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Abstract— The shape of the radar signal can provide us with
the additional information about the reflecting surface. However,
to decrease the noise, radars use filtering, and filtering changes
the shapes of the radar signal. It is therefore necessary to
reconstruct the original shape of the radar signal.

I. RADARS ARE IMPORTANT

Radar measurements are used in many areas of science and
engineering. Historically the first use of radars was in tracing
airplanes and missiles; this is still one of the main uses of
radars.

However, radars are used more and more in geosciences
as well. The information provided by airborne radars nicely
supplements other remote sensing information – e.g., radar
beams can go below the leaves, to the actual Earth surface
and even deeper than the surface; see, e.g., [2], [3], [5], [6],
[7], [8], [11], [12], [13], [14], [21], [22], [23].

II. MAIN USE OF RADARS: LOCALIZATION

The main idea behind a radar is simple:

• we send a pulse-like radio signal,
• this signal gets reflected by the target, and
• we measure the reflected signal.

The main information that we can get from the radar is the
travel time. Based on the travel time, we can find the distance
between the radar and the target. If we use several radars, we
can thus get an exact location of the target.

This is how radars determine the exact position of the planes
in the vicinity of an airport. This is how radars produce
high-accuracy digital elevation maps that is so important in
geophysics.

III. RADARS PROVIDE ADDITIONAL INFORMATION

If the targets were points, then after sending a pulse signal,
we would get a pulse back, and the only information we would
be able to get is the distance from the radar to the point target.
In reality, the target is not a point. As a result, even if we send
a pulse signal, this pulse is reflected from different points on
a target and therefore, we get a continuous signal back.

The shape of this signal can provide us with the additional
information about the reflecting surface.

IV. IT IS DESIRABLE TO DETERMINE THE PROBABILITY

DISTRIBUTION OF THE REFLECTED SIGNAL

In an airborne geophysical radar, pulses are sent one after
another, so individual reflections get entangled. We can still
measure the probability distribution of the values of the
reflected signal and try to extract the information about the
reflecting surface from this distribution.

V. FILTERING MAKES THIS DETERMINATION DIFFICULT

The trouble with the above idea is that the reflected signals
are weak and covered with noise. To decrease the noise, we
apply filtering – usually, linear filtering, when instead of the
original signal x(t), we consider a linear combination of this
signal and the signals ate the previous moments of time:

y(t) =
∑

s

a(s) · x(t − s).

This filtering decreases the noise and makes the distance
measurement very accurate. On the other hand, it replaces
the original possibly non-Gaussian signal x(t) with a linear
combination of such signals. It is well known that as we
increase the number of terms in a linear combination of several
small random variables, the resulting distribution of a sum
tends to Gaussian – this Central Limit Theorem is one of
the main reasons why Gaussian distribution is so frequent in
practice; see, e.g., [25]. So, after filtering, we get a distribution
that is close to Gaussian.

The problem is now as follows:

• we have a probability distribution for y, and
• we want to reconstruct the original distribution for x.

VI. MAIN IDEA

Our main idea is to describe both distribution in terms of
logarithmic moments.

A. What Are Logarithmic Moments?

Namely, for a random variable ξ, we can define its charac-
teristic function as

χξ(ω) def= E[exp(i · ω · ξ)].



For the sum ξ = ξ1 +ξ2 of two independent random variables,

E[exp(i · ω · ξ)] = E[exp(i · ω · ξ1) · exp(i · ω · ξ2)].

Since ξ1 and ξ2 are independent, we get

E[exp(i · ω · ξ)] = E[exp(i · ω · ξ1)] · E[exp(i · ω · ξ2)],

i.e.,

χξ(ω) = χξ1(ω) · χξ2(ω).

Hence, for the logarithms, we get the formula

ln(χξ(ω)) = ln(χξ1(ω)) + ln(χξ2(ω)).

So, if we define n-the logarithmic moment as

Ln(ξ) def=
1
in

· dnχξ(ω)
dωn

|ω=0,

we conclude that

Ln(ξ) = Ln(ξ1) + Ln(ξ2).

Comment. The factor
1
in

is added to make the moments real
numbers.

B. Why Logarithmic Moments?

In general, from the formula that relates x and y, we
conclude that

Ln(y) =

(∑
s

(a(s))n

)
· Ln(x).

So, we can reconstruct the n-the logarithmic moment of x by
using the formula

Ln(x) =
Ln(y)∑

s
(a(s))n

.

C. Reconstructing x From y: Main Idea

In the ideal non-noise case, if we know the exact distribution
for y, we can reconstruct the desired distribution for x as
follows:

• first, we compute the logarithmic moments Ln(y) of the
signal y;

• then, we use the above formula to compute all the
logarithmic moments Ln(x) of the original distribution x;

• finally, we use the Taylor series to reconstruct the loga-
rithm of the characteristics function as

ln(χx(ω)) = L1 · i · ω + L2 · i2 · ω2 + L3 · i3 · ω3 + . . .

So, in the ideal case, we can determine the characteristic
function χx(ω) of the original distribution x.

D. From Characteristic Function to, e.g., Probability Density
Function

It is known that the characteristic function uniquely deter-
mines the distribution. For example, from its definition, we can
describe its relation to the probability density function ρ(x)
as follows:

χ(ω) = E[exp(i · ω · ξ)] =
∫

exp(i · ω · x) · ρ(x) dx.

So, χ(x) is a Fourier transform of the probability density
function. Hence, the original probability density function ρ(x)
can be determined as the inverse Fourier transform of the
characteristics function

ρ(x) =
1
2π

·
∫

exp(−i · ω · x) · χ(ω) dω.

VII. COMPUTATIONS RELATED TO DIFFERENT FILTERS

To implement the above idea, for a given filter and for every
n, we need to compute the value

∑
s

(a(s))n.

These computations may be computationally intensive, but
we only need to do them once for each filter; after that, we
can simply use the resulting values when reconstructing the
logarithmic moments of x.

VIII. PROBLEM: WE CAN ONLY DETERMINE FINITELY

MANY MOMENTS

The above description referred to the idealized no-noise
case. In reality, the noise is always present: the whole purpose
of the filter was to decrease this noise.

Because of the noise, in practice, we can only reconstruct
a few first logarithmic moments L1(x), L2(x), . . . , Ln(x).

These moments do not determine the distribution uniquely,
there exist several different distributions with the same values
of the first moments. We must therefore select a distribution
with given values of these logarithmic models. How can we
do that?

IX. FROM LOGARITHMIC MOMENTS TO TRADITIONAL

MOMENTS

The problem of reconstructing a distribution from the log-
arithmic moments is reasonably new, but, as we will see,
this problem is closely related to the well-studied problem
of reconstructing a distribution from the standard moments

Mn
def= E[ξn] =

∫
xn · ρ(x) dx.

Indeed, let us show that knowing the first n logarithmic mo-
ments L1, . . . , L2 is equivalent to knowing the first moments
M1, . . . ,Mn.

Let us start with the relation between L1 and M1. By
definition,

L1 =
1
i
· ∂ ln(χ)

∂ω |ω=0
.

Using the chain rule for differentiation, we conclude that

∂ ln(χ)
∂ω

=
1
χ
· ∂χ

∂ω
.



For ω = 0, we have χ(0) = E[exp(i · 0 · ω)] = 1, and

∂χ

∂ω |ω=0
=
(

∂

∂ω
E[exp(i · ω · ξ)]

)
|ω=0

=

E

[(
∂

∂ω
exp(i · ω · ξ)

)
|ω=0

]
= E[i · ξ] = i · M1.

Therefore,

L1 =
1
i
· i · M1,

i.e., L1 = M1. In other words, the first logarithmic moment
L1 simply coincides with the first moment M1.

For the second logarithmic moments, we have

L2 =
1
i2

· ∂2 ln(χ)
∂ω2 |ω=0

.

Differentiating the expression for the first derivative of χ once
again, we conclude that

∂2 ln(χ)
∂ω2

=
1
χ
· ∂2χ

∂ω2
− 1

χ2
·
(

∂χ

∂ω

)2

.

For ω = 0, we have

∂2χ

∂ω2 |ω=0
= i2 · M2,

hence
L2 = M2 − M2

1 .

In other words, the second logarithmic moment L2 is the
variance.

It is worth mentioning that the variance does not change
with shift; this shift-invariance can be deduced directly from
the definition of Ln and is, therefore, a general feature of all
logarithmic moments Ln with n ≥ 2. Indeed, if we shift the
starting point of measuring ξ, i.e., replace ξ with ξ′ = ξ + x0

for some real number x0, then

exp(i·ω ·ξ′) = exp(i·ω ·(ξ+x0)) = exp(i·ω ·ξ)·exp(i·ω ·x0).

Therefore,

E[exp(i · ω · ξ′)] = E[exp(i · ω · ξ)] · exp(i · ω · x0),

i.e.,
χ′(ω) = χ(ω) · exp(i · ω · x0)

and hence,

ln(χ′(ω)) = ln(χ(ω)) + i · ω · x0.

The additional term is linear in ω, so for n ≥ 2, its n-
th derivative is 0 – hence, L′

n = Ln, i.e., n-th logarithmic
moment indeed does not change with shift.

For L3, we have

∂3 ln(χ)
∂ω3

=
1
χ
· ∂3χ

∂ω3
+

2
χ3

·
(

∂χ

∂ω

)3

− 3
χ2

· ∂χ

∂ω
· ∂2χ

∂ω2
,

so L3 = M3 + 2M3
1 − 2M1 · M2.

Similarly, we can conclude that for every n > 1, Ln =
Mn + terms depending on the moments of smaller orders

M1, . . . ,Mn−1. (Actually, since Ln does not change with
shift, we can compute the moment w.r.t. the average M1, and
thus conclude that Ln depends only on central moments of
the distribution.)

Thus, in general,

• once we know the moments M1, . . . ,Mn, we can easily
compute the corresponding logarithmic moments, and

• vice versa, once we know the logarithmic moments, we
can determine the corresponding moments M1, . . . ,Mn

one by one.

So, in general, the problem of reconstructing a probability
distribution from its logarithmic moments can be reduced to a
well-researched problem of reconstructing a distribution from
its moments M1, . . . ,Mn.

X. MAXIMUM ENTROPY APPROACH

Of course, there are many possible probability distributions
with the given values of the moments M1, . . . ,Mn; among
such distributions, we must select the most “reasonable” one.

We have mentioned that in many cases, the actual distrib-
ution is Gaussian – e.g. (due to the Central Limit theorem),
when the random variable is a sum of several small indepen-
dent components. It is well known that a Gaussian distribution
can be uniquely determined by its first two moments (or, in
multi-D case, by its moments of the first and second orders). It
is therefore reasonable to require that when we only know the
first two moments, we should get the Gaussian distribution.

This is achieved, e.g., if among all possible distributions,
we select a distribution for which the entropy

−
∫

ρ(x) · ln(ρ(x)) dx

attains its largest possible value. Indeed, if we know M1 and
M2, this means that the unknown probability distribution ρ(x)
satisfies the constraints∫

ρ(x) dx = 1,

∫
x · ρ(x) dx = M1,∫
x2 · ρ(x) dx = M2.

To maximize the entropy under these three constraints, we
can use the Lagrange multiplier approach, in which we re-
place the original constrained optimization problem with an
unconstrained problem of optimizing a new objective function

−
∫

ρ(x) · ln(ρ(x)) dx+

λ0 ·
∫

ρ(x) dx + λ1 ·
∫

x · ρ(x) dx + λ2 ·
∫

x2 · ρ(x) dx

for some real numbers (Lagrange multipliers) λi.
To find the maximum of the corresponding function, we can

simply equate its derivative w.r.t. ρ(x) to 0, hence

− ln(ρ(x)) − 1 + λ0 + λ1 · x + λ2 · x2 = 0,



i.e.,

ρ(x) = C · exp(−λ1 · x − λ2 · x2)

for some constant C. (The values C and λi can then be
determined from the fact that the overall probability should
be 1, and the first two moments are M1 and M2.)

This is exactly the formula for the Gaussian distribution.
There are many other arguments in favor of selecting a
distribution corresponding to the maximum entropy; see, e.g.,
[15], [16]. So, when we know n > 2 moments M1, . . . ,Mn,
it is also reasonable to look for a probability distribution ρ(x)
for which the entropy is the largest among all the distributions
for which ∫

ρ(x) dx = 1,

∫
x · ρ(x) dx = M1,

. . .∫
xn · ρ(x) dx = Mn.

For this constraint optimization problem, the Lagrange mul-
tiplier method leads to the unconstrained optimization of the
functional

−
∫

ρ(x) · ln(ρ(x)) dx+

λ0 ·
∫

ρ(x) dx+λ1 ·
∫

x · ρ(x) dx+ . . .+λn ·
∫

xn · ρ(x) dx

Differentiating this expression w.r.t. ρ(x) and equating the
corresponding derivatives to 0, we conclude that

− ln(ρ(x)) − 1 + λ0 + λ1 · x + . . . + λn · xn = 0,

hence

ρ(x) = C · exp(−λ1 · x − . . . − λn · xn).

The values C and λ1, . . . , λn can then be determined from
the fact that the overall probability should be 1, and the first
n moments are equal to M1, . . . ,Mn.

XI. PROBLEM: THE MAXIMUM ENTROPY APPROACH IS

RATHER COMPUTATIONALLY INTENSIVE

According to the Maximum Entropy approach, to find n+1
parameters C, λ1, . . . , λn, we must solve a system of n + 1
equations with n + 1 unknowns. This system is highly non-
linear, so solving the corresponding system is not easy.

Good news is that in practice, we can only determine a
few moments, so the number of unknowns (n + 1) is small.
Therefore, the existing algorithms for solving systems of non-
linear equations can be effectively applied here. Still, solving a
system of non-linear equations is much more computationally
intensive than computations for the Gaussian case, where the
values C and λi can be explicitly computed from the moments.

XII. FIRST ALTERNATIVE TO THE MAXIMUM ENTROPY

APPROACH THAT ENABLES US TO SPEED UP

COMPUTATIONS

Since the Maximum Entropy approach is computationally
intensive, it is reasonable to look for alternative approaches
that would require fewer computations.

If we still want this approach to lead to Gaussian distribu-
tions for the case when we know only the first two moments,
then it is reasonable to look for distributions that can be
obtained from the Gaussian distribution after an appropriate
rescaling. What are the most reasonable rescalings? In [19],
we have shown that w.r.t. reasonable optimality criteria, the
optimal rescalings are power laws. So, in the symmetric case
(when L3 = 0), we get Weibull-type distributions with the
probability density const · exp(−k · |x− a|p) with p possibly
different from 2.

It turns out that these distributions indeed well describe
measurement errors [20]; in particular, these distributions well
describe the errors related to geophysical measurements and
estimates [10], [24].

For this distribution, once we know the 4th central moment
M4 and the variance M2, we can then find the value p by solv-
ing a single non-linear equation with only one unknown [20]:

ε =
Γ(1/p) · Γ(5/p)

Γ(3/p)2
,

where Γ(x) is the gamma-function and

ε
def=

M4

M2
2

.

If we want to make computations even faster, we can use the
following approximate formula [20]:

p =
1.46

ln(ε − 2/9 − 10.7/ε7) − 0.289
.

For asymmetric distributions, the general result from [19]
leads to two different scalings for x > 0 and x < 0; as a
result, we get a probability distribution for which:

• ρ(x) = const− · exp(−k− · |x − a|p) for x ≤ a and
• ρ(x) = const+ · exp(−k+ · |x − a|p) for x ≥ a.

In this manner, we can get match arbitrary values of the first
4 moments.

Here also, we can produce explicit formulas for the mo-
ments of this distribution in terms of the gamma-function; so,
while we still need to solve a non-linear systems of equations,
this non-linearity is easier than in the Maximum Entropy
approach – because this non-linearity is described not by
difficult-to-compute integrals, but rather by a known special
function (gamma function).

XIII. OTHER ALTERNATIVES TO THE MAXIMUM ENTROPY

APPROACH

For the first four moments, we can get even faster compu-
tations if we do not require that for the first two moments, we
always get Gaussian distribution.



Several such families have been proposed; see, e.g., [1]
and references therein. The computationally simplest family,
for which there are explicit formulas relating the first four
moments with the parameters of the distribution, is the family
of Generalized Lambda distributions, in which the quantile
function Q(u) – inverse to the cumulative distribution function
F (t) – has the form

Q(u) = λ1 +
1
λ2

·
[
uλ3 − 1

λ3
− (1 − u)λ4 − 1

λ4

]
.

For this distribution, finding the four parameters requires solv-
ing a system of two non-linear equations with two unknowns,
equations in which non-linearity is described by another class
of known special functions: by beta functions.

XIV. THE USE OF EXPERT KNOWLEDGE

Often, in addition to the four (or more) moments, we also
have some expert knowledge about the unknown probability
distribution ρ(t). This expert knowledge usually comes in
terms of words from natural language, so it is natural to use
fuzzy techniques to transform this expert knowledge into an
exact formula that describes, for each distribution ρ, the degree
µ(ρ) with which this distribution is consistent with the expert
knowledge.

Then, it is reasonable to select, among all the distributions
with the given values of the first n moments L1, . . . , Ln,
the distribution ρ for which this degree µ(ρ) is the largest
possible. This idea is similar to other uses of fuzzy techniques
in geosciences; see, e.g., [4], [9]

In the absence of additional expert information, this ap-
proach leads either to the Maximum Entropy formulas [17],
[18] – or to a more general situation in which we optimize
the generalized entropy ∫

ρ(x)α dx

for some real number α. In this case, if we know the first n
moments, then the Lagrange multiplier methods leads to the
following probability density function:

ρ(x) = (λ0 + λ1 · x + . . . + λn · xn)−β

for some real number β > 0.
In the presence of additional expert knowledge, we can get

more specific criteria hence more specific distributions.
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