
Combining Interval, Probabilistic, and Fuzzy

Uncertainty: Foundations, Algorithms,

Challenges – An Overview ?

Vladik Kreinovich ∗

Computer Science, University of Texas, El Paso, TX 79968, USA

Daniel J. Berleant

Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA

50011, USA,

Scott Ferson

Applied Biomathematics, 100 North Country Road, Setauket, New York, USA,

Weldon A. Lodwick

Department of Mathematics, University of Colorado at Denver, Denver, Colorado

USA 80217-3364,

Abstract

Since the 1960s, many algorithms have been designed to deal with interval uncer-

tainty. In the last decade, there has been a lot of progress in extending these algo-

rithms to the case when we have a combination of interval, probabilistic, and fuzzy

uncertainty. We provide an overview of related algorithms, results, and remaining

open problems.

Preprint submitted to Elsevier Science 26 November 2005

Key words: fuzzy uncertainty, interval uncertainty, probabilistic uncertainty

1 Main Problem

Why indirect measurements? In many real-life situations, we are inter-

ested in the value of a physical quantity y that is difficult or impossible to

measure directly. Examples of such quantities are the distance to a star and the

amount of oil in a given well. Since we cannot measure y directly, a natural idea

is to measure y indirectly. Specifically, we find some easier-to-measure quan-

tities x1, . . . , xn which are related to y by a known relation y = f(x1, . . . , xn);

this relation may be a simple functional transformation, or complex algorithm

(e.g., for the amount of oil, numerical solution to an inverse problem). Then,

to estimate y, we first measure the values of the quantities x1, . . . , xn, and

then we use the results x̃1, . . . , x̃n of these measurements to to compute an

? This work was supported in part by NASA under cooperative agreement NCC5-

209, by NSF grants EAR-0112968, EAR-0225670, and EIA-0321328, by NIH grant

3T34GM008048-20S1, and by the Army Research Lab grant DATM-05-02-C-0046.

This work was also partly supported by a research grant from Sandia National

Laboratories as part of the Department of Energy Accelerated Strategic Computing

Initiative (ASCI). The authors are very thankful to Oscar Castillo, Patricia Melin,

and all the participants of the International Conference on Fuzzy Systems, Neural

Networks, and Genetic Algorithms FNG’05 (Tijuana, Mexico, October 13–14, 2005)

for their helpful suggestions and comments.
∗ Corresponding author

Email addresses: vladik@cs.utep.edu (Vladik Kreinovich),

berleant@iastate.edu (Daniel J. Berleant), scott@ramas.com (Scott Ferson),

wlodwick@math.cudenver.edu (Weldon A. Lodwick).

2

estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n).

For example, to find the resistance R, we measure current I and voltage V ,

and then use the known relation R = V/I to estimate resistance as R̃ = Ṽ /Ĩ.

Computing an estimate for y based on the results of direct measurements is

called data processing; data processing is the main reason why computers were

invented in the first place, and data processing is still one of the main uses of

computers as number crunching devices.

Comment. In this paper, for simplicity, we consider the case when the relation

between xi and y is known exactly; in some practical situations, we only known

an approximate relation between xi and y.

Why interval computations? From computing to probabilities to

intervals. Measurements are never 100% accurate, so in reality, the ac-

tual value xi of i-th measured quantity can differ from the measurement

result x̃i. Because of these measurement errors ∆xi
def
= x̃i − xi, the result

ỹ = f(x̃1, . . . , x̃n) of data processing is, in general, different from the actual

value y = f(x1, . . . , xn) of the desired quantity y.

It is desirable to describe the error ∆y
def
= ỹ − y of the result of data process-

ing. To do that, we must have some information about the errors of direct

measurements.

What do we know about the errors ∆xi of direct measurements? First, the

manufacturer of the measuring instrument must supply us with an upper

bound ∆i on the measurement error. If no such upper bound is supplied,

this means that no accuracy is guaranteed, and the corresponding “measuring

3

instrument” is practically useless. In this case, once we performed a measure-

ment and got a measurement result x̃i, we know that the actual (unknown)

value xi of the measured quantity belongs to the interval xi = [xi, xi], where

xi = x̃i −∆i and xi = x̃i + ∆i.

In many practical situations, we not only know the interval [−∆i, ∆i] of possi-

ble values of the measurement error; we also know the probability of different

values ∆xi within this interval. This knowledge underlies the traditional en-

gineering approach to estimating the error of indirect measurement, in which

we assume that we know the probability distributions for measurement errors

∆xi.

In practice, we can determine the desired probabilities of different values of ∆xi

by comparing the results of measuring with this instrument with the results of

measuring the same quantity by a standard (much more accurate) measuring

instrument. Since the standard measuring instrument is much more accurate

than the one use, the difference between these two measurement results is

practically equal to the measurement error; thus, the empirical distribution of

this difference is close to the desired probability distribution for measurement

error. There are two cases, however, when this determination is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fun-

damental science. When a Hubble telescope detects the light from a dis-

tant galaxy, there is no “standard” (much more accurate) telescope floating

nearby that we can use to calibrate the Hubble: the Hubble telescope is the

best we have.

• The second case is the case of measurements on the shop floor. In this case, in

principle, every sensor can be thoroughly calibrated, but sensor calibration

4

is so costly – usually costing ten times more than the sensor itself – that

manufacturers rarely do it.

In both cases, we have no information about the probabilities of ∆xi; the only

information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result

x̃i, the only information that we have about the actual value xi of the measured

quantity is that it belongs to the interval xi = [x̃i − ∆i, x̃i + ∆i]. In such

situations, the only information that we have about the (unknown) actual

value of y = f(x1, . . . , xn) is that y belongs to the range y = [y, y] of the

function f over the box x1 × . . .× xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on the input intervals xi

is called interval computations; see, e.g., [7,8].

Interval computations techniques: brief reminder. Historically the first method

for computing the enclosure for the range is the method which is sometimes

called “straightforward” interval computations. This method is based on the

fact that inside the computer, every algorithm consists of elementary opera-

tions (arithmetic operations, min, max, etc.). For each elementary operation

f(a, b), if we know the intervals a and b for a and b, we can compute the

exact range f(a,b). The corresponding formulas form the so-called interval

arithmetic. For example,

[a, a] + [b, b] = [a + b, a + b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)].

5

In straightforward interval computations, we repeat the computations forming

the program f step-by-step, replacing each operation with real numbers by the

corresponding operation of interval arithmetic. It is known that, as a result,

we get an enclosure Y ⊇ y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples

below), the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclosure,

e.g., a centered form method. However, for each of these techniques, there are

cases when we get an excess width. Reason: as shown in [11], the problem

of computing the exact range is known to be NP-hard even for polynomial

functions f(x1, . . . , xn) (actually, even for quadratic functions f).

Practical problem. In some practical situations, in addition to the lower

and upper bounds on each random variable xi, we have some additional infor-

mation about xi. So, we arrive at the following problem:

• we have a data processing algorithm f(x1, . . . , xn), and

• we have some information about the uncertainty with which we know xi

(e.g., measurement errors).

We want to know the resulting uncertainty in the result y = f(x1, . . . , xn) of

data processing.

In interval computations, we assume that the uncertainty in xi can be de-

scribed by the interval of possible values. In real life, in addition to the in-

tervals, we often have some information about the probabilities of different

values within this interval. What can we then do?

6

2 What is the Best Way to Describe Probabilistic Uncertainty?

How is the partial information about probabilities used in decision

making? One of the main objectives of data processing is to make decisions.

A standard way of making a decision is to select the action a for which the

expected utility (gain) is the largest possible. This is where probabilities are

used: in computing, for every possible action a, the corresponding expected

utility. To be more precise, we usually know, for each action a and for each

actual value of the (unknown) quantity x, the corresponding value of the utility

ua(x). We must use the probability distribution for x to compute the expected

value E[ua(x)] of this utility.

In view of this application, the most useful characteristics of a probability

distribution would be the ones which would enable us to compute the expected

value E[ua(x)] of different functions ua(x).

Which representations are the most useful for this intended usage?

General idea. Which characteristics of a probability distribution are the most

useful for computing mathematical expectations of different functions ua(x)?

The answer to this question depends on the type of the function, i.e., on how

the utility value u depends on the value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case

is when the utility function ua(x) is smooth. We have already mentioned, in

Section I, that we usually know a (reasonably narrow) interval of possible

values of x. So, to compute the expected value of ua(x), all we need to know is

how the function ua(x) behaves on this narrow interval. Because the function

7

is smooth, we can expand it into Taylor series. Because the interval is narrow,

we can safely consider only linear and quadratic terms in this expansion and

ignore higher-order terms: ua(x) ≈ c0 + c1 · (x − x0) + c2 · (x − x0)
2, where

x0 is a point inside the interval. Thus, we can approximate the expectation

of this function by the expectation of the corresponding quadratic expression:

E[ua(x)] ≈ E[c0 + c1 · (x−x0)+ c2 · (x−x0)
2], i.e., by the following expression:

E[ua(x)] ≈ c0+c1 ·E[x−x0]+c2 ·E[(x−x0)
2]. So, to compute the expectations

of such utility functions, it is sufficient to know the first and second moments

of the probability distribution.

In particular, if we use, as the point x0, the average E[x], the second moment

turns into the variance of the original probability distribution. So, instead of

the first and the second moments, we can use the mean E and the variance

V .

In decision making, non-smooth utility functions are common. In

decision making, not all dependencies are smooth. There is often a threshold

x0 after which, say, a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or physical

analysis. In this case, when we increase the value of this parameter, we see

the drastic increase in effect and hence, the drastic change in utility value.

Sometimes, this threshold simply comes from regulations. In this case, when

we increase the value of this parameter past the threshold, there is no drastic

increase in effects, but there is a drastic decrease of utility due to the necessity

to pay fines, change technology, etc. In both cases, we have a utility function

which experiences an abrupt decrease at a certain threshold value x0.

8

Non-smooth utility functions naturally lead to CDFs. We want to be

able to compute the expected value E[ua(x)] of a function ua(x) which changes

smoothly until a certain value x0, then drops it value and continues smoothly

for x > x0. We usually know the (reasonably narrow) interval which contains

all possible values of x. Because the interval is narrow and the dependence

before and after the threshold is smooth, the resulting change in ua(x) before

x0 and after x0 is much smaller than the change at x0. Thus, with a reasonable

accuracy, we can ignore the small changes before and after x0, and assume that

the function ua(x) is equal to a constant u+ for x < x0, and to some other

constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired

expected value E[u(0)
a (x)] coincides with the probability that x < x0, i.e.,

with the corresponding value F (x0) of the cumulative distribution function

(CDF). A generic function ua(x) of this type, with arbitrary values u− and

u+, can be easily reduced to this simplest case, because, as one can easily check,

ua(x) = u−+(u+−u−) ·u(0)(x) and hence, E[ua(x)] = u−+(u+−u−) ·F (x0).

Thus, to be able to easily compute the expected values of all possible non-

smooth utility functions, it is sufficient to know the values of the CDF F (x0)

for all possible x0.

3 How to Represent Partial Information about Probabilities

General idea. In many cases, we have a complete information about the

probability distributions that describe the uncertainty of each of n inputs.

However, a practically interesting case is how to deal with situations when we

9

only have partial information about the probability distributions. How can we

represent this partial information?

Case of cdf. If we use cdf F (x) to represent a distribution, then full informa-

tion corresponds to the case when we know the exact value of F (x) for every

x. Partial information means:

• either that we only know approximate values of F (x) for all x, i.e., that for

every x, we only know the interval that contains F (x); in this case, we get

a p-box;

• or that we only know the values of F (x) for some x, i.e, that we only know

the values F (x1), . . . , F (xn) for finitely many values x = x1, . . . , xn; in this

case, we have a histogram.

It is also possible that we know only approximate values of F (x) for some x;

in this case, we have an interval-valued histogram.

Case of moments. If we use moments to represent a distribution, then par-

tial information means that we either know the exact values of finitely many

moments, or that we know intervals of possible values of several moments.

Resulting problems. This discussion leads to a natural classification of pos-

sible problems:

• If we have complete information about the distributions of xi, then, to get

validated estimates on uncertainty of y, we have to use Monte-Carlo-type

techniques; see, e.g., [13,14].

• If we have p-boxes, we can use methods from [5].

• If we have histograms, we can use methods from [1,2].

10

• If we have moments, then we can use methods from [10].

There are also additional issues, including:

• how we get these bounds for xi?

• specific practical applications, like the appearance of histogram-type distri-

butions in problems related to privacy in statistical databases.

4 Case Study

Practical problem. In some practical situations, in addition to the lower and

upper bounds on each random variable xi, we know the bounds Ei = [Ei, Ei]

on its mean Ei. Indeed, in measurement practice (see, e.g., [11]), the overall

measurement error ∆x is usually represented as a sum of two components:

• a systematic error component ∆sx which is defined as the expected value

E[∆x], and

• a random error component ∆rx which is defined as the difference between

the overall measurement error and the systematic error component: ∆rx
def
=

∆x−∆sx.

In addition to the bound ∆ on the overall measurement error, the manufac-

turers of the measuring instrument often provide an upper bound ∆s on the

systematic error component: |∆sx| ≤ ∆s.

This additional information is provided because, with this additional informa-

tion, we not only get a bound on the accuracy of a single measurement, but

we also get an idea of what accuracy we can attain if we use repeated mea-

surements to increase the measurement accuracy. Indeed, the very idea that

11

repeated measurements can improve the measurement accuracy is natural: we

measure the same quantity by using the same measurement instrument several

(N) times, and then take, e.g., an arithmetic average x̄ =
x̃(1) + . . . + x̃(N)

N
of

the corresponding measurement results x̃(1) = x+∆x(1), . . . , x̃(N) = x+∆x(N).

• If systematic error is the only error component, then all the measurements

lead to exactly the same value x̃(1) = . . . = x̃(N), and averaging does not

change the value – hence does not improve the accuracy.

• On the other hand, if we know that the systematic error component is 0, i.e.,

E[∆x] = 0 and E[x̃] = x, then, as N →∞, the arithmetic average tends to

the actual value x. In this case, by repeating the measurements sufficiently

many times, we can determine the actual value of x with an arbitrary given

accuracy.

In general, by repeating measurements sufficiently many times, we can arbi-

trarily decrease the random error component and thus attain accuracy as close

to ∆s as we want.

When this additional information is given, then, after we performed a mea-

surement and got a measurement result x̃, then not only we get the informa-

tion that the actual value x of the measured quantity belongs to the interval

x = [x̃ − ∆, x̃ + ∆], but we can also conclude that the expected value of

x = x̃ −∆x (which is equal to E[x] = x̃ − E[∆x] = x̃ −∆sx) belongs to the

interval E = [x̃−∆s, x̃ + ∆s].

If we have this information for every xi, then, in addition to the interval y

of possible value of y, we would also like to know the interval of possible

values of E[y]. This additional interval will hopefully provide us with the

information on how repeated measurements can improve the accuracy of this

12

indirect measurement. Thus, we arrive at the following problem:

Precise formulation of the problem. Given an algorithm computing a

function f(x1, . . . , xn) from Rn to R, and values x1, x1, . . . , xn, xn, E1, E1,

. . . , En, En, we want to find

E
def
= min{E[f(x1, . . . , xn)] | all distributions of (x1, . . . , xn) for which

x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn], E[x1] ∈ [E1, E1], . . . E[xn] ∈ [En, En]};

and E which is the maximum of E[f(x1, . . . , xn)] for all such distributions.

In addition to considering all possible distributions, we can also consider the

case when all the variables xi are independent.

How we solve this problem. The main idea behind straightforward in-

terval computations can be applied here as well. Namely, first, we find out

how to solve this problem for the case when n = 2 and f(x1, x2) is one of

the standard arithmetic operations. Then, once we have an arbitrary algo-

rithm f(x1, . . . , xn), we parse it and replace each elementary operation on real

numbers with the corresponding operation on quadruples (x,E,E, x).

To implement this idea, we must therefore know how to, solve the above

problem for elementary operations.

For addition, the answer is simple. Since E[x1 + x2] = E[x1] + E[x2], if y =

x1 + x2, there is only one possible value for E = E[y]: the value E = E1 + E2.

This value does not depend on whether we have correlation or nor, and whether

we have any information about the correlation. Thus, E = E1 + E2.

13

Similarly, the answer is simple for subtraction: if y = x1−x2, there is only one

possible value for E = E[y]: the value E = E1 − E2. Thus, E = E1 − E2.

For multiplication, if the variables x1 and x2 are independent, then E[x1 ·x2] =

E[x1] ·E[x2]. Hence, if y = x1 ·x2 and x1 and x2 are independent, there is only

one possible value for E = E[y]: the value E = E1 · E2; hence E = E1 · E2.

The first non-trivial case is the case of multiplication in the presence of possible

correlation. When we know the exact values of E1 and E2, the solution to the

above problem is as follows:

Theorem 1. For multiplication y = x1 · x2, when we have no information

about the correlation,

E = max(p1 + p2 − 1, 0) · x1 · x2 + min(p1, 1− p2) · x1 · x2+

min(1− p1, p2) · x1 · x2 + max(1− p1 − p2, 0) · x1 · x2;

E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2+

max(p2 − p1, 0) · x1 · x2 + min(1− p1, 1− p2) · x1 · x2,

where pi
def
= (Ei − xi)/(xi − xi).

Theorem 2. For multiplication under no information about dependence, to

find E, it is sufficient to consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1 and

p2 = p2;

• p1 = max(p
1
, 1− p2) and p2 = 1− p1 (if 1 ∈ p1 + p2); and

• p1 = min(p1, 1− p
2
) and p2 = 1− p1 (if 1 ∈ p1 + p2).

The smallest value of E for all these cases is the desired lower bound E.

14

Theorem 3. For multiplication under no information about dependence, to

find E, it is sufficient to consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1 and

p2 = p2;

• p1 = p2 = max(p
1
, p

2
) (if p1 ∩ p2 6= ∅); and

• p1 = p2 = min(p1, p2) (if p1 ∩ p2 6= ∅).

The largest value of E for all these cases is the desired upper bound E.

For the inverse y = 1/x1, the finite range is possible only when 0 6∈ x1.

Without losing generality, we can consider the case when 0 < x1. In this case,

we get the following bound:

Theorem 4. For the inverse y = 1/x1, the range of possible values of E is

E = [1/E1, p1/x1 + (1− p1)/x1].

(Here p1 denotes the same value as in Theorem 1).

Similar formulas can be produced for max and min, and also for the cases

when there is a strong correlation between xi: namely, when x1 is (non-strictly)

increasing or decreasing in x2; see, e.g., [10].

Additional results. The above techniques assume that we already know

the moments etc., but how can we compute them based on the measurement

results? For example, when we have only interval ranges [xi, xi] of sample

values x1, . . . , xn, what is the interval [V , V] of possible values for the variance

V of these values?

15

It turns out that most such problems are computationally difficult (to be more

precise, NP-hard), and we provide feasible algorithms that compute these

bounds under reasonable easily verifiable conditions [6,12].

5 Fuzzy Uncertainty: In Brief

In the fuzzy case, for each value of measurement error ∆xi, we describe the

degree µi(∆xi) to which this value is possible.

For each degree of certainty α, we can determine the set of values of ∆xi that

are possible with at least this degree of certainty – the α-cut {x |µ(x) ≥ α}
of the original fuzzy set. Vice versa, if we know α-cuts for every α, then, for

each object x, we can determine the degree of possibility that x belongs to

the original fuzzy set [3,9,14–16]. A fuzzy set can be thus viewed as a nested

family of its α-cuts.

If instead of a (crisp) interval xi of possible values of the measured quantity,

we have a fuzzy set µi(x) of possible values, then we can view this information

as a family of nested intervals xi(α) – α-cuts of the given fuzzy sets.

Our objective is then to compute the fuzzy number corresponding to this the

desired value y = f(x1, . . . , xn). In this case, for each level α, to compute the

α-cut of this fuzzy number, we can apply the interval algorithm to the α-cuts

xi(α) of the corresponding fuzzy sets. The resulting nested intervals form the

desired fuzzy set for y.

16

6 Case Study: Chip Design

Decreasing clock cycle: a practical problem. In chip design, one of the

main objectives is to decrease the chip’s clock cycle. It is therefore important

to estimate the clock cycle on the design stage.

The clock cycle of a chip is constrained by the maximum path delay over all

the circuit paths D
def
= max(D1, . . . , DN), where Di denotes the delay along

the i-th path. Each path delay Di is the sum of the delays corresponding to

the gates and wires along this path. Each of these delays, in turn, depends on

several factors such as the variation caused by the current design practices,

environmental design characteristics (e.g., variations in temperature and in

supply voltage), etc.

Traditional (interval) approach to estimating the clock cycle. Tradi-

tionally, the delay D is estimated by using the worst-case analysis, in which we

assume that each of the corresponding factors takes the worst possible value

(i.e., the value leading to the largest possible delays). As a result, we get the

time delay that corresponds to the case when all the factors are at their worst.

It is necessary to take probabilities into account. The worst-case analy-

sis does not take into account that different factors come from independent

random processes. As a result, the probability that all these factors are at

their worst is extremely small. For example, there may be slight variations of

delay time from gate to gate, and this can indeed lead to gate delays. The

worst-case analysis considers the case when all these random variations lead

17

to the worst case; since these variations are independent, this combination of

worst cases is highly improbable.

As a result, the current estimates of the chip clock time are over-conservative,

over up to 30% above the observed clock time. Because of this over-estimation,

the clock time is set too high – i.e., the chips are usually over-designed and

under-performing; see, e.g., [4]. To improve the performance, it is therefore de-

sirable to take into account the probabilistic character of the factor variations.

How the desired delay D depends on the parameters. The variations

in the each gate delay d are caused by the difference between the actual and

the nominal values of the corresponding parameters. It is therefore desirable

to describe the resulting delay d as a function of these differences x1, . . . , xn.

Since these differences are usually small, we can safely ignore quadratic (and

higher order) terms in the Taylor expansion of the dependence of d on xj

and assume that the dependence of each delay d on these differences can be

described by a linear function.

As a result, each path delay Di – which, as we have mentioned, is the sum of

delays at different gates and wires – can also be described as a linear function

of these differences, i.e., as Di = ai +
n∑

j=1

aij · xj for some coefficients ai and

aij. Thus, the desired maximum delay D = max
i

Di has the form

D = max
i


ai +

n∑

j=1

aij · xj


 . (1)

How we can describe such functions in general terms. In this section,

we will use two properties of the time delay. First, we will use the fact that

18

the time delay is always non-negative; second, we will use the fact that the

dependence (1) is convex.

Let us recall that a function f : Rm → R is called convex if

f(α · x + (1− α) · y) ≤ α · f(x) + (1− α) · f(y)

for every x, y ∈ Rm and for every α ∈ (0, 1). It is known that the maximum

of several linear functions is convex, so the function (1) is convex. Vice versa,

every convex function can be approximated, with an arbitrary accuracy, by

maxima of linear functions – i.e., by expressions of type (1).

So, in general terms, we can say that we are interested in the robust statistical

properties of the value y = F (x1, . . . , xn), where F is a non-negative convex

function of the variables xj.

Our objective. We want to find the smallest possible value y0 such that

for all possible distributions consistent with the known information, we have

y ≤ y0 with the probability ≥ 1− ε (where ε > 0 is a given small probability).

What information we can use. What information can we use for these

estimations? We can safely assume that different factors xj are statistically

independent. About some of the variables xj, we know their exact statistical

characteristics; about some other variables xj, we only know their interval

ranges [xj, xj] and their means Ej.

Additional property: the dependency is non-degenerate. We only have

partial information about the probability distribution of the variables xj. For

19

each possible probability distribution p, we can find the largest value yp for

which, for this distribution, y ≤ yp with probability ≥ 1−ε. The desired value

y0 is the largest of the values yp corresponding to different probability distri-

butions p: y0 = sup
p∈P

yp, where P denotes the class of probability distributions

p which are consistent with the known information.

If we learn some additional information about the distribution of xj – e.g.,

if we learn that xj actually belongs to a proper subinterval of the original

interval [xj, xj] – we thus decrease the class P of distributions p which are

consistent with this information, to a new class P ′ ⊂ P . Since the class has

decreased, the new value y′0 = sup
p∈P ′

yp is the maximum over a smaller set and

thus, cannot be larger than the original value y0: y′0 ≤ y0.

From the purely mathematical viewpoint, it is, in principle, possible that the

desired value y does not actually depend on some of the variables xj. In this

case, if we narrow down the interval of possible values of the corresponding

variable xj, this will not change the resulting value y0.

For the chip design problem, it is reasonable to assume that such variables

have already been weeded out, and that the resulting function F (x1, . . . , xn)

is non-degenerate in the sense that every time we narrow down one of the

intervals [xj, xj], the resulting value y0 actually decreases: y′0 < y0.

As a result, we arrive at the following problem.

Formulation of the problem and the main result.

GIVEN:

• natural numbers n, and k ≤ n;

20

• a real number ε > 0;

• a function y = F (x1, . . . , xn) (algorithmically defined) such that for every

combination of values xk+1, . . . , xn, the dependence of y on x1, . . . , xk is

convex;

• n − k probability distributions xk+1, . . . , xn – e.g., given in the form of

cumulative distribution function (cdf) Fj(x), k + 1 ≤ j ≤ n;

• k intervals x1, . . . ,xk, and

• k values E1, . . . , Ek,

such that for every x1 ∈ [x1, x1], . . . , xk ∈ [xk, xk], we have F (x1, . . . , xn) ≥ 0

with probability 1.

TAKE: all possible joint probability distributions on Rn for which:

• all n random variables are independent;

• for each j from 1 to k, xj ∈ xj with probability 1 and the mean value of xj

is equal to Ej;

• for j > k, the variable xj has a given distribution Fj(x).

FIND: the smallest possible value y0 such that for all possible distributions

consistent with the known information, we have y
def
= F (x1, . . . , xn) ≤ y0 with

probability ≥ 1− ε.

PROVIDED: that the problem is non-degenerate in the sense that if we narrow

down one of the intervals xj, the value y0 decreases.

The following result explains how we can compute this value y0.

Theorem 5. [17] The desired value y0 is attained when for each j from 1 to

k, we use a 2-point distribution for xj, in which:

21

• xj = xj with probability p
j

def
=

xj − Ej

xj − xj

.

• xj = xj with probability pj
def
=

Ej − xj

xj − xj

.

Comment. The proof of Theorem 5 is given in the special (last) subsection of

this section.

Resulting algorithm for computing y0. Because of Theorem 5, we can

compute the desired value y0 by using the following Monte-Carlo simulation:

• We set each value xj, 1 ≤ j ≤ k, to be equal to xj with probability pj and

to the value xj with the probability p
j
.

• We simulate the values xj, k < j ≤ n, as random variables distributed

according to the distributions Fj(x).

• For each simulation s, 1 ≤ s ≤ Ni, we get the simulated values x
(s)
j , and

then, a value y(s) = F (x
(s)
1 , . . . , x(s)

n). We then sort the resulting Ni values

y(s) into an increasing sequence

y(1) ≤ y(2) ≤ . . . ≤ y(Ni),

and take, as y0, the Ni · (1− ε)-th term y(Ni·(1−ε)) in this sorted sequence.

Comment about Monte-Carlo techniques. Before presenting the algorithm for

computing the upper bound on y0, let us remark that some readers may feel

uncomfortable with the use of Monte-Carlo techniques. This discomfort comes

from the fact that in the traditional statistical approach, when we know the

exact probability distributions of all the variables, Monte-Carlo methods –

that simply simulate the corresponding distributions – are inferior to analytical

methods. This inferiority is due to two reasons:

22

• First, by design, Monte-Carlo methods are approximate, while analytical

methods are usually exact.

• Second, the accuracy provided by a Monte-Carlo method is, in general,

proportional to∼ 1/
√

Ni, where Ni is the total number of simulations. Thus,

to achieve reasonable quality, we often need to make a lot of simulations – as

a result, the computation time required for a Monte-Carlo method becomes

much longer than for an analytical method.

In robust statistic, there is often an additional reason to be uncomfortable

about using Monte-Carlo methods:

• Practitioners use these methods by selecting a finite set of distributions from

the infinite class of all possible distributions, and running simulations for

the selected distributions.

• Since we do not test all the distributions, this practical heuristic approach

sometimes misses the distributions on which the minimum or maximum of

the corresponding distribution is actually attained.

In our case, we also select a finite collection of distributions from the infinite

set. However, in contrast to the heuristic (un-justified) selection – which is

prone to the above criticism, our selection is justified. Theorem 5 guarantees

that the values corresponding to the selected distributions indeed provide the

desired value y0 – the largest over all possible distributions p ∈ P .

In such situations, where a justified selection of Monte-Carlo methods is used

to solve a problem of robust statistics, such Monte-Carlo methods often lead to

faster computations than known analytical techniques. The speed-up caused

by using such Monte-Carlo techniques is one of the main reasons why they

were invented in the first place – to provide fast estimates of the values of

23

multi-dimensional integrals. Many examples of efficiency of these techniques

are given, e.g., in [18]; in particular, examples related to estimating how the

uncertainty of inputs leads to uncertainty of the results of data processing are

given in [19].

Proof of Theorem 5. By definition, y0 is the largest value of yp over all

possible distributions p ∈ P . This means that for the given y0, for all possible

distributions p ∈ P , we have Prob(D ≤ y0) ≥ 1− ε. Let p ∈ P be the “worst-

case” distribution, i.e., the distribution for which the probability Prob(D ≤ y0)

is the smallest. Let us show that this “worst case” occurs when all k variables

x1, . . . , xk have the 2-point distributions described in Theorem 5.

Let us fix the value j ≤ k and show that in the “worst case”, xj indeed

has the desired 2-point distribution. Without losing generality, we can take

j = 1. Let us fix the distributions for x2, . . . , xk as in the worst case. Then,

the fact that the probability Prob(D ≤ y0) is the smallest means that if we

replace the worst-case distribution for x1 with some other distribution, we can

only increase this probability. In other words, when we correspondingly fix the

distributions for x2, . . . , xk, the probability Prob(D ≤ y0) attains the smallest

possible value at the desired distribution for x1.

In reality, the distribution for x1 is located on an interval x1 = [x1, x1], i.e.,

on a set with infinitely many points. However, with an arbitrary large value

N (and thus, for an arbitrarily small discretization error δ = (x1−x1)/N), we

can assume that all the distributions are located on a finite grid of values

v0
def
= x1, v1

def
= x1 + δ, v2

def
= x1 + 2δ, . . . , vN = x1.

The smaller δ, the better this approximation. Thus, without losing generality,

24

we can assume that the distribution of x1 is located on finitely many points

vi.

In this approximation, the probability distribution for x1 can be described by

the probabilities qi
def
= p1(vi) of different values vi.

The minimized probability Prob(D ≤ y0) can be described as the sum of the

probabilities of different combinations (x1, . . . , xn) over all the combinations

for which D(x1, . . . , xn) ≤ y0. We assumed that all the variables xj are inde-

pendent. Thus, the probability of each combination (x1, . . . , xn) is equal to the

product of the corresponding probabilities p1(x1) · p2(x2) · . . . Since the prob-

ability distributions for x2, . . . are fixed, the minimized probability is thus a

linear combination of probabilities p1(vi), i.e., of the probabilities qi. In other

words, the minimized probability has the form
N∑

i=0
ci · qi for some coefficients

ci.

By describing the probability distribution on x1 via the probabilities qi =

p1(vi) of different values vi ∈ [x1, x1], we automatically restrict ourselves to

distributions which are located on this interval. The only restrictions that we

have on the probability distribution of x1 is that it is a probability distribution,

i.e., that qi ≥ 0 for all i and
N∑

i=0
qi = 1, and that the mean value of this

distribution is equal to E1, i.e., that
N∑

i=0
qi · vi = E1. Thus, the worst-case

distribution for x1 is a solution to the following linear programming problem:

Minimize
N∑

i=0

ci · qi

under the constraints

N∑

i=0

qi = 1,
N∑

i=0

qi · vi = E1, qi ≥ 0, i = 0, 1, 2, . . . , N.

25

It is known that the solution to the linear programming problem is always at-

tained at a vertex of the corresponding constraint set. In other words, in the so-

lution to the linear programming problem with N +1 unknowns q0, q1, . . . , qN ,

at least N +1 constraints are equalities. Since we already have 2 equality con-

straints, this means that out of the remaining constraints qi ≥ 0, at least N−1

are equalities. In other words, this means that in the optimal distribution, all

but two values of qi = p1(vi) are equal to 0.

Thus, the “worst-case” distribution for x1 is located on 2 points v and v′

within the interval [x1, x1]. Let us prove, by reduction to a contradiction,

that these two points cannot be different from the endpoints of this interval.

Indeed, let us assume that they are different. Without losing generality, we can

assume that v ≤ v′. Then, this “worst-case” distribution is actually located

on the proper subinterval [v, v′] ⊂ [x1, x1] of the original interval x1. Since

the maximum y0 of yp is attained on this distribution, replacing the original

interval x1 with its proper subinterval [v, v′] would not change the value y0 –

while our assumption of non-degeneracy states that such a replacement would

always lead to a smaller value y0. This contradiction shows that the values v

and v′ – on which the worst-case distribution is located – have to be endpoints

of the interval [x1, x1].

In other words, we conclude that the worst-case distribution is located at 2

points: x1 and x1. Such a distribution is uniquely determined by the proba-

bilities p
1

and p1 of these two points. Since the sum of these probabilities is

equal to 1, it is sufficient to describe one of these probabilities, e.g., p1; then,

p
1

= 1− p1. The condition that the mean of x1 is E1, i.e., that

p
1
· x1 + p1 · x1 = (1− p1) · x1 + p1 · x1 = E1,

26

uniquely determines p1 (and hence p
1
) – exactly by the expression from The-

orem 5. The statement is proven.

7 Case Study: Bioinformatics

How can we find genetic difference between cancer cells and healthy cells? In

the ideal case, we can directly measure concentration c of the gene in cancer

cells and h in healthy cells. In reality, however, these cells are difficult to

separate, so we measure yi ≈ xi · c + (1− xi) · h (where xi is the percentage of

cancer cells in i-th sample), or, equivalently, a · xi + h ≈ yi, where a
def
= c− h.

If we knew xi exactly, then we could use the Least Squares Method
n∑

i=1
(a ·

xi + h − yi)
2 → min

a,h
and get a =

C(x, y)

V (x)
and h = E(y) − a · E(x), where

E(x) =
1

n
·

n∑

i=1

xi is the population mean, V (x) =
1

n− 1
· n∑
i=1

(xi−E(x))2 is the

population variance, and C(x, y) =
1

n− 1
· n∑

i=1
(xi − E(x)) · (yi − E(y)) is the

population covariance. In reality, experts manually count xi, so we can only

provide interval (or even fuzzy) bounds xi, e.g., xi ∈ [0.7, 0.8]. Different values

xi ∈ xi lead to different a and h. It is therefore desirable to find the range of

a and h corresponding to all possible values xi ∈ [xi, xi].

This problem is a particular case of the above-mentioned general problem:

how to efficiently deduce the statistical information from, e.g., interval data.

We have mentioned that in general, this problem is NP-hard even for the

variance. However, efficient algorithms are known for computing the ranges in

reasonable situations; see, e.g., [6,12]. So, we can compute the interval ranges

for C(x, y) and for V (x) and divide the resulting ranges.

27

8 Case Study: Detecting Outliers

In many application areas, it is important to detect outliers, i.e., unusual, ab-

normal values. In medicine, unusual values may indicate disease. In geophysics,

abnormal values may indicate a mineral deposit (or an erroneous measurement

result). In structural integrity testing, abnormal values may indicate faults in

a structure.

In the traditional engineering approach, a new measurement result x is clas-

sified as an outlier if x 6∈ [L,U], where

L
def
= E − k0 · σ, U

def
= E + k0 · σ,

and k0 > 1 is pre-selected (most frequently, k0 = 2, 3, or 6).

In many practical situations, we only have intervals xi = [xi, xi]. For different

values xi ∈ xi, we get different k0-sigma intervals [L,U]. Sometimes, we are

interested in possible outliers – i.e., values outside some k0-sigma interval. For

example, in structural integrity, it is important not to miss a fault. Sometimes,

we need guaranteed outlier (i.e., values outside all k0-sigma intervals) – e.g.,

before a surgery, we want to make sure that there is a micro-calcification.

In mathematical terms, a value x is a possible outlier if x 6∈ [L,U]; a value x

is a guaranteed outlier if x 6∈ [L, U]. Thus, to detect outliers, we must find the

ranges of L = E − k0 · σ and U = E + k0 · σ. Algorithms for computing such

ranges are described, e.g., in [6,12].

28

References

[1] Berleant D and Zhang J (2004), Using Pearson correlation to improve envelopes

around the distributions of functions. Reliable Computing 10(2):139–161.

[2] Berleant D and Zhang J (2004), Representation and Problem Solving with the

Distribution Envelope Determination (DEnv) Method, Reliability Engineering

and System Safety 85(1–3).

[3] Bojadziev G and Bojadziev M (1995), Fuzzy Sets, Fuzzy Logic, Applications,

World Scientific, Singapore.

[4] Chinnery D and Keutzer K, eds. (2002), Closing the Gap Between ASICs and

Custom, Kluwer, Dordrecht

[5] Ferson S (2002), RAMAS Risk Calc 4.0, CRC Press, Boca Raton, Florida.

[6] Ferson S, Ginzburg L, Kreinovich V, Longpré L, and Aviles M (2005), Exact

Bounds on Finite Populations of Interval Data. Reliable Computing, 11(3):207–

233.

[7] Jaulin L, Kieffer M, Didrit O, and Walter E (2001), Applied interval analysis,

Springer Verlag, London.

[8] Kearfott RB and Kreinovich V, eds. (1996), Applications of Interval

Computations, Kluwer, Dordrecht.

[9] Klir G, Yuan B (1995), Fuzzy sets and fuzzy logic, Prentice Hall, New Jersey.

[10] Kreinovich V (2004), Probabilities, Intervals, What Next? Optimization

Problems Related to Extension of Interval Computations to Situations with

Partial Information about Probabilities. Journal of Global Optimization

29(3):265–280.

29

[11] Kreinovich V, Lakeyev A, Rohn J, Kahl P (1997), Computational complexity

and feasibility of data processing and interval computations, Kluwer, Dordrecht.

[12] Kreinovich V et al. (to appear), Towards combining probabilistic and interval

uncertainty in engineering calculations: algorithms for computing statistics

under interval uncertainty, and their computational complexity. Reliable

Computing

[13] Lodwick WA and Jamison KD (2003), Estimating and Validating the

Cumulative Distribution of a Function of Random Variables: Toward the

Development of Distribution Arithmetic. Reliable Computing 9(2):127–141.

[14] Moore RE and Lodwick WA (2003), Interval Analysis and Fuzzy Set Theory.

Fuzzy Sets and Systems 135(1):5–9.

[15] Nguyen HT and Kreinovich V (1996), Nested Intervals and Sets: Concepts,

Relations to Fuzzy Sets, and Applications, In [8], pp. 245–290

[16] Nguyen HT and Walker EA (1999), First course in fuzzy logic, CRC Press, Boca

Raton, Florida

[17] Orshansky M, Wang W-S, Ceberio M, Xiang G (2006), Interval-based robust

statistical techniques for non-negative convex functions, with application to

timing analysis of computer chips, Proceedings of the ACM Symposium on

Applied Computing SAC’06, Dijon, France, April 23–27, 2006 (to appear)

[18] Rajasekaran S, Pardalos P, Reif J, Rolim J, eds. (2001), Handbook on

Randomized Computing, Kluwer, Dordrecht

[19] Trejo R and Kreinovich V (2001), Error Estimations for Indirect Measurements:

Randomized vs. Deterministic Algorithms For ‘Black-Box’ Programs, In [18],

pp. 673–729

30

