x1 · x2,

where pi
def= (Ei − xi)/(xi − xi).

Theorem 2. For multiplication under no informa-
tion about dependence, to find E, it is sufficient to
consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2;

p1 = p1 and p2 = p
2
; p1 = p1 and p2 = p2;

• p1 = max(p
1
, 1− p2) and p2 = 1− p1

(if 1 ∈ p1 + p2); and

• p1 = min(p1, 1− p
2
) and p2 = 1− p1

(if 1 ∈ p1 + p2).

The smallest value of E for all these cases is the de-
sired lower bound E.

Theorem 3. For multiplication under no informa-
tion about dependence, to find E, it is sufficient to
consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2;

p1 = p1 and p2 = p
2
; p1 = p1 and p2 = p2;

• p1 = p2 = max(p
1
, p

2
) (if p1 ∩ p2 6= ∅); and

• p1 = p2 = min(p1, p2) (if p1 ∩ p2 6= ∅).

The largest value of E for all these cases is the desired
upper bound E.

For the inverse y = 1/x1, the finite range is possible
only when 0 6∈ x1. Without losing generality, we can
consider the case when 0 < x1. In this case, we get
the following bound:

Theorem 4. For the inverse y = 1/x1, the range of
possible values of E is

E = [1/E1, p1/x1 + (1− p1)/x1].

(Here p1 denotes the same value as in Theorem 1).

Theorem 5. For minimum y = min(x1, x2), when
x1 and x2 are independent, we have E = min(E1, E2)
and

E = p1 · p2 ·min(x1, x2) + p1 · (1− p2) ·min(x1, x2)+

(1− p1) · p2 ·min(x1, x2)+

(1− p1) · (1− p2) ·min(x1, x2).

Theorem 6. For maximum y = min(x1, x2), when
x1 and x2 are independent, we have E = max(E1, E2)
and

E = p1 · p2 ·max(x1, x2) + p1 · (1− p2) ·max(x1, x2)+

(1− p1) · p2 ·max(x1, x2)+

(1− p1) · (1− p2) ·max(x1, x2).

Theorem 7. For minimum y = min(x1, x2), when
we have no information about the correlation between
x1 and x2, we have E = min(E1, E2),

E = max(p1 + p2 − 1, 0) ·min(x1, x2)+

min(p1, 1− p2) ·min(x1, x2)+

min(1− p1, p2) ·min(x1, x2)+

max(1− p1 − p2, 0) ·min(x1, x2).

Theorem 8. For maximum y = max(x1, x2), when
we have no information about the correlation between
x1 and x2, we have E = max(E1, E2) and

E = min(p1, p2) ·max(x1, x2)+

max(p1 − p2, 0) ·max(x1, x2)+

max(p2 − p1, 0) ·max(x1, x2)+

min(1− p1, 1− p2) ·max(x1, x2).

Similar formulas can be produced for the cases when
there is a strong correlation between xi: namely, when
x1 is (non-strictly) increasing or decreasing in x2.

5.4 Additional results

The above techniques assume that we already know
the moments etc., but how can we compute them
based on the measurement results? For example,
when we have only interval ranges [xi, xi] of sample
values x1, . . . , xn, what is the interval [V , V ] of possi-
ble values for the variance V of these values?

It turns out that most such problems are computa-
tionally difficult (to be more precise, NP-hard), and
we provide feasible algorithms that compute these
bounds under reasonable easily verifiable conditions.
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