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1 General Formulation of the Problem

Complex systems consist of many interacting subsystems all of which con-
tribute to the main objectives of the system. With respect to each objective,
we can usually characterize the system’s performance by the corresponding
numerical characteristic y. (Sometimes, several numerical characteristics are
necessary to describe the system’s performance.)

The most natural way to gauge the system’s performance is to actually run
this system and measure the corresponding characteristic. However, this most
natural way is not always possible:

• It is definitely not possible on the design stage, when we do not yet have
the working system.

• It is not always possible on the working stage because we may be inter-
ested in how the system performs under different circumstances, and it is
not possible (or too expensive) to actually test the system under all these
conditions.

It is therefore desirable to use computer simulations to gauge the system’s per-
formance. For engineering systems, we usually know what the corresponding
subsystems do and how they interact with each other. Based on this knowl-
edge, we can design a computer-based model of the system, a model that
simulated how the system works and, based on this simulation, computes the
value of the desired characteristic y.

Such models are rarely designed for a single system. Usually, we have a family
of similar systems, and we design a general model f that serves all the sys-
tems from this family. This general model contains parameters x1, . . . , xn; by
specifying the values of these parameters, we can get the models of individual
systems. In other words, once we know the exact values of the parameters
x1, . . . , xn that describe the system, we can “plug in” these values into the
general model f , and get the value y = f(x1, . . . , xn) of the desired character-
istic.

This works well in the idealized situation when we know the exact values of
the parameters xi. In real life, we only know these values with some uncer-
tainty. In other words, instead of a single parameter vector x = (x1, . . . , xn),
we have several different possible parameters vectors, i.e., several different pa-
rameter vectors that are consistent with our knowledge. For different possible
parameter vectors, we get different values of y.

It is therefore desirable to find the range of possible values of the desired
characteristic y = f(x1, . . . , xn) over the set S of all possible parameter vectors
x = (x1, . . . , xn).

2



In many real-life situations, in addition to the set S of all parameter vectors
x = (x1, . . . , xn) which are possible, we often also know “narrower” sets Sβ ⊆ S
which contain the actual values of x with different degrees of certainty β. With
degree of certainty 1, we can only guarantee that x ∈ S, i.e., we have to take
S1 = S. In general, the larger the set, the more certain we are that x belongs
to this set. Thus, if β < β′, we have Sβ ⊆ Sβ′ . A family of sets with this
property is called a nested family.

The corresponding family of nested sets can be viewed as a particular case of
a fuzzy set [15,16]:

• If a nested family is given, then different sets Sβ from the nested family
can be viewed as α-cuts of a fuzzy set corresponding to different levels of
uncertainty α = 1 − β; this fuzzy set can be described by a characteristic
function µ(x) = sup{α : x ∈ S1−α}.

• Vice versa, if we have a fuzzy set, then its α-cuts Sα = S1−β corresponding
to α = 1− β form a nested family of sets.

In the fuzzy case, in addition to knowing the range of the characteristic y =
f(x1, . . . , xn) over the set S – the guarantee range of values of y, we would
also like to know, for different degrees of certainty β, the range of y over the
set Sβ – the range to which y belongs with certainty β.

It is worth mentioning that these ranges also form a nested family – thus, a
1-D fuzzy set Y corresponding to y.

To compute this fuzzy set, we must be able, for each degree β, to compute
the range of y over the corresponding crisp set Sβ – the α-cut of the original
fuzzy set. Thus, to solve the range problem for fuzzy sets, it is sufficient to
solve it for crisp sets corresponding to different α. In view of this comment, in
the following text, we will mainly concentrate on the problem of computing
the range of a given function over a crisp set.

2 Important Specific Case of the Problem: For Extremely Complex
Systems, We Need an Approximate Model

From the mathematical viewpoint, the range of y is an interval [y, y], where
y is the smallest possible value of y = f(x1, . . . , xn) under the constraint that
(x1, . . . , xn) ∈ S, and y is the largest possible value of y under this constraint.
Thus, to find the desired range, we must optimize the function f(x1, . . . , xn)
over the set S of possible parameter vectors.

These exist numerous efficient algorithms for optimizing functions under dif-
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ferent constraints. Most of these algorithms are based on the following idea:

• we start with one or several initial tries x;
for example, in gradient methods, we need to estimate both the value of
the function and its partial derivatives ∂f/∂xi; to estimate each partial
derivative

∂f

∂xi

≈ f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xn)

h
,

we must know the value of f at the original point x and at a point
(x1, . . . , xi−1, xi+h, xi+1, . . . , xn) at which i-th variable is slightly different;
thus, overall, we need to estimate f at n + 1 different points x;

• we apply the function f to these tries;
• based on the results of this application, we try to predict how the function

will behave for other values of the parameter vector x;
• based on this prediction, we produce a new vector xnew at which – we hope

– the value of f will be better than for the previous tries;
• we then apply f to this new vector xnew;
• based on the results of this application, we update the previous prediction

of f ’s behavior;
• based on thus modified prediction, we produce yet another vector x, etc.

In short, these methods require that we apply f to numerous combinations
of parameters, i.e., in our case, to numerous values of the parameter vector
x = (x1, . . . , xn).

For many systems, this can be done, but some systems are so complex than
running the model f(x1, . . . , xn) even once may require several hours or even
days of computation on an advanced supercomputer. For such extremely com-
plex systems, we can, at best, run the model f approximately N = 100-200
times.

Because of this limitation, when we run an optimization algorithm, we cannot
use the original function f(x1, . . . , xn) at each step of this algorithm. There-
fore, for the optimization algorithm to be effective, we must provide an approx-
imation fapprox(x1, . . . , xn) to the function f(x1, . . . , xn) that this optimization
algorithm can use instead of the original function f(x1, . . . , xn).

3 How To Construct the Approximate Model? General Idea

In general, how can we get an easy-to-compute approximate model
fapprox(x1, . . . , xn) that approximates the original very-hard-to-compute model
f(x1, . . . , xn)? A natural way it is to fix a family of easy-to-compute approxi-

4



mating models, a family depending on several coefficients, then call f as many
times as we can afford and tune these parameters based on the results.

In science in engineering, the most widely used easy-to-compute models are
linear models

fapprox(x1, . . . , xn) = f0 + f1 · x1 + . . . + fn · xn.

To uniquely describe a linear model, we must describe the values of n + 1
coefficients f0, f1, . . . , fn. To determine the values of these n + 1 coefficients,
we must know n + 1 different values of the function f .

In our practical example, we have n ≈ 50 variables, and we can perform
N ≈100-200 calls to the difficult-to-compute model f . Since N À n + 1, from
the results of N runs of f , we can determine more than n + 1 coefficients
needed for a linear model; thus, we can go beyond linear approximations.

After the linear approximation, the next natural approximation is the
quadratic one, in which we approximate a general function f(x1, . . . , xn) by a
quadratic expression (response surface)

fapprox(x1, . . . , xn) = f0 +
n∑

i=1

fi · xi +
n∑

i=1

n∑

j=1

fi,j · xi · xj. (1)

To describe a general quadratic expression, we need to know 1 coefficient
f0, n coefficients fi, and n(n + 1)/2 coefficients fi,j = fji – to the total of
(1/2) · n2 + (3/2) · n + 1.

For our practical case, when n = 50, we thus need

1

2
· 502 +

3

2
· 50 + 1 = 1,250 + 75 + 1 = 1,326

coefficients – but we can only run f at most 100-200 ¿ 1,326 times. Thus,
in our practical case, not only we cannot meaningfully use 3rd and higher
order approximate models – we cannot even use the full quadratic model. The
only thing we can do is to use restricted quadratic model, in which we select
beforehand a limited number of possible non-zero coefficients fi,j. Since we
can only use N coefficients, and linear terms require n of them, there are only
N − n coefficients left to cover the quadratic terms.

The knowledge of which coefficients fi,j are probably 0 and which may be
non-zeros can only come from the experts who have designed and/or analyzed
the system. How do the corresponding non-zero values affect the system’s
behavior?

• if fi,i 6= 0, this means that the dependence of the desired characteristic y on
the corresponding parameter xi is strongly non-linear;
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• if fi,j 6= 0, this means that the parameters xi and xj are interdependent in
the sense that the degree to which y depends on xi is different for different
values of xj.

We can therefore ask experts which parameters and pairs of parameters exhibit
such behavior. If there too many (more than N) such parameters and pairs, we
must limit ourselves only to those parameters which are most non-linear and
to the pairs which show the maximum dependence. To be able to do that, we
ask the experts not only to list the parameters that have non-linear behavior,
but also to rank these parameters by the degree of non-linearity.

We therefore arrive at the following method of constructing the approximate
model.

4 How to Construct an Approximate Model: A Methodology

First, we ask an expert (or experts) to list all the parameters xi for which the
dependence of the desired characteristic y on xi is highly non-linear. Among
all these parameters, we ask the expert to provide a ranking, so that these
parameters are listed in the order from the ones that exhibit the largest amount
of non-linear behavior to the ones that exhibit the smallest amount of non-
linearity.

We also ask an expert (or experts) to list all the pairs of parameters (xi, xj)
which exhibit interdependence, i.e., for which the degree with which the desired
characteristic y depends on xi is different for different values of xj. Among all
these pairs, we ask the expert to provide a ranking, so that these pairs are listed
in the order from the ones that exhibit the largest amount of interdependence
to the ones that exhibit the smallest amount interdependence.

In addition, we ask the expert to merge their rankings of parameters and
pairs into a single ranking. This may be more difficult and somewhat more
subjective, but we must have this ranking anyway.

Then, in the joint ranking, we select N − n top parameters and pairs, and
consider the model (1) in which:

• the coefficient fi,i can be different from 0 only if xi is one of the selected
parameters (selected for its high non-linearity), and

• the coefficient fi,j (i 6= j) can be different from 0 only if (xi, xj) is one of
the selected pairs (selected for its high interdependence).

All the other coefficients fi,j are identically 0.
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How do we actually determine the values of the non-zero coefficients f0, fi,
and fi,j? There are two possible situations:

• In the ideal case, not only we can run the model f N times, but we can
actually decide on which parameter vectors to run it.

• In a more pessimistic (and probably more realistic) situation, we do not have
a choice of selecting the parameter vectors. Someone has already selected
N different parameter vectors x(k) = (x

(k)
1 , . . . , x(k)

n ), 1 ≤ k ≤ N , ran the
model f for these vectors, and got the corresponding N values y(1), . . . , y(N).

In the more pessimistic case, we have N linear equations to determine N
unknown parameters f0, fi, and fi,j:

f0 +
n∑

i=1

fi · x(k)
i +

n∑

i=1

n∑

j=1

fi,j · x(k)
i · x(k)

j = y(k). (2)

In this situation, the only way to find these coefficients is to actually solve
this system of N linear equations with N unknowns. On modern computers,
this is quite doable.

In the ideal case, we can select the parameter vectors so as to make the re-
construction of the coefficients much easier, without the necessity to solve any
large system of linear equations. Namely:

• First, we pick a vector x(0) = (x
(0)
1 , . . . , x(0)

n ) that is inside the zone of possible
vectors, and run the model f on this vector. As a result, we get the value
y(0).

• For each parameter xi for which fi,i = 0 (i.e., for which there is no non-
linear dependence on xi), we select a deviation h that keeps us within the
zone of possible parameter vectors, form a vector

x(i) = (x
(0)
1 , . . . , x

(0)
i−1, x

(0)
i + h, x

(0)
i+1, . . . , x

(0)
n ), (3)

and use the model to compute the corresponding value y(i) = f(x(i)). Since
fi,i = 0, from (2), we conclude that y(i) − y(0) = fi · h, hence fi can be
computed as

fi =
y(i) − y(0)

h
.

• For each parameter xi with fi,i 6= 0, to find the values fi and fi,i, we form
two vectors: the vector (3) and the vector

x(−i) = (x
(0)
1 , . . . , x

(0)
i−1, x

(0)
i − h, x

(0)
i+1, x

(0)
n ).

We then use the model f to compute the corresponding values y(i) = f(x(i))
and y(−i) = f(x(−i)). Due to (2), we have y(i) − y(−i) = 2fi · h, hence fi can
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be computed as

fi =
y(i) − y(−i)

2h
.

Similarly, due to (2), we have y(i) + y(−i) − 2y(0) = 2fi,i · h2, hence fi,i can
be computed as

fi,i =
y(i) + y(−i) − 2y(0)

2h2
.

• Finally, for every interdependent pair (i, j), to determine fi,j, we form a
vector

x(ij) = (x
(0)
1 , . . . , x

(0)
i−1, x

(0)
i + h, x

(0)
i+1, . . . , x

(0)
j−1, x

(0)
j + h, x

(0)
j+1, . . . , x

(0)
n ).

Due to (2), we have y(ij) − y(0) = fi · h + fj · h + 2fi,j · h2. Since we have
already determined fi and fj, we can thus determine fi,j as

fi,j =
y(ij) − fi · h− fj · h

2h2
.

In the following text, we will assume that we already know the coefficients of
the quadratic approximation (2).

5 How to Describe Possible Parameter Vectors? General Idea

In order to find the desired bounds on the value of the quantity y, we must
describe the set S of all possible parameter vectors x = (x1 . . . , xn). For many
complex systems, this information has to come from experts.

First, for each of the parameters xi, the experts must provide us with the
range of the values of this parameter, i.e., with the interval [xi, xi] of possible
values of xi. Once we know these intervals, we can then guarantee that the
possible values of x are inside the box

[x1, x1]× . . .× [xn, xn]. (4)

It does not mean, however, that all the vectors x within this box are indeed
possible.

In some cases, there is a “correlation” between the parameters xi. Here, by
a correlation, we do not necessarily mean correlation in the usual statistical
sense, we mean correlation in its commonsense meaning. For example, positive
correlation between x1 and x2 means that, in general, larger values of x1

correspond to larger values of x2, and vice versa. In this case, it is highly
unprobable that the parameter x1 attains its largest possible value x1, and at
the same time the positively related parameter x2 attains its smallest possible
value x2.
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Even when there is no correlation between the two parameters, i.e., if these
parameters are, in this sense, “independent”, not all pairs (x1, x2) may be
possible. It may be possible that the parameter x1 attains its extreme value
x1, and it may be possible that the parameter x2 attains its extreme value
x2, but often, it is reasonable to believe that both extreme situations cannot
occur at the same time.

In both cases (correlation and independence), the set S of possible parameter
vectors is a proper subset of the box (4). How can we describe such a subset?

In real life, whenever we have a cluster formed by real-life data points, this
cluster has a smooth boundary. This cluster can be a disk (solid circle), a
ball (solid sphere in multi-D space), an ellipsoid, or a more complex structure,
but it is practically always smooth. The fact that it is smooth means that
we can describe its border by an equation b(x1, . . . , xn) = C for some smooth
function b(x1, . . . , xn) and for some constant C. As a result, the set S itself
can be describe either by the inequality

b(x1, . . . , xn) ≤ C (5)

or by the inequality b(x1, . . . , xn) ≥ C. In the second case, the inequality can
be transformed into an equivalent form b′(x1, . . . , xn) ≤ C ′, where the function
b′(x1, . . . , xn) = −b(x1, . . . , xn) is also smooth, and C ′ = −C. So, without loss
of generality, we can assume that the set S is described by the inequality (5),
for some smooth function b(x1, . . . , xn).

An arbitrary smooth function can be approximated by a polynomial, so, in-
stead of the the general set (5), we can consider the approximating set

a(x1, . . . , xn) ≤ C, (6)

where a(x1, . . . , xn) is a polynomial that approximates the smooth function
b(x1, . . . , xn).

As we have already mentioned, the simplest possible polynomials are linear
polynomials a(x1, . . . , xn) = a0 + a1 · x1 + . . . + an · xn. However, for a linear
function a(x1, . . . , xn), the set of all the vectors x for which a(x) ≤ C is a
half-space, i.e., a set that is not bounded in many directions, while we want a
set S that is inside the box – and hence, bounded in all directions. Thus, if we
restrict ourselves to only linear terms, we do not get a good approximation to
the set (5).

To get a reasonable approximation, we must consider quadratic and higher
order polynomial approximating functions a(x1, . . . , xn). In particular, for the
simplest non-linear polynomials – quadratic polynomials – the approximating

9



set (6) takes the following form:

a(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑

j=1

ai,j · xi · xj ≤ C. (7)

To get an even better description of the actual set (5), we can, in principle,
use 3rd, 4th, and higher order polynomials. However, in our problem, we have
about n = 50 variables. Similarly to the our analysis of the response surface,
we can conclude that to describe a general quadratic set (7), we need to know
1,326 coefficients. To describe higher order approximations, we need even more
coefficients.

Each coefficient must be elicited from the experts. It is not realistic to ask an
expert more than a thousand questions, and expect meaningful answers to all
of them. Thus, in our practical case, not only we cannot meaningfully use 3rd
and higher order approximating polynomials a(x1, . . . , xn) – we cannot even
use the full quadratic model. The only thing we can do is to use restricted
quadratic model, in which we select beforehand a limited number of possible
non-zero coefficients ai,j.

For a quadratic function a(x1, . . . , xn), the bounded set of all the values of x for
which the inequality (7) holds is an ellipsoid. Thus, in our practical problem,
we describe the set of all possible parameter vectors x by an ellipsoid.

Comment.

• If we approximate each α-cut of a fuzzy set by an ellipsoid, then we get an
ellipsoid-shaped fuzzy set.

• It is worth mentioning that ellipsoids are not only the best approximation
that we can afford, they are actually efficiently used in description of uncer-
tainty, e.g., in control; see, e.g., [1–3,5–7,17–19,21]; in fuzzy context, they
are used – in 2-D case – in [10,11].

• Also, ellipsoids naturally come from probabilistic uncertainty: if the mea-
surement error is described by a multi-D Gaussian distribution, then the
confidence set – described as the set of all the values for which the proba-
bility density exceeds a certain threshold – is an ellipsoid.

• Not only ellipsoids work well; it has been experimentally shown that in
many practical situations, ellipsoids work better than other families of sets
[2,3]. Moreover, it was theoretically proven that under certain reasonable
conditions, ellipsoids indeed form the best family [6,13]; for the 2-D fuzzy
case, a similar result was proven in [14].

• When we replace the box with a smaller ellipsoid set S, not only we make
the range smaller (and thus more realistic), we also make this range easier
to compute:
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· it is known that even for a quadratic function f(x1, . . . , xn), estimating
its range over a box is a provably difficult (NP-hard) problem [12,22];

· on the other hand, finding the range of a quadratic function over an ellip-
soid is a computationally doable problem [12,20,22].

In this paper, we will show, in detail, how this range can be computed.

6 How to Elicit the Ellipsoid from an Expert? General Idea

We have already mentioned that since we cannot ask thousands of questions
the experts and expect meaningful answers to all of them, we cannot even
use the full quadratic model. Instead, we have to use a restricted quadratic
model, in which we select beforehand a limited number of possible non-zero
coefficients ai,j.

Let us assume that we can only ask E questions to an expert. In this case, we
can only have E non-zero coefficients ai,j. We can therefore ask experts which
pairs of parameters are correlated. If there too many (more than E) such
pairs, we must limit ourselves only to those pairs which are most correlated
(positively or negatively). To be able to do that, we ask the experts not only
to list the correlated pairs, but also to rank these pairs by the degree of
correlation, so that the expert will be able to select E most correlated pairs.

Once we select E pairs, what can we ask? In the specific case when the ellipsoid
is a confidence set of a general distribution, we can ask about the values of
the correlation (in the usual statistical sense) between the variables xi and xj.
However, in general, an ellipsoid is just a set of possible values of x, with no
specific probabilistic meaning, so there is no well-defined statistical correlation,
and we cannot ask an expert about its value.

What we can ask is the following. As we described it, dependence between xi

and xj means that the range of possible values of xi changes depending on the
value of xj:

• If there is a positive correlation, this means that, in general, when xj grows,
the possible values xi also become, in general, larger – and the values of xi

are the largest when xj attains its largest possible value xj.
• Similarly, if there is a negative correlation, this means that, in general, when

xj grows, the possible values xi become, in general, smaller – and the values
of xi are the smallest when xj attains its largest possible value xj.

Thus, to gauge the degree of (thus defined) dependence between xi and xj, we
should ask an expert not only to give us the ranges of possible values [xi, xi]
and [xj, xj] for the parameters xi and xj, but also to describe what values xi
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are possible when xj attains its largest possible value xj.

• If these values xi are closer to xi, this means that we have a positive corre-
lation correlation between xi and xj.

• If these value xi are closer to xi, this means that we have a negative corre-
lation between xi and xj.

How we can transform this easy-to-elicit information into the precise descrip-
tion of the ellipsoid (7)? To answer this question, let us first simplify the
general formula (7).

We start with a very simple step. If we divide both sides of the inequality
(7) by the constant C, we get a slightly simpler description of the general
ellipsoid, with one fewer coefficient:

a(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑

j=1

ai,j · xi · xj ≤ 1. (8)

The next simplification step is also based on the known geometric facts. Specif-
ically, it is known that every ellipsoid has a center x̃ = (x̃1, . . . , x̃n), and that
when we use a coordinate system with the origin at this center – i.e., if we

use the differences ∆xi
def
= xi − x̃i instead of the original values of xi – the

equation for an ellipsoid takes the following simplified form:

a(x1, . . . , xn)
def
=

n∑

i=1

n∑

j=1

ai,j · (xi − x̃i) · (xj − x̃j) ≤ 1. (9)

In Appendix 1, we describe how we can transform the above easy-to-elicit
information into the precise description of the ellipsoid (9). Thus, we arrive at
the following algorithm:

7 How to Elicit the Ellipsoid from an Expert? Algorithm

• First, we ask an expert to provide, for each parameter xi, the range [xi, xi]
of possible values of xi.

• Based on these values, we compute the midpoints x̃i = (xi + xi)/2 and the
half-width ∆i = (xi − xi)/2 of the corresponding intervals.

• Then, we ask an expert (or experts) to list all the pairs (xi, xj) of correlated
parameters. Among all these pairs, we ask the expert to provide a ranking,
so that the expert will be able to list E most correlated pairs.

• For each possibly correlated pair (xi, xj), we ask the expert: what is the
most reasonable value of xi when xj = xj? We denote the corresponding

value by xi,j, and compute ∆xi,j
def
= xi,j − x̃i.
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• For all other (i.e., non-correlated) pairs i 6= j, we define ∆xi,j
def
= 0, and we

also take ∆xj,j
def
= ∆j.

• Based on the known values xi,j, x̃i, and ∆i, we compute the components of

the symmetric matrix Z with the components zk,j
def
= ∆xk,j ·∆j.

• Finally, we invert the matrix Z. The elements ai,j of the inverse matrix
A = Z−1 are exactly the coefficients that describe the ellipsoid (9).

Algorithmic comment. In principle, to invert the matrix, we can use any matrix
inversion algorithm; see, e.g., [9]. However, since our objective is not just to
describe the set S of possible values of the parameter vector, but rather to
find the range of the quadratic response function f(x1, . . . , xn) over the set S,
we will see that a special inversion algorithm is the most appropriate here: an
algorithm based on finding the eigenvalues and eigenvectors of the matrix Z.

Practical comment. In our algorithm, we assume that the set E of all combi-
nations (x1, . . . , xn) that the expert considers possible is an ellipsoid, that for
every i, the range [xi, xi] is the exact projection of this ellipsoid, and that for
each i and j, the expert produces the value xi for which (xi, xj) ∈ E. Thus,

the ellipsoid E is inscribed within the box B
def
= [x1, x1] × . . . × [xn, xn]. Un-

der these assumption, our algorithm reconstructs this ellipsoid based on the
expert’s information.

In reality, the set E of all the combinations (x1, . . . , xn) that the expert con-
sider possible may be close but somewhat different from an ellipsoid. Due to
this difference, the (approximate) ellipsoid E0 produced by our algorithm may
be “almost” (but not completely) within the box B.

8 How to Estimate the Range of a Quadratic Function over an
Ellipsoid: General Idea

As we described earlier, we must find the maximum and the minimum of the
given quadratic function

f(x1, . . . , xn) = f0 +
n∑

i=1

fi · xi +
n∑

i=1

n∑

j=1

fi,j · xi · xj (10)

over the given ellipsoid

n∑

i=1

n∑

j=1

ai,j · (xi − x̃i) · (xj − x̃j) ≤ 1. (11)

As we have just learned, we can easily extract the values x̃i from the experts;
however, we do not directly get the values ai,j from the experts, we only get
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the matrix zi,j that is the inverse to the matrix ai,j.

We will solve this problem in a reasonably straightforward way: we will analyze
the problem, figure out the sources of difficulty, and try to overcome these
difficulties.

For simplicity, we will start with the assumption that we already know the
inverse matrix ai,j. After we describe the main idea for this simplified case, we
will then discuss what to do in a more realistic case when we only know zi,j.

Let us start with the analysis of the constrained optimization problem (10)–
(11). In general, the difficulty in solving the constraint optimization problems
comes from two sources:

• first, the objective function itself is difficult to optimize;
• second, the constraints are difficult to take into consideration.

In our case, the objective function is quadratic. If we did not have any con-
straints, then, to find its optima, we could simply differentiate f with respect
to each of n variables and equate all n derivatives to 0. The derivative of a
quadratic function is a linear function. Thus, in the absence of constraints, we
would have a system of n linear equations with n unknown, a system that is
easy to solve.

Thus, in contrast to the general case of constrained optimization, in our specific
case (10)–(11), the main difficulty lies not in the objective function (10), but
in the constraints (11). Therefore, we arrive at the following natural strategy
for solving our optimization problem:

• first, to simplify the problem, we will try to simplify the constraints as much
as possible;

• only when there is no possibility to further simplify the constraints, we
should try to simplify the objective function as well.

The first simplification of the constraint (11) is something that we have already
discussed: we introduce the new variables ∆xi = xi−x̃i. In these new variables,
the constraints (11) take the following simplified form:

n∑

i=1

n∑

j=1

ai,j ·∆xi ·∆xj ≤ 1. (12)

To describe the objective function in terms of the new variables ∆xi, we must
substitute the expression xi = x̃i + ∆xi into the formula (10). As a result,
we arrive at the following expression (detailed derivation of this and other
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formulas is given in Appendix 2):

f(x1, . . . , xn) = f ′0 +
n∑

i=1

f ′i ·∆xi +
n∑

i=1

n∑

j=1

fi,j ·∆xi ·∆xj, (13)

where

f ′0 = f0 +
n∑

i=1

fi · x̃i +
n∑

i=1

n∑

j=1

fi,j · x̃i · x̃j, (14)

and

f ′i = fi + 2 ·
n∑

j=1

fi,j · x̃j. (15)

How can we further simplify the expression (14)? This expression contains a
general quadratic form

∑
ai,j ·∆xi ·∆xj. In the expression (14), we describe

each n-dimensional vector ∆x = (∆x1, . . . , ∆xn) by its coordinates in the
standard coordinate system, with respect to the standard basis formed by n
mutually orthogonal unit vectors e(1) = (1, 0, . . . , 0), e(2) = (0, 1, 0, . . . , 0), . . . ,
e(n) = (0, . . . , 0, 1):

∆x = ∆x1 · e(1) + . . . + ∆xn · e(n). (16)

Using scalar (dot) product of two vectors to multiply both sides of the formula
(16) by e(i), and taking into consideration that e(i) is an orthonormal basis,
i.e., e(i) · e(j) = 0 for i 6= j and e(i) · e(i) = 1, we conclude that ∆xi = ∆x · e(i).

The i-th coefficient ∆xi in the expansion (16) can be therefore described as
the results of scalar (dot) product of the vector ∆x and the corresponding
vector e(i) from the orthonormal basis.

It is known (see, e.g., [9]) that an arbitrary quadratic form can be simplified
(namely, it can be diagonalized) by using a different basis of n mutually or-
thogonal unit vectors, namely, by using the basis formed by unit eigenvectors
v(1) =

(
v

(1)
1 , . . . , v(1)

n

)
, . . . , v(n) =

(
v

(n)
1 , . . . , v(n)

n

)
of the matrix A, i.e., vectors

for which A · v(k) = λk · v(k) for some real numbers λk (called eigenvalues).

It is known that in the generic case, when all the eigenvalues are different, the
corresponding eigenvectors are indeed mutually orthogonal.

In the degenerate case, when some eigenvalues coincide, eigenvectors corre-
sponding to the equal eigenvalues are not necessarily orthogonal; however, in
this case, we can apply an appropriate orthonomalization procedure and also
get mutually orthogonal vector.

In this paper, we use a procedure for computing eigenvalues and eigenvectors
that always returns mutually orthogonal eigenvectors. Therefore, in the fol-
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lowing text, we will assume that different eigenvectors are orthogonal to each
other.

If, to describe a vector ∆x, we use its coordinates with respect to the new
basic, i.e., the values y1, . . . , yn such that

∆x = y1 · v(1) + . . . + yn · v(n),

then, in terms of the new coordinates, the quadratic form
∑

ai,j · ∆xi · ∆xj

turns into a simpler expression
∑

λ2
k · y2

k. Thus, the constraint (14) takes a
simplified form:

n∑

k=1

λ2
k · y2

k ≤ 1. (17)

To describe the objective function (13) in terms of the new variables, we can
use the fact (see derivation in Appendix 2) that

∆xi =
n∑

k=1

v
(k)
i · yk. (18)

Substituting the expression (18) into the objective function (13), we conclude
that

f(x1, . . . , xn) = f ′0 +
n∑

k=1

gk · yk +
n∑

k=1

n∑

l=1

gk,l · yk · yl, (19)

where

gk =
n∑

i=1

f ′i · v(k)
i (20)

and

gk,l =
n∑

i=1

n∑

j=1

fi,j · v(k)
i · v(l)

j . (21)

Now, the problem is to optimize the quadratic function (19) under the sim-
plified quadratic constraint (18).

Can we simplify the constraint (18) even further? Yes, if, instead of the original
variables yk, we introduce new variables zk =

√
λk · yk for which z2

k = λk · y2
k

and therefore, the constraint (17) takes an even simpler form

n∑

k=1

z2
k ≤ 1. (22)

From the geometric viewpoint, this constraint describes a unit ball in n-
dimensional space.

Substituting yk =
zk√
λk

into the expression (19) for the objective function, we
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get the new expression:

f(x1, . . . , xn) = f ′0 +
n∑

k=1

g′k · zk +
n∑

k=1

n∑

l=1

g′k,l · zk · zl, (23)

where
g′k

def
=

gk√
λk

; g′k,l
def
=

gk,l√
λk ·

√
λl

. (24)

Now, the constraints have the simplest possible form, so the only way to
make the problem easier-to-solve is to simplify the objective function. We
already know how to simplify the quadratic form: for that, we will look for
the eigenvalues µk and eigenvectors u(p) =

(
u

(p)
1 , . . . , u(p)

n

)
of the matrix g′k,l.

In terms of the new variables

tp =
n∑

k=1

u
(p)
k · yk, (25)

the constraint (22) retains its form (see Appendix 2 for details):

n∑

p=1

t2p ≤ 1; (26)

while the objective function gets the following simplified form:

f(x1, . . . , xn) = f ′0 +
n∑

p=1

hp · tp +
n∑

p=1

µp · t2p, (27)

where

hp
def
=

n∑

k=1

u
(p)
k · gk. (28)

After all the above simplification steps, we arrive at a problem of optimizing
the objective function (27) under the constraint (26). To solve this problem,
we will use the Lagrange multiplier technique. The idea behind the Lagrange
multiplier approach to finding the optimum (minimum or maximum) of an
objective function f under the constraint g ≤ 1 is as that this optimum is
attained either inside the constraint set S, or on its border.

• If the optimum is attained inside the set S, then it is a local (or maybe
even a global) optimum or the function f ; in particular, the gradient of f
is equal to 0 at this point.

• If the optimum is attained on the border of the set S, i.e., at the point
where g = 1, then we look for unconstrained optima of the function f +λ ·g,
where the value of the Lagrange multiplier λ should be determined from the
condition that g = 1.

In other words:
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• first, we find the unconstrained optima of the objective function f ; if one
or several of these unconstrained optima satisfies the constraint g ≤ 1, we
consider them;

• we also look for the optima of the function f + λ · g.

In our case, the objective function is described by the formula (27) and the
constraint by the formula (26). Differentiating (27) w.r.t. tp and equating the
resulting derivative to 0, we conclude that hp + 2µp · tp = 0, i.e., that

tp = − hp

2µp

. (29)

Similarly, for the function f + λ · g, we conclude that hp + 2(µp + λ) · tp = 0,
i.e., for λ 6= −µp, that

tp = − hp

2 · (µp + λ)
, (30)

in which case the condition (26) turns into the following equation for deter-
mining λ:

n∑

p=1

h2
p

4 · (µp + λ)2
= 1. (31)

We can solve this non-linear equation with one unknown λ by applying one of
the standard algorithms for solving such equations well described in numerical
methods textbooks (see, e.g., [8]) such as bisection, Newton’s method, secants
method, etc. Once λ is found, we can compute the corresponding values tp by
using the formula (30).

Comment. It is worth mentioning that the equation (30) describes the general
case, when hp 6= 0 and thus, the case λ = −µp is impossible.

In practice, we can also have the degenerate case, when for some p, we have
λ = −µp and hp = 0. For this λ and this p, we can uniquely determine tq for
all q 6= p, but for this particular p, the equation hp + 2(µp + λ) · tp = 0 is
satisfied for every real number tp. In this degenerate case, we can find tp from
the condition that t21 + . . . + t2n = 1, as

tp = ±
√

1−∑

q 6=p

t2q.

For each selected combination t = (t1, . . . , tp), we compute the value of the
objective function (27). The largest of thus computed values of the objective
function is the maximum of f under the constraint, the smallest of these values
is the minimum of f under this same constraint.

18



To complete our description, we must now explain what to do if, instead
of the actual matrix A, we only know the inverse matrix Z = A−1. In this
case, what we suggest to do is to find eigenvalues and eigenvectors of the
matrix Z. One can easily check that the matrices A and Z have exactly the
same eigenvectors v(k); the only difference is that for each eigenvector, the
corresponding eigenvalue λ

(z)
k of the matrix Z is a reciprocal to the eigenvalue

λk of the matrix A: λ
(z)
k =

1

λk

. Thus, after finding the eigenvalues λ
(z)
k of the

matrix Z, we must then compute the values λk as λk =
1

λ
(z)
k

.

9 How to Estimate the Range of a Quadratic Function over an
Ellipsoid: Algorithm

In this algorithm, we start the coefficients f0, fi, and fi,j that describe the
quadratic objective function

f(x1, . . . , xn) = f0 +
n∑

i=1

fi · xi +
n∑

i=1

n∑

j=1

fi,j · xi · xj, (10)

and with the values x̃i and zi,j that characterize the constraint

n∑

i=1

n∑

j=1

ai,j · (xi − x̃i) · (xj − x̃j) ≤ 1, (11)

in which the matrix A = (ai,j) is the inverse to the matrix Z = (zi,j). To find
the optima of the function (10) under the constraint (11), we should do the
following:

• First, we compute the values f ′0 and f ′i by using the formulas (14) and (15).

• Then, we compute the eigenvalues λ
(z)
1 , . . . , λ(z)

n of the matrix Z and the
corresponding eigenvectors

v(1) =
(
v

(1)
1 , . . . , v(1)

n

)
, . . . , v(n) =

(
v

(n)
1 , . . . , v(n)

n

)
.

• After that, for k from 1 to n, we compute λk =
1

λ
(z)
k

.

• Next, we compute the values gk and gk,l by using the formulas (20) and (21).
• We compute the values g′k and g′k,l by using the formula (24).
• Then, we compute the eigenvalues µ1, . . . , µn of the matrix (g′k,l) and the

corresponding eigenvectors

u(1) =
(
u

(1)
1 , . . . , u(1)

n

)
, . . . , u(n) =

(
u

(n)
1 , . . . , u(n)

n

)
.
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• After that, we compute the value hp by using the formula (28).
• Then, we compute the values tp by using the formula (29), and check whether∑

t2p ≤ 1. If this inequality is satisfied, we compute the corresponding value
(27).

• After that, we solve the equation (31) with the unknown λ and, for each
resulting λ, compute the value tp by using the formula (30), and then the
corresponding value of the objective function (27).

• Finally, we compute the smallest and the largest of thus computed values
(27):
· the smallest of these values is the minimum of (10) under the con-

straint (11); and
· the largest of these values is the maximum of (10) under the con-

straint (11).

10 What If We Have an Interval of Correlation?

The above approach to eliciting the ellipsoid from the expert is based on
an implicit assumption that an expert knows the relation between different
parameters, and thus, the expert can provide us, for each possibly correlated
pair (xi, xj), the value xi,j of the parameter xi that is most reasonable to
expect when xj = xj.

In real life, it may happen that the expert believes that there is, e.g., a strong
positive correlation between xi and xj, but still this expert cannot pinpoint a
specific value of xi corresponding to xj = xj. Instead, an expert can provide
us with an interval [xi,j, xi,j] of possible values of xi when xj = xj.

In the case when the ellipsoid comes from the statistical information, as a confi-
dence set of a normal distribution, different shapes of the ellipsoid corresponds
to different values of the correlation between the parameters xi and xj. The
above situation of interval uncertainty would then mean, crudely speaking,
that an expert does not know the exact value of the corresponding correla-
tion coefficient; instead, the expert knows an interval of possible values of this
coefficient.

In general, in case of such interval uncertainty, inside the box

[x1, x1]× . . .× [xn, xn], (4)

there is the actual set S of possible parameter vectors, and this set can as
well be an ellipsoid. However, in contrast to the case that we discussed before,
we do not know which of the possible ellipsoids S from this box is the actual
one. By selecting values xi,j from the corresponding intervals [xi,j, xi,j], we can
form different possible ellipsoids S.
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Since we do not know which of these ellipsoids is the right one, we must
consider all of them when estimating the range of the objective function. In
other words, what we need is the range of the objective function f(x1, . . . , xn)
over the union of all possible ellipsoids.

The main advantage of using ellipsoids is that, since the shape of an ellipsoid
is described by a simple formula, it is feasible to compute the range of a
quadratic function over an ellipsoid. A union of ellipsoids can have a much
more complex shape than an ellipsoid: e.g., an arbitrary open set can be
represented as a union of open balls, and a ball is, of course, a particular
case of an ellipsoid. We have already mentioned that even for a box, the
problem of finding the exact range of a quadratic function over it is, in general,
computationally intractable (NP-hard). So, if we try to find the exact range of
a quadratic function over an arbitrary union of ellipsoids, the problem becomes
computationally intractable.

It is therefore reasonable, instead of considering arbitrary unions, to enclose
the union into an appropriate ellipsoid and then estimate the range of a
quadratic function over an enclosing ellipsoid.

Once we know the enclosing ellipsoid, we already know how to find the range
of a quadratic function over it. The problem is how to describe this enclosing
ellipsoid. In this section, we will describe techniques for such a description.

It is reasonable to assume that the center of the enclosing ellipsoid is at the
same point x̃ = (x̃1, . . . , x̃n) that is formed by midpoints of the ranges of the
corresponding parameters. Thus, the desired ellipsoid has the form

a(x1, . . . , xn)
def
=

n∑

i=1

n∑

j=1

ai,j · (xi − x̃i) · (xj − x̃j) ≤ 1. (9)

We assume that know the values x̃i. Thus, to find the shape of the ellipsoid,
we must find the coefficients ai,j.

For some “correlated” pairs of parameters (xi, xj), we know the interval
[xi,j, xi,j] of possible values of xi when xj = xj. How can we transform this
information into the values of the coefficients ai,j?

To explain how this can be done, let us start with the simplest 2-D case, when
an ellipsoid is simply an ellipse. In this case, we know that the intersection of
the enclosing ellipsoid with the line x2 = x2 consists of the interval [x1,2, x1,2].
Thus, the endpoints of this interval should belong to the surface of this el-
lipsoid. In other words, the surface of the ellipsoid should include the points
(x1,2, x2) and (x1,2, x2). In other words, for these points, the left-hand side
of the inequality (9) should be exactly equal to 1. Since x2 − x̃2 = ∆2, we
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conclude that:

a1,1 · (x1,2 − x̃1)
2 + 2 · a1,2 · (x1,2 − x̃1) ·∆2 + a2,2 ·∆2

2 = 1; (32)

a1,1 · (x1,2 − x̃1)
2 + 2 · a1,2 · (x1,2 − x̃1) ·∆2 + a2,2 ·∆2

2 = 1. (33)

Thus, we get two equations relating the three unknowns a1,1, a1,2, and a2,2.

We can similarly ask what are the possible values of x2 when x1 = x1; as a
result, we will get an interval [x2,1, x2,1]. Based on this information, we can
describe two more equations relating the three unknowns:

a1,1 ·∆2
1 + 2 · a1,2 ·∆1 · (x2,1 − x̃2) + a2,2 · (x2,1 − x̃2)

2 = 1; (34)

a1,1 ·∆2
1 + 2 · a1,2 ·∆1 · (x2,1 − x̃2) + a2,2 · (x2,1 − x̃2)

2 = 1. (35)

Now, we can either select 3 out of 4 equations, or apply the Least Squares
Method to all 4 equations, and get all three desired coefficients a1,1, a1,2, a2,2

that describe our ellipse.

In the general n-dimensional case, we can apply this procedure for every cor-
related pair of parameters (xi, xj), and get a description of the corresponding
ellipse

a
(i,j)
i,i · (xi − x̃i)

2 + 2 · a(i,j)
i,j · (xi − x̃i) · (xj − x̃j) + a

(i,j)
j,j · (xj − x̃j)

2 ≤ 1. (36)

For independent variables (xi, xj), we can assume (as we did before) that
xi,j = x̃i and hence, the corresponding ellipse takes the form:

a
(i,j)
i,i · (xi − x̃i)

2 + a
(i,j)
j,j · (xj − x̃j)

2 ≤ 1, (37)

where a
(i,j)
i,i = ∆−2

i and a
(i,j)
j,j = ∆−2

j . Thus, for every two parameters xi and
xj, we know projection of the desired n-dimensional enclosing ellipsoid (9)
onto the 2-D plane (xi, xj). How can we reconstruct the ellipsoid from its
projections?

It is possible to check that if we go from the matrix ak,l to the inverse matrix
zk,l, then the projection to a 2-D plane corresponds simply to restricting the
matrix zk,l to the corresponding variables xi and xj:

• The algebraic proof of this fact is similar to our analysis from Appendix 1.
• Due to the fact that for normal distribution, confidence sets are ellipsoids,

this fact is also easy to understand in statistical terms: for the normal dis-
tribution

ρ(x1, . . . , xn) =
1

(2 · π)n/2 · det(A)
· exp


−

n∑

i=1

n∑

j=1

ai,j · (xi − ai) · (xj − aj)


 ,

22



the corresponding matrix ai,j is the (half of the) inverse matrix to the co-
variance matrix E[(xi − ai) · (xj − aj)]. When, instead of considering all n
random variables xi, we only consider some of them, all we have to do is
restrict to covariance matrix to the corresponding variables.

Due to this fact, to reconstruct the ellipsoid from its 2-D projections, we can
do the following:

• First, for every i and j, we invert the corresponding matrix a
(i,j
k,l into a matrix

z
(i,j)
k,l .

• Then, we combine the values z
(i,j)
k,l into a single matrix:

· For i 6= j, the value zi,j is only present in z
(i,j)
i,j , so we take zi,j = z

(i,j
i,j .

· For i = j, the value zi,i occurs as z
(i,j)
i,i for different j 6= i.

We are interested in finding the enclosing ellipsoid, i.e., the ellipsoid
that, crudely speaking, contains all projected ellipses. In terms of ai,i,
the larger the value, the larger the product ai,i · ∆x2

i and thus, the
more restrictive is the corresponding inequality ai,i · ∆x2

i + . . . ≤ 1.
Thus, in terms of ai,i, if we want to the most enclosing ellipsoid,
we must select the smallest possible value of ai,i. The values zi,j are
inverse to ai,j.

Thus, it is reasonable to select the largest possible value of zi,i:

zi,i = min
j 6=i

z
(i,j)
i,i .

As a result, we get the matrix Z = (zi,j) that is the inverse to the matrix
A = (ai,j) that describes the desired enclosing ellipsoid.

Knowing Z, we can now use the above-described algorithm to determine the
range of a given quadratic function over the corresponding ellipsoid.

11 What If We Have a Nested Family of Intervals of Correlation?

The next natural question is: what if the experts can provide us additional
information beyond the intervals?

Often, when an expert can provide us with an interval [x, x] that is guaranteed
to contain the value of some quantity x, this expert can also provide narrower
intervals that contain x with different degrees of certainty α.

The corresponding family of nested intervals can be viewed as a particular
case of a fuzzy set [15,16]: if a traditional fuzzy set is given, then different
intervals from the nested family can be viewed as α-cuts corresponding to
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different levels of uncertainty α. It can also be viewed as a particular case of
a Dempster-Shafer (DS) knowledge base, or as a multi-variate analogue of a
p-box [4].

In this case, for each degree of certainty α, we can take the intervals corre-
sponding to this degree of certainty, compute the corresponding ellipsoid, and
then follow the above-described algorithm to estimate the range of the given
quadratic function over this ellipsoid. As a result, for each α, we get the range
estimate corresponding to this α.

In other words, as a result, instead of a single interval range, we get a nested
family of interval ranges corresponding to different levels of certainty α. This
nested family of intervals can also viewed either as a fuzzy set, or as a DS
knowledge base, or as a p-box.
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Appendix 1. How to Elicit the Ellipsoid from an Expert? Derivation
of the Corresponding Formulas

How can we determine the center x̃ of the ellipsoid based on the known infor-
mation? From the formula (9), one can easily see that an ellipsoid is symmetric
with respect to the transformation ∆xi → −∆xi; in other words, if we start
with a point inside the ellipsoid, and we change the signs of all the values
∆xi, then we get the point that is also inside the ellipsoid. So, if a value ∆xi

is possible (i.e., occurs for some point within the ellipsoid), its negative −∆xi

is also possible. Thus, the set of possible values of ∆xi = xi− x̃i is symmetric
w.r.t. 0, and hence, the set of possible values of xi is symmetric w.r.t. x̃i. In
other words, the value x̃i is a midpoint of the range of possible values of xi.

We know the range of possible values of xi – this range is provided, by an
expert, as an interval [xi, xi]. Thus, we can determine x̃i as the midpoint of
this interval, i.e., as (xi + xi)/2.

Let us now look at the desired relation between xi and xj. Since the value xj

is possible, the ellipsoid has an intersection with the (hyper-)plane xj = xj.
As we increase xj further, to a value xj = xj +ε for some small ε > 0, we leave
the set of possible values of xj and therefore, the ellipsoid has no intersection
with the corresponding plane xj = xj +ε. Thus, the plane xj = xj is a tangent
plane to our ellipsoid.

It is known that the ellipsoid is strictly convex, so at any given point, it has
only one point of intersection with its tangent plane. Thus, when xj = xj,
there is only one point in the ellipsoid. Therefore, when we ask the expert –
as we intended – about the range of possible values of xi when xj = xj, we
should expect not the range but rather a single value of xj. In other words,
instead of asking for a range, it makes sense to ask, for each correlated values
i and j, what is the most reasonable value of xi when xj = xj. We will denote
this “most reasonable value” by xi,j.

By eliciting this information from the expert, we can therefore extract E values
xi,j corresponding to the E pairs that the expert ranked as most correlated.

In order to find out what are the values xi,j for all other pairs, let us analyze
how this value xi,j is related to x̃i.

• When there is a positive correlation between the parameters xi and xj, then,
in accordance with our description of what positive correlation means, we
expect xi to grow with xj. In other words, since xj > x̃j, we expect xi,j > x̃i.

• When there is a negative correlation between the parameters xi and xj, then,
in accordance with our description of what negative correlation means, we
expect xi to decrease when xj increases. In other words, since xj > x̃j, we
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expect xi,j < x̃i.

So, if there is no correlation, we expect that xi,j is neither larger nor smaller
than x̃i – i.e., we expect xi,j = x̃i. Thus, for all the pairs of parameters (xi, xj)
that an expert considers to be (approximately) independent, we take xi,j = x̃i.

Now, for every i, we have the values xi, xi, and x̃i, and for all pairs i 6= j, we
know the value xi,j of xi when xj = xj. How can we transform this information
into the coefficients ai,j of the desired ellipsoid (9)?

We have mentioned that at a point at which xj = xj, the plane xj = xj is a
tangent to the ellipsoid. By definition of the values xi,j, this means that at the
point (x1,j, . . . , xj−1,j, xj, xj+1,j, . . . , xn), the plane xj = xj is a tangent to the
ellipsoid. To make computations simpler, let us denote xj by xj,j. In this new
notation, the previous statement takes the following form: the plane xj = xj

is tangent to the ellipsoid at the point with the coordinates (x1,j, . . . , xn,j).

From calculus, it is known that a tangent vector to the surface is orthogonal
to its normal vector n, and the normal vector to the surface a(x1, . . . , xn) = 1
is proportional to the gradient of f , i.e., to the vector

∇a =

(
∂a

∂x1

, . . . ,
∂a

∂xn

)
.

This gradient vector should be orthogonal to the plane xj = xj; thus, the
only non-zero component of this gradient vector is its j-th component, and all
other components are 0. In other words, at the point (x1,j, . . . , xn,j), we have
∂a

∂xi

= 0 for all i 6= j.

Let us use the expression (9) for the function a(x1, . . . , xn) to find an explicit
expression for this partial derivative. For that, let us first separate, in the
expression (9), the terms that depend on xi and the terms that do not depend
on xi. As a result, we arrive at the following formula:

a(x1, . . . , xn) = ai,i · (xi − x̃i)
2 +

∑

k 6=i

ai,k · (xi − x̃i) · (xk − x̃k)+

∑

k 6=i

ak,i · (xk − x̃k) · (xi − x̃i) +
∑

k 6=i

∑

l 6=i

ak,l · (xk − x̃k) · (xl − x̃l).

Differentiating w.r.t. xi, we conclude that

∂a

∂xi

= 2ai,i · (xi − x̃i) +
∑

k 6=i

ai,k · (xk − x̃k) +
∑

k 6=i

ak,i · (xk − x̃k),
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i.e., since ai,j is a symmetric matrix, that

∂a

∂xi

= 2ai,i · (xi − x̃i) + 2
∑

k 6=i

ai,k · (xk − x̃k),

and, finally, that
∂a

∂xi

= 2
n∑

k=1

ai,k · (xk − x̃k).

At the point with coordinates xk = xk,j, these derivative must be equal to 0,
so we conclude that

n∑

k=1

ai,k · (xk,j − x̃k) = 0. (A1)

for every i 6= j.

The point with the coordinates x1,j, . . . , xn,j is on the surface of the ellipsoid
(9), so, for this point, we have a(x1,j, . . . , xn,k) = 1. Substituting the values
xk,j into the formula (9), we conclude that

n∑

i=1

n∑

k=1

ai,k · (xi,j − x̃i) · (xk,j − x̃k) = 1.

This equation can be rewritten as follows:

n∑

i=1

(xi,j − x̃i) ·
(

n∑

k=1

ai,k · (xk,j − x̃k)

)
= 1. (A2)

Due to the equation (A1), for all i 6= j, we get 0, and the only non-zero term
is when i = j. Thus, in the formula (A2), we can replace the first sum with
the j-th term:

(xj,j − x̃j) ·
(

n∑

k=1

aj,k · (xk,j − x̃k)

)
= 1,

or, equivalently,
n∑

k=1

aj,k · (xk,j − x̃k) ·∆j = 1, (A3)

where we denoted ∆j
def
= xj,j − x̃j = xi − x̃j = (xj − xj)/2. Multiplying both

sides of the equation (A1) by ∆j, we conclude that

n∑

k=1

ai,k · (xk,j − x̃k) ·∆j = 0 (A4)

for all i 6= j. Equations (A3) and (A4) can be combined into a single equation

n∑

k=1

ai,k · (xk,j − x̃k) ·∆j = δi,j, (A5)

where δi,j = 1 for i = j and δi,j = 0 for i 6= j.
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These value of δi,j are components of the unit matrix I, and the sum left-hand
side of the formula (A5) describes the product A · X of the two following
matrices:

• the desired matrix A, with components ai,k, and

• the matrix Z, with components zk,j
def
= (xk,j − x̃k) ·∆j.

Since A·Z = I, we thus have A = Z−1, so we can obtain A by simply inverting
the matrix Z.

Appendix 2. Optimizing Quadratic Function over an Ellipsoid:
Derivation of the Corresponding Formulas

Let us first derive the formulas corresponding to replacing the original vari-
ables xi with the new variables ∆xi, i.e., the formulas that are obtained by
substituting the expression xi = x̃i + ∆xi into the objective function (10).
After substitution, we get the following expression:

f = f0 +
n∑

i=1

fi · (x̃i + ∆xi) +
n∑

i=1

n∑

j=1

ai,j · (x̃i + ∆xi) · (x̃j + ∆xj).

Opening parentheses, we conclude that

f = f0 +
n∑

i=1

fi · x̃i +
n∑

i=1

fi ·∆xi +
n∑

i=1

n∑

j=1

ai,j · x̃i · x̃j+

n∑

i=1

n∑

j=1

ai,j · x̃i ·∆xj +
n∑

i=1

n∑

j=1

ai,j ·∆xi · x̃j +
n∑

i=1

n∑

j=1

ai,j ·∆xi ·∆xj.

Grouping together terms that do not contain ∆xi at all, terms that are linear
in ∆xi, and terms that are quadratic in ∆xi, we get the desired formulas
(13)–(15).

Let us now derive the formulas (18)–(21). By definition,

∆xi = ∆x · e(i). (A6)

We want to represent ∆xi in terms of the values yk = ∆x · v(k). To do that,
let us expand the vector e(i) into the base v(1), . . . , v(n):

e(i) =
n∑

k=1

(e(i) · v(k)) · v(k). (A7)

We know the coordinates v
(k)
i of each eigenvector v(k) in the standard basis

e(i), so we can explicitly compute e(i) · v(k) as v
(k)
i . Thus, (A7) turns into the
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following formula:

e(i) =
n∑

k=1

v
(k)
i · v(k). (A8)

If we use scalar product to multiply both sides of (A8) by ∆x, we conclude
that

e(i) ·∆x =
n∑

k=1

v
(k)
i · (v(k) ·∆x). (A9)

We know that e(i) · ∆x = ∆xi and that v(k) · ∆x = yk, so (A9) takes the
following form:

∆xi =
n∑

k=1

v
(k)
i · yk,

which is exactly the desired formula (18). Substituting this expression (18)
into the formula (13), we conclude that

f(x1, . . . , xn) = f ′0 +
n∑

i=1

n∑

k=1

f ′i · v(k)
i · yk +

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

fi,j · v(k)
i · v(l)

i · yk · yl,

i.e., that
f(x1, . . . , xn) =

f ′0 +
n∑

k=1

(
n∑

i=1

f ′i · v(k)
i

)
· yk +

n∑

k=1

n∑

l=1




n∑

i=1

n∑

j=1

fi,j · v(k)
i · v(l)

i


 · yk · yl,

which is exactly the desired formulas (19)–(21).

Let us now derive the formulas (26)–(28). The formula (25) means that tp =
u(p) ·y. Similarly to the above derivation of the formula (18), we conclude that

yk =
n∑

p=1

u
(p)
k · tp.

Substituting this expression into the formula (19) for the objective function,
we conclude – similar to the first time when we used the eigenvectors – that
the quadratic part turns into

∑
µp · t2p, and that the the linear part turns into

n∑

k=1

gk ·



n∑

p=1

u
(p)
k · tp


 =

n∑

p=1

(
n∑

k=1

u
(p)
k · gk

)
· tp,

i.e., exactly to the formulas (27)–(28).

To complete the derivation, we must show that (22) indeed turns into (26).
Indeed:

• The values yk are coordinates of the vector y with respect to the standard
orthonormal basis (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). The sum

∑
y2

k is thus the
square of the length of this vector.
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• The values tp are coordinates of the same vector y with respect to a or-
thonormal basis: namely, the basis formed by the eigenvectors u(1), . . . , u(n).
The sum

∑
t2p is thus also equal to the square of the length of this vector.

Thus, the sums
∑

y2
k and

∑
t2p are always equal, hence the condition (22) is

indeed equivalent to the condition (26).
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