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Abstract. This chapter contains selected papers presented at the Min-
isymposium on Interval Methods of the PARA’04 Workshop “State-of-
the-Art in Scientific Computing”. The emphasis of the workshop was on
high-performance computing (HPC). The ongoing development of ever
more advanced computers provides the potential for solving increasingly
difficult computational problems. However, given the complexity of mod-
ern computer architectures, the task of realizing this potential needs
careful attention. A main concern of HPC is the development of software
that optimizes the performance of a given computer.

An important characteristic of the computer performance in scientific
computing is the accuracy of the computation results. Often, we can es-
timate this accuracy by using traditional statistical techniques. However,
in many practical situations, we do not know the probability distribu-
tions of different measurement, estimation, and/or roundoff errors, we
only know estimates of the upper bounds on the corresponding measure-
ment errors, i.e., we only know an interval of possible values of each such
error. The papers from the following chapter contain the description of
the corresponding “interval computation” techniques, and the applica-
tions of these techniques to various problems of scientific computing.

Why data processing? In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-measure quantities x1,...,x,
which are related to y by a known relation y = f(z1,...,,); this relation
may be a simple functional transformation, or complex algorithm (e.g., for the
amount of oil, numerical solution to an inverse problem). Then, to estimate y,
we first measure the values of the quantities x1,...,z,, and then we use the
results Z1,...,T, of these measurements to to compute an estimate y for y as
g: f(flaa‘:fn)

For example, to find the resistance R, we measure current I and voltage V,
and then use the known relation R = V/I to estimate resistance as R = V//I.

In this example, the relation between x; and y is known exactly; in many
practical situations, we only known an approximate relation y ~ f(z1,...,zy)
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between z; and y. In such situations, the estimate y for y is computed as y =
f(gla s 7En)

Computing an estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching devices.

Why interval computations? From computing to probabilities to in-
tervals. Measurement are never 100% accurate, so in reality, the actual value
x; of i-th measured quantity can differ from the measurement result z;. Because

of these measurement errors Ax; def Z; — i, the result y = f(Z1,...,2,) of data
processing is, in general, different from the actual value y = f(x1,...,x,) of the
desired quantity y [6].

It is desirable to describe the error Ay ef y—1y of the result of data processing.
To do that, we must have some information about the errors of direct measure-
ments.

What do we know about the errors Ax; of direct measurements? First, the
manufacturer of the measuring instrument must supply us with an estimate
of the upper bound A; on the measurement error. (If no such upper bound
is supplied, this means that no accuracy is guaranteed, and the corresponding
“measuring instrument” is practically useless.) In this case, once we performed
a measurement and got a measurement result z;, we know that the actual (un-
known) value z; of the measured quantity belongs to the interval x; = [z;, T;],
where z;, =7, — A; and T; = z; + A;.

In many practical situations, we not only know the interval [—A4;, A;] of pos-
sible values of the measurement error; we also know the probability of different
values Az; within this interval. This knowledge underlies the traditional engi-
neering approach to estimating the error of indirect measurement, in which we
assume that we know the probability distributions for measurement errors Ax;.

In practice, we can determine the desired probabilities of different values of
Ax; by comparing the results of measuring with this instrument with the results
of measuring the same quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much more accurate
than the current one, the difference between these two measurement results is
practically equal to the measurement error; thus, the empirical distribution of
this difference is close to the desired probability distribution for measurement
error. There are two cases, however, when this determination is not done:

— First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a dis-
tant galaxy, there is no “standard” (much more accurate) telescope floating
nearby that we can use to calibrate the Hubble: the Hubble telescope is the
best we have.

— The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration
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is so costly — usually costing ten times more than the sensor itself — that
manufacturers rarely do it.

In both cases, we have no information about the probabilities of Ax;; the only
information we have is an estimate on the upper bound on the measurement
error.

In this case, after we performed a measurement and got a measurement
result z;, the only information that we have about the actual value z; of the
measured quantity is that it belongs to the interval x; = [z; — 4;,Z; + 4;]. In
such situations, the only information that we have about the (unknown) actual
value of y = f(x1,...,2,) is that y belongs to the range y = [y, Y] of the function
f over the box X7 X ... X X,: B

v=[u7y ={f(z1,....20) |21 €EX1,...,2n € Xp}.

The process of computing this interval range based on the input intervals x; is
called interval computations; see, e.g., [1-3,5].

Comment. In addition to measurement errors, we also have round-off errors and
— in case some parameters are estimated by experts — also uncertainty of expert
estimates.

Interval computations techniques: brief reminder. Historically the first
method for computing the enclosure for the range is the method which is some-
times called “straightforward” interval computations. This method is based on
the fact that inside the computer, every algorithm consists of elementary oper-
ations (arithmetic operations, min, max, etc.). For each elementary operation
f(a,b), if we know the intervals a and b for a and b, we can compute the exact
range f(a,b). The corresponding formulas form the so-called interval arithmetic.
For example,

[a,a] + [b,0] = [a+b,a+b]; [a,a) - [b,b] =[a—b,a—1D];
[a,a] - [b,b] = [min(a-b,a-b,a-b,a-b),max(a-b,a-b,a-b,a-b)|.

In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y O y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples
below), the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclosure,
e.g., a centered form method. However, for each of these techniques, there are
cases when we get an excess width. Reason: as shown in [4, 7], the problem of
computing the exact range is known to be NP-hard even for polynomial functions
f(z1,...,2,) (actually, even for quadratic functions f).

Applications of interval techniques. The ultimate objective of interval com-
putations has always been to apply these methods to practical problems. The
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workshop provided us with a unique opportunity to promote collaboration be-
tween interval researchers and researcher interested in applications.

This chapter contains extended versions of selected papers presented at the
interval Minisymposium of PARA’04.
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