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Abstract— We explain how the concept of information as
average number of “yes”-“no” questions (bits) can be extended
to intervals, p-boxes, and more general uncertainty.

I. UNCERTAINTY IS INEVITABLE

For each type of information that we are soliciting, there
are several ways to acquire this information.

For example, if we are interested in measuring the value of
a physical quantity x, we may use different types of sensors.
No matter how accurate the sensor, the measured value 7 is,
in general, different from the actual value = of the measured
quantity.

II. TYPES OF UNCERTAINTY: IN BRIEF

For different sensors, we have different type of information
about this difference Az ' 7 —

In some cases, we know which values of Ax are possible
and what is the frequency of each of the different possible
values. In other words, we know a probability distribution on
Azx. This type of uncertainty is usually called a probabilistic
uncertainty. It is reasonable to describe the corresponding
probability distribution by a cumulative distribution function
(cdf, for short) F(t) def Prob(x < t).

In other cases, the only information we have is an upper
bound A on the measurement error. In this case, after we got
the measured value Z, the only information that we have about
the actual (unknown) value = of the measured quantity is that
x belongs to the interval [z — A,z + A]. This is the case of
interval uncertainty.

So far, we have described two extreme cases:

« Probabilistic uncertainty describes the case when we have
a complete information about the probability distribution.

« Interval uncertainty corresponds to the case when we have
no information about the probabilities.

In most practical situations, we have some information about
the probabilities.

As we have mentioned, to get a complete description of a
probability distribution, we need to know the values of cdf
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F(¢) for all possible real numbers ¢. When we have a partial
information about the probabilities, this means that we only
have a partial information about the values F'(¢). In order
words, for every ¢, instead of the actual; (unknown) value
F(t), we only know the interval [F(t), F(t)] that contains
the (unknown) actual value F'(t). In other words, we have
a probability box (p-box, for short) that contains the actual
(unknown) cdf F'(t) [2], [3].

In measurements, the p-box is probably the most general
description of possible uncertainty. In many practical situa-
tions, however, we cannot get all the information from mea-
surements, we must also use human expertise. The accuracy
of human expertise is rarely described solely in terms of guar-
anteed bounds. For expert estimates, in addition to guaranteed
bounds on Az and on F'(t), we also have expert estimates
that provide better bounds but with limited confidence.

For example, by looking at a medical image such as an X-
ray image, an expert medical doctor can guarantee that the
size of the tumor is, say, between 1 and 2 cm. However, with
80% certainty, she can say that the size is between 1.2 and
1.7 cm.

To take such uncertainty into consideration, we can use
fuzzy techniques. For example, a nested family of intervals
corresponding to different levels of certainty forms a fuzzy
number (the intervals are the a-cuts of this fuzzy number).
For p-boxes, we have, similarly, a nested family of p-boxes
corresponding to different levels of certainty — i.e., a fuzzy-
valued cdf.

III. NEED TO COMPARE DIFFERENT TYPES OF
UNCERTAINTY

Often, there is a need to compare different types of un-
certainty. For example, we may have two sensors: one with
a smaller bound on a systematic (interval) component of
the measurement error, the other with the smaller bound
on the standard deviation of the random component of the
measurement error. If we can only afford one of these sensors,



which one should we buy? Which of the two sensors brings
us more information about the measured signal?

To be able to make such decisions, we must be able to
compare which of the uncertainties corresponding to the two
sensors carries more information — and for that, we must be
able to gauge this amount of information.

IV. TRADITIONAL AMOUNT OF INFORMATION: BRIEF
REMINDER

The traditional Shannon’s notion of the amount of infor-
mation is based on defining information as the (average)
number of “yes”-“no” (binary) questions that we need to ask
so that, starting with the initial uncertainty, we will be able to
completely determine the object.

After each binary question, we can have 2 possible answers.
So, if we ask ¢ binary questions, then, in principle, we can
have 29 possible results. Thus, if we know that our object is
one of n objects, and we want to uniquely pinpoint the object
after all these questions, then we must have 29 > n. In this
case, the smallest number of questions is the smallest integer
g that is > log,(n). This smallest number is called a ceiling
and denoted by [log,(n)].

For discrete probability distributions, we get the standard
formula for the average number of questions — > p;-log, (p;).
For the continuous case, we can estimate the average number
of questions that are needed to find an object with a given
accuracy € — i.e., divide the whole original domain into sub-
domains of radius € and diameter 2¢.

For example, if we start with an interval [a,b] of width
b— a, then we need to subdivide it into n ~ (b—a)/(2¢) sub-
domains, so we must as logy(n) ~ logy (b —a) —logy(e) — 1
questions. In the limit, the term that does not depend on ¢ leads
to log,(b—a). For continuous probability distributions, we get
the standard Shannon’s expression log,(n) ~ S — log,(2¢),
where S = — [ p(z) - log, p(z) da.

V. How TO EXTEND THESE FORMULAS TO P-BOXES
ETC.? AXIOMATIC APPROACH

To extend the formulas for information to more general
uncertainty, i.e., to come up with generalized information
theory, several researchers use an axiomatic approach: they
find properties of information, and look for generalizations
that satisfy as many of these properties as possible; see, e.g.
[5].

This approach has led to many interesting results, but
sometimes, there are several possible generalizations, so which
of them should we choose?

VI. OUR IDEA

A natural idea is to choose the definition that kind of
coincides with the average number of binary questions that
we need to ask.

Since we want to extend the information to the case when
probabilities are not known exactly, the average number of
questions may also depend on which exactly distribution is
actually there. So, it is reasonable to consider the worst-case

average number of questions — this is in line with the definition
for intervals.

VII. TRADITIONAL AMOUNT OF INFORMATION:
DETAILED REMINDER

Our objective is to extend estimates of the average number
of binary questions from the probability distributions to a
more general case. To do that, let us recall, in detail, how
this number is estimated for probability distributions. The
need for such a reminder comes from the fact that while
most researchers are familiar with Shannon’s formula for the
entropy, most researchers are not aware how this formula was
(or can be) derived.

A. Discrete Case: No Information about Probabilities

Let us start with the simplest situation when we know that
we have n possible alternatives Aj,..., A,, and we have
no information about the probability (frequency) of different
alternatives. Let us show that in this case, the smallest number
of binary questions that we need to determine the alternative
is indeed ¢ ef [logs(n)].

We have already shown that the number of questions cannot
be smaller than [log,(n)]; so, to complete the derivation, it is
let us show that it is sufficient to ask g questions.

Indeed, let’s enumerate all n possible alternatives (in ar-
bitrary order) by numbers from O to n — 1, and write these
numbers in the binary form. Using ¢ binary digits, one can
describe numbers from 0 to 29 — 1. Since 29 > n, we can
this describe each of the n numbers by using only ¢ binary
digits. So, to uniquely determine the alternative A; out of n
given ones, we can ask the following g questions: “is the first
binary digit 077, “is the second binary digit 07, etc, up to “is
the ¢-th digit 0?”.

B. Case of a Discrete Probability Distribution

Let us now assume that we also know the probabilities
p1,...,pn of different alternatives Aq,...,A,. If we are
interested in an individual selection, then the above arguments
show that we cannot determine the actual alternative by using
fewer than log(n) questions. However, if we have many (V)
similar situations in which we need to find an alternative, then
we can determine all N alternatives by asking < N -log,(n)
binary questions.

To show this, let us fix 7 from 1 to n, and estimate the
number of events N; in which the output is <.

This number N; is obtained by counting all the events in
which the output was i, so N; = ni +ng+...+ny, where ny
equals to 1 if in k-th event the output is ¢ and O otherwise. The
average E(ny) of ny equals to p;-14+(1—p;)-0 = p;. The mean
square deviation o’[ny] is determined by the formula o2 [ny] =
pi- (1 —E(ng))?+ (1 —p;)-(0— E(ng))?% If we substitute
here E(ny) = p;, we get 02[ni] = p; - (1 —p;). The outcomes
of all these events are considered independent, therefore ny
are independent random variables. Hence the average value of
N; equals to the sum of the averages of ny: E[N;] = E[n;]+
E[ng]+...4+ E[ny] = Np;. The mean square deviation o[ N;]



satisfies a likewise equation 02[N;] = 02[n1] +0%[na] +. ..
N pi- (1 =pi), so o[N;] = \/pi - (1 —pi) - N.

For big N the sum of equally distributed independent ran-
dom variables tends to a Gaussian distribution (the well-known
central limit theorem), therefore for big N, we can assume
that V; is a random variable with a Gaussian distribution.
Theoretically a random Gaussian variable with the average
a and a standard deviation o can take any value. However,
in practice, if, e.g., one buys a voltmeter with guaranteed
0.1V standard deviation, and it gives an error 1V, it means
that something is wrong with this instrument. Therefore it
is assumed that only some values are practically possible.
Usually a “k-sigma” rule is accepted that the real value can
only take values from a — k-0 to a + k - o, where k is 2,
3, or 4. So in our case we can conclude that IV; lies between
N-pi—=k-\/pi- (1 —=p;)- N and N-p;+k-+/p; - (1 —pi) - N.

Now we are ready for the formulation of Shannon’s result.

Comment. In this quality control example the choice of k
matters, but, as we’ll see, in our case the results do not depend
on k at all.

Definition 1.

e Let a real number k > 0 and a positive integer n be
given. The number n is called the number of outcomes.

e By a probability distribution, we mean a sequence {p;}
of m real numbers, p; > 0, > p; = 1. The value p; is
called a probability of i-th event.

o Let an integer N is given; it is called the number of
events.

e By a result of N events we mean a sequence ry, 1 <
k < N of integers from 1 to n. The value ry, is called
the result of k-th event.

o The total number of events that resulted in the i-th
outcome will be denoted by N;.

o We say that the result of N events is consistent with
the probability distribution {p;} if for every i, we have

N -pi—k-0, < Ny < N+ k- oy where o; def
pi- (1 —pi)- N.
e Let’s denote the number of all consistent results by
Ncons (N>

o The number [10go(Neons(N))] will be called the number
of questions, necessary to determine the results of N
events and denoted by Q(N).

o The fraction Q(N)/N will be called the average number
of questions.

o The limit of the average number of questions when N —
oo will be called the information.

Theorem (Shannon). When the number of events N tends to
infinity, the average number of questions tends to

S(p) © =" p; - logy (py)-

Comments.
o Shannon’s theorem says that if we know the probabilities
of all the outputs, then the average number of questions

that we have to ask in order to get a complete knowledge
equals to the entropy of this probabilistic distribution.

o As we promised, this average number of questions does
not depend on the threshold k.

o Since we somewhat modified Shannon’s definitions, we
cannot use the original proof. Our proof (and proof of
other results) is given in the Appendix.

C. Case of a Continuous Probability Distribution

ELINT3

After a finite number of “yes”-“no” questions, we can only
distinguish between finitely many alternatives. If the actual
situation is described by a real number, then, since there are
infinitely many different possible real numbers, after finitely
many questions, we can only get an approximate value of this
number.

Once we fix the accuracy € > 0, we can talk about the
number of questions that are necessary to determine a number
x with this accuracy ¢, i.e., to determine an approximate value
r for which |z —r| < e.

Once an approximate value r is determined, possible actual
values of x form an interval [r — &, + €] of width 2. Vice
versa, if we have located x on an interval [z, 7] of width 2¢,
this means that we have found z with the desired accuracy
e: indeed, as an e-approximation to x, we can then take the
midpoint (z 4+ Z)/2 of the interval [z, Z].

Thus, the problem of determining = with the accuracy e
can be reformulated as follows: we divide the real line into
intervals [z;,2;41] of width 2 (z;41 = x; + 2¢), and by
asking binary questions, find the interval that contains x. As
we have shown, for this problem, the average number of binary
question needed to locate = with accuracy ¢ is equal to S =
— > p; - logy(p;), where p; is the probability that = belongs
to i-th interval [z;, ;1]

In general, this probability p; is equal to f;:“ p(x) dx,
where p(z) is the probability distribution of the unknown
values z. For small ¢, we have p; =~ 2¢ - p(x;), hence
logy(pi) = logy(p(x;)) + logy(2¢). Therefore, for small ¢,
we have

S == plas) - logy(p(a:)) -2 — 3 play) - 2¢ - logy (22).

The first sum in this expression is the integral sum for
the integral S(p) Lf _ [ p(z) - logy(z) dz (this integral is
called the entropy of the probability distribution p(z)); so,
for small €, this sum is approximately equal to this integral
(and tends to this integral when ¢ — 0). The second sum
is a constant log,(2¢) multiplied by an integral sum for the

interval f p(x) dx = 1. Thus, for small &, we have

S~ — /p(a:) -logy () dx — log,y(2¢).

So, the average number of binary questions that are needed to
determine x with a given accuracy ¢, can be determined if we
know the entropy of the probability distribution p(x).



VIII. OUR RESULTS: IN BRIEF

Of course, the abstract definition is a good idea, but the
big challenge is translating this abstract definition into explicit
easy-to-use analytical formulas.

In our previous work [1], [6], [7] we provided such for-
mulas for fuzzy numbers and for Dempster-Shafer knowledge
bases. In this paper, we provide similar analytical (or at least
computable) formulas for the more general case of p-boxes
and fuzzy-valued probability distributions.

IX. PARTIAL INFORMATION ABOUT PROBABILITY
DISTRIBUTION: DISCRETE CASE

In many real-life situations, instead of having complete in-
formation about the probabilities p = (p1, ..., py,) of different
alternatives, we only have partial information about these
probabilities — i.e., we only know a set P of possible values
of p.

If it is possible to have p € P and p’ € P, then it is also
possible that we have p with some probability « and p’ with
the probability 1 — . In this case, the resulting probability
distribution «v-p+ (1 —«)-p’ is a convex combination of p and
p’. Thus, it it reasonable to require that the set P contains, with
every two probability distributions, their convex combinations
— in other words, that P is a convex set; see, e.g., [9].

Definition 2.

e By a probabilistic knowledge, we mean a convex set P
of probability distributions.

o We say that the result of N events is consistent with the
probabilistic knowledge P this result is consistent with
one of the probability distributions p € P.

o Let’s denote the number of all consistent results by
Ncons (N)

o The number [logy(Neons(N))] will be called the number
of questions, necessary to determine the results of N
events and denoted by Q(N).

e The fraction Q(N)/N will be called the average number
of questions.

o The limit of the average number of questions when N —
oo will be called the information.

Definition 3. By the entropy S(P) of a probabilistic knowl-

edge P, we mean the largest possible entropy among all

distributions p € P; S(P) def max S(p).
pe

Proposition 1. When the number of events N tends to infinity,
the average number of questions tends to the entropy S(P).

X. PARTIAL INFORMATION ABOUT PROBABILITY
DISTRIBUTION: CONTINUOUS CASE

In the continuous case, we also often encounter situations in
which we only have partial information about the probability
distribution; one such case is the case of p-boxes. In such
situations, instead of a knowing the exact probability distribu-
tion p(x), we only know a (convex) class P that contains the
(unknown) distribution.

In such situations, we can similarly ask about the average
number of questions that are needed to determine z with a
given accuracy €.

Once we fix an accuracy ¢ and a subdivision of the
real line into intervals [x;,x;y1] of width 2¢, we have a
discrete problem of determining the interval containing z.
Due to Proposition 1, for this discrete problem, the average
number of “yes”-“no” questions is equal to the largest entropy
S(p) among all the corresponding discrete distributions p; =
f;;“ p(x)dz. As we have mentioned, for small ¢, S(p) ~
S(p) — logy(2¢), where S(p) = — [ p(x) - logy(p(x)) da is
the entropy of the corresponding continuous distribution. Thus,
the largest discrete entropy S(p) comes from the distribution
p(z) € P for which the corresponding (continuous) entropy
S(p) attains the largest possible value.

XI. COMPUTING THE AMOUNT OF INFORMATION

According to the above results, the amount of information
in p-box — or more generally, in a class of distributions P — is
equal to the largest entropy among all the distributions from
the given class P.

Good news is that a lot of research has gone into algorithms
for finding distributions with the largest entropy among dif-
ferent classes P — largely as a part of the Maximum Entropy
approach in which when we only know a class of distributions
P, then we assume that the actual distribution is the one with
the largest entropy from P; see, e.g., [4].

Because of this, for many classes P, we already know
the corresponding maximum entropy distribution, so we can
explicitly compute the corresponding amount of information.
For classes P for which the corresponding maximum entropy
distribution is not known, finding such a distribution requires
maximizing a convex function (entropy) over a convex set P;
it is known that maximizing a convex function over a convex
set is a computationally feasible problem; see, e.g., [8].

XII. PROBLEM WITH OUR DEFINITION: WE NEED A
MULTI-DIMENSIONAL NOTION OF INFORMATION

In our approach, we measure the information as the average
number of “yes”’-“no” questions that are needed to locate an
object with a given accuracy.

According to our results, for a p-box, thus defined amount
of information is equal to the amount of information corre-
sponding to the distribution with the largest entropy among
all the distributions from a given p-box.

So, by the above definition of the amount of information,
we are not be able to distinguish between this distribution and
entire p-box. This is counter-intuitive. For example, it is well
known that the Gaussian distribution has the largest entropy
among all the distribution with the same standard deviation
o, but clearly, we have more information if we know that the
distribution is Gaussian than if we simply know its standard
deviation but not its shape.

To account for this difference, we must supplement the
average number of questions by additional characteristics de-
scribing the desired amount of information. Thus, to describe



the amount of information for general uncertainty, instead of a
single number, we need several different numbers, which form
a multi-dimensional measure of uncertainty.

In this paper, we propose two natural ways to implement
this idea.

XIII. FIRST APPROACH: ENTROPY INTERVAL INSTEAD OF
A SINGLE ENTROPY VALUE

If we know the probability distribution p, then the amount
of information is uniquely determined by the corresponding
entropy value S(p).

We are interested in the situations when we do not know
the probability distribution p, we only know that the proba-
bility distribution belongs to the class P. Based only on this
information, the only thing that we can can guarantee about
the average number of questions is that S(P) questions is
sufficient. Later on, as we gather more information, we may
learn more about the actual probability distribution — all the
way to knowing the exact distribution py € P. With this
additional knowledge, we may be able to reduce the average
number of questions from S(P) = Ipneag)c S(p) to S(po).

So, if the only information that we have about the proba-
bility distribution p is that p € P, then the only information
that we have about the future average number of “yes”-“no”
questions is that this number S(p) belongs to the range of
possible values S(P) = {S(p) : p € P}. Since the set P
is convex — hence connected, and entropy is a continuous
function, this range is an interval: S(P) = [S(P), S(P)].

The upper endpoint of this interval is the entropy S(P) =

max S(p) of the distribution with the largest entropy. So, our
14S]
idea is to supplement this “pessimistic” (worst-case) estimate

S(P) with the “optimistic” (best-case) estimate S(P) =

min S(p).

Foundationally, this sounds reasonable, but computationally,
we have a problem: while computing the maximum of a convex
function S(p) over a convex set P is a feasible problem,
computing the minimum of a convex function over a convex
set is, in general, NP-hard; see, e.g., [8]. So if we compute
S(P), great; otherwise we may need to look into different
approaches.

XIV. SECOND APPROACH: AN ENTROPY OF
DETERMINING THE PROBABILITY DISTRIBUTION

We started with the situation when we do not know the
object, we only know the probabilities of different objects,
and we wanted to find out how many “yes”-“no” questions
we need to find the object x.

In the new situation, in addition to not knowing the object
x, we also do not know the exact probability distribution p(z).
It is therefore reasonable, in addition to finding out how many
binary questions we need to find z, to also find out how many
“yes”-“no” questions we need to find the exact probability
distribution p(z).

Of course, just like we cannot determine the real number
z after finitely many “yes”-“no” questions, we are not able to

determine p(x) exactly after finitely many question, we can
only obtain an approximate value of a probability distribution.

A natural way to describe a probability distribution is via its
cdf F(z). There are two reasons why the approximate cdf may
be different from the actual one: we may get the probabilities
only approximately, and we may get the values at which these
probabilities are attained only approximately. It is therefore
reasonable to fix two accuracy values ¢ (accuracy with which
we approximate probabilities) and  (accuracy with which we
approximate x) and try to find an approximation F'(x) to F'(x)
in which, for every =, we have |F(T) — F(x)| < € for some
Z for which |7 — z| < 4.

When P is a p-box, then, for every number z(, we have the
interval [F(xg), F(z0)] of possible values of the probability
F(zg) = Prob(X < xp). We want to find the actual value of
€ with the accuracy €. We have already mentioned that this
is equivalent to localizing F'(x() within an interval of width

2¢. Within the original interval of width w(zo) def F(xg) —

F(xg), there are n(zg) e w(zo)/(2¢) such subintervals, so,
to localize F'(xg), we need ~ log,(n(zg)) = logy(w(xo)) —
log(2¢) questions.

To get the spatial accuracy J, we need to repeat this
procedure for the values xy, xo = x1 + 24, etc. Overall,
we thus need Y log,(w(x;)) — > logy(2¢) questions. If we
multiply the first sum by 24, then we get the integral sum for
[ logy(w(x)) da; so, the first sum is ~ [ log, (w(z)) dx/(26).
The second sum is a constant that does not depend on the p-
box at all.

Thus, for a p-box [F(z),F(x)], the overall number of
questions that we need to ask to determine the probability
distribution F'(x) with a given accuracy is determined by
the integral [log,(F(z) — F(x))dz. This easy-to-compute
integral can thus serve as an additional information measure
for p-boxes.

XV. ADDING Fuzzy UNCERTAINTY

The main idea behind fuzzy uncertainty is that, instead of
just describing which objects are possible, we also describe,
for each object, the degree to which this object is possible.
For each degree of possibility «, we can determine the set of
objects that are possible with at least this degree of possibility
— the a-cut of the original fuzzy set. Vice versa, if we know
a-cuts for every «, then, for each object z, we can determine
the degree of possibility that z belongs to the original fuzzy
set.

A fuzzy set can be thus viewed as a nested family of its
o-cuts.

Thus, if instead of a (crisp) set P of possible probability
distributions (e.g., a p-box), we have a fuzzy set P of possible
probability distributions, then we can view this information as
a family of nested crisp sets P(«) — a-cuts of the given fuzzy
set.

In this case, once we fix a measure of information I (P) for
crisp sets of distributions — e.g., the maximum entropy, we can
then extend this measure to fuzzy sets P — by defining I(P)
as a fuzzy number whose «-cut coincides with I(P(«)).



Comment. Instead of describing the information in a fuzzy set
by a fuzzy number, we can, alternatively, interpret degree of
possibility in probabilistic terms and compute the correspond-
ing information by using probability formulas; see, e.g., [6],

[7].
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APPENDIX: PROOFS
A. Proof of Shannon’s Theorem

Let’s first fix some values IN;, that are consistent with the
given probabilistic distribution. Due to the inequalities that
express the consistency demand, the ratio f; = N;/N tends
to p; as N — oo. Let’s count the total number C' of results,
for which for every ¢ the number of events with outcome 1 is
equal to this IV;. If we know C', we will be able to compute
Neons by adding these C’s.

Actually we are interested not in N.,,s itself, but in
Q(N) = logy(Neons), and moreover, in lim(Q(N)/N). So
we’ll try to estimate not only C, but also log,(C) and
lim log,(C)/N.

To estimate C' means to count the total number of sequences
of length N, in which there are N; elements, equal to 1, N
elements, equal to 2, etc. The total number C; of ways to

choose N7 elements out of NV is well-known in combinatorics,

di Lt Ny !
and is equal to =

q N) T N (N =N
these N7 elements, we have a problem in choosing N> out of

the remaining N — N; elements, where the outcome is 2; so

. When we choose

N.
for every choice of 1’s we have Cy = 2 possibilities
N - N,

to choose 2’s. Therefore in order to get the total number of
possibilities to choose 1’s and 2’s, we must multiply C by C1.

Adding 3’s, 4,s, ..., n’s, we get finally the following formula
for C:
C=C1-Cy-...-Cp_q =
N! (N — Ny)! _ N!
NN =Nl No!(N =Ny —No)l " N{INyl... N,,!
To simplify computations let’s use the well-known Stirling
formula k! ~ (k/e)* - /21 - k. Then, we get

(N)Nm

(&

~

e N\ Vn
e €

Since >° N; = N, terms e” and e cancel each other.

To get further simplification, we substitute N; = N - f;,
and correspondingly N¥i as (N - f;)N'fi = NNJi. f;NJi,
Terms NV is the numerator and NV/1. NN-f2 . NN-Jn —
NN-fiAN-fot . +N-fn. — NN in the denominator cancel each
other. Terms with \/]V lead to a term that depends on N as
c- N~(n=1)/2 S0, we conclude that

logy(C) = =N - fi -logy(fi) — ... = N - fulogy(fn)—
n—1

-logy(N) — const.

When N — oo, we have 1/N — 0, logy(N)/N — 0, and
fi — i, therefore
log,(C)

—N  h logy(p1) — ... — Pn - logy (Pn),

ie., logy(C)/N tends to the entropy of the probabilistic
distribution.

Arguments given in [1] show that the ratio Q(N)/N = S
also tends to this entropy. The proposition is proven.

B. Proof of Proposition 1

This proof is similar to the proof presented in [1] for the
Dempster-Shafer case.

By definition, a result is consistent with the probabilistic
knowledge P if and only if it is consistent with one of the
distributions p € P. Thus, the set of all the results which are
consistent with P can be represented as a union of the sets of
all the results consistent with different probability distributions
p € P. In the proof of Shannon’s theorem, we have shown that
for each p € P, the corresponding number is asymptotically
equal to exp(N - S(p)).

To be more precise, for every N, the number C' of results
with given frequencies {f;} (f; =~ p;) has already been com-
puted in the proof of Shannon’s theorem: lim (log,(C))/N =
—>_ filoga(f5).

The total number of the results N.,,s which are consistent
with a given probabilistic knowledge P is equal to the sum
of N, different values of C that correspond to different f;.
For a given N, there are at most N + 1 different values of
N1 = N - f; (0,1,...,N), at most N + 1 different values of
Ns, etc., totally at most (N 4 1)" different sets of {f;}. So,
we get an inequality Crnax < Neons < (N +1)™ - Cppax, from

which we conclude that lim Q(N)/N = limlog,(Cryax)/N.



