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Abstract

For many practical applications, it it important to solve the seismic inverse problem,
i.e., to measure seismic travel times and reconstruct velocities at different depths
from this data. The existing algorithms for solving the seismic inverse problem often
take too long and/or produce un-physical results – because they do not take into
account the knowledge of geophysicist experts. In this paper, we analyze how expert
knowledge can be used in solving the seismic inverse problem.
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1 Seismic Inverse Problem: Brief Introduction

In evaluations of natural resources and in the search for natural
resources, it is very important to determine Earth structure. Our
civilization greatly depends on the things we extract from the Earth, such
as fossil fuels (oil, coal, natural gas), minerals, and water. Our need for these
commodities is constantly growing, and because of this growth, they are being
exhausted. Even under the best conservation policies, there is (and there will
be) a constant need to find new sources of minerals, fuels, and water.
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The only sure-proof way to guarantee that there are resources such as minerals
at a certain location is to actually drill a borehole and analyze the materials
extracted. However, exploration for natural resources using indirect means
began in earnest during the first half of the 20th century. The result was the
discovery of many large relatively easy to locate resources such as the oil in
the Middle East.

However, nowadays, most easy-to-access mineral resources have already been
discovered. For example, new oil fields are mainly discovered either at large
depths, or under water, or in very remote areas – in short, in the areas where
drilling is very expensive. It is therefore desirable to predict the presence of
resources as accurately as possible before we invest in drilling.

From previous exploration experiences, we usually have a good idea of what
type of structures are symptomatic for a particular region. For example, oil
and gas tend to concentrate near the top of natural underground domal struc-
tures. So, to be able to distinguish between more promising and less promising
locations, it is desirable to determine the structure of the Earth at these loca-
tions. To be more precise, we want to know the structure at different depths
z at different locations (x, y).

Determination of Earth structure is also very important for as-
sessing earthquake risk. Another vitally important application where the
knowledge of the Earth structure is crucial is the assessment of earth hazards.
Earthquakes can be very destructive, so it is important to be able to estimate
the probability of an earthquake, where one is most likely to occur, and what
will be the magnitude of the expected earthquake. Geophysicists have shown
that earthquakes result from accumulation of mechanical stress; so if we know
the detailed structure of the corresponding Earth locations, we can get a good
idea of the corresponding stresses and faults present and the potential for oc-
currence of an earthquake. From this viewpoint, it is also very important to
determine the structure of the Earth.

Data that we can use to determine the Earth structure. In general,
to determine the Earth structure, we can use different measurement results
that can be obtained without actually drilling the boreholes: e.g., gravity and
magnetic measurements, analyzing the travel-times and paths of seismic ways
as they propagate through the earth, etc.

Forward problem. The relation between the Earth structure and the re-
lated measurable quantities is usually known. So, when we know the exact
structure at a given Earth location, we can predict, with reasonable accuracy,
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the corresponding values of the measured quantities – we can predict the local
value of the gravity field, the time that a seismic signal needs to travel from
its origin to the sensor, etc.

For example, once we know the density ρ(~x) = ρ(x, y, z) at different 3-D
points (x, y, z), we can determine the resulting ground level (z = 0) gravity

value g( ~X) = g(X,Y, 0) at a location (X, Y ), by using the formula dating back
to the original works of Newton:

g( ~X) = G ·
∫ ρ(~x) · (~x− ~X)

|~x− ~X|3 d~x,

where G is the universal gravity constant.

In general, corresponding formulas come from problems which geophysicists
usually solve: what is the gravity field generated by given mass distribution,
what is the magnetic field generated by a given distribution of magnetic ma-
terials, what is the travel-time of a seismic signal between two given locations
in the given medium, etc. For example, when we want to know how the signal
propagates, we can start at the source of the signal and go forward step-by-
step simulating the way the signal actually travels. Such problems are therefore
usually called forward problems.

Inverse problems. Forward problems enable us, given a model of the Earth,
to predict the values of different signals. What we need in the above geophysi-
cal applications is the opposite: given the measured values of different signals,
we need to reconstruct the structure of the Earth at the location where the
measurements have been made. Such problems are therefore called inverse
problems.

Seismic measurements are usually the most informative. Because
of the importance and difficulty of the inverse problem, geophysicists would
like to use all possible measurement results: gravity, magnetic, seismic data,
etc. In this paper, we will concentrate on the measurements which carry the
largest amount of information about the Earth structure and are, therefore,
most important for solving inverse problems.

Some measurements – like gravity and magnetic measurements – describe
the overall effect of a large area. These measurements can help us determine
the average mass density in the area, or the average concentration of magnetic
materials in the area, but they often do not determine the detailed structure of
this area. This detailed structure can be determined only from measurements
which are narrowly focused on small sub-areas of interest.
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The most important of these measurements are usually seismic measurements.
Seismic measurements involve the recording of vibrations caused by distant
earthquakes, explosions, or mechanical devices. For example, these records are
what seismographic stations all over the world still use to detect earthquakes.
However, the signal coming from an earthquake carries not only information
about the earthquake itself, it also carries the information about the materials
along the path from an earthquake to the station: e.g., by measuring the travel-
time of a seismic wave, checking how fast the signal came, we can determine the
velocity of sound v in these materials. Usually, the velocity of sound increases
with increasing density, so, by knowing the velocity of sound at different 3-
D points, we will be able to determine the density of materials at different
locations and different depths.

The main problem with the analysis of earthquake data (i.e., passive seismic
data) is that earthquakes are rare events, and they mainly occur in a few
seismically active belts. Thus, we have a very uneven distribution of sources
and receivers that results in a “fuzzy” image of earth structure in many areas.

To get a better understanding of the Earth structure, we must therefore rely on
active seismic data – in other words, we must make artificial explosions, place
sensors around them, and measure how the resulting seismic waves propagate.
The most important information about the seismic wave is the travel-time
ti, i.e., the time that it takes for the wave to travel from its source to the
sensor. to determine the geophysical structure of a region, we measure seismic
travel times and reconstruct velocities at different depths from these data. The
problem of reconstructing this structure is called the seismic inverse problem.

2 Known Algorithms for Solving the Seismic Inverse Problem: De-
scription, Successes, Limitations

Towards a precise mathematical formulation of the seismic inverse
problem. Let us first describe what we want to determine. Our objective
is to find the values of the velocity v(~x) at different 3-D points ~x. To exactly
describe a generic function, we need an infinite number of parameters: e.g.,
values v(~x) at all possible 3-D points ~x.

In reality, based on the finite number of measurements, we can only reconstruct
a finite number of parameters. So, at best, we can only reconstruct the values
of velocity at a finite number of points ~x. A natural way is to take a rectangular
grid and to reconstruct the velocities vj at different grid points.

Once we have found these values, we need to be able to reconstruct the values
of velocity at other points, i.e., interpolate the dependence v(~x) from the grid
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points to the entire zone. In many practical situations, we know that the
dependence is smooth; in such situations, it is reasonable to use a smoothing
interpolation: e.g., piece-wise linear, piece-wise quadratic, etc. However, inside
the Earth, there are often abrupt boundaries between different layers, so the
dependence is often not smooth. As a result, in geophysics, a more reasonable
interpolation is to take, as v(~x), the velocity at the closest grid point (i.e., use
piece-wise constant interpolation).

Points which are closest to one point on a rectangular grid form a rectangular
cell around this point. Thus, what we are doing is, in effect, dividing the 3-D
zone of interest into a grid of rectangular cells, and, for simplicity, assuming
that the velocity is constant throughout each cell. In the following text, we
will denote the velocity in j-th cell by vj.

Algorithm for the forward problem: brief description. Once we know
the velocities vj in each cell j, we can then determine the paths which seismic
waves take. Seismic waves travel along the shortest path – shortest in terms
of time. It can be easily determined that for such paths, within each cell, the
path is a straight line, and on the border between the two cells with velocities
v and v′, the direction of the path changes in accordance with Snell’s law

sin(ϕ)

v
=

sin(ϕ′)
v′

,

where ϕ and ϕ′ are the angles between the paths and the line orthogonal to
the border between the cells. (If this formula requires sin(ϕ′) > 1, this means
that this wave cannot penetrate into the neighboring cell at all; instead, it
bounces back into the original cell with the same angle ϕ.)

In particular, we can thus determine the paths from the source to each sensor.
The travel-time ti along i-th path can then be determined as the sum of travel-
times in different cells j through which this path passes: ti =

∑
j

`ijvj, where

`ij denotes the length of the part of i-th path within cell j.

This formula becomes linear if we replace the original unknowns – velocities

vj – by their inverses sj
def
=

1

vj

, called slownesses. In terms of slownesses, the

formula for the travel-time takes the simpler form ti =
∑
j

`ij · sj.

Algorithm for the inverse problem: general description. There are
several algorithms for solving this inverse problem; see, e.g., [7,11,16]. The
most widely used is the following iterative algorithm proposed by John Hole
[7].
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At each stage of this algorithm, we have some approximation to the desired
slownesses. We start with some reasonable initial slownesses, and we hope that
after several iterations, we will be able to get slownesses which are much closer
to the actual values.

At each iteration, we first use the currently known slownesses sj to find the
corresponding paths from the source to each sensor. Based on these paths, we
compute the predicted values ti =

∑
j

`ij · sj of travel-times.

Since the currently known slownesses sj are only approximately correct, the
travel-times ti (which are predicted based on these slownesses) are approxi-
mately equal to the measured travel-times t̃i; there is, in general, a discrepancy

∆ti
def
= t̃i−ti 6= 0. It is therefore necessary to use these discrepancies to update

the current values of slownesses, i.e., replace the current values sj with cor-
rected values sj +∆sj. The objective of this correction is eliminate (or at least
decrease) the discrepancies ∆ti 6= 0. In other words, the objective is to make
sure that for the corrected values of the slowness, the predicted travel-times
are closer to t̃i.

Of course, once we have changed the slownesses, the shortest paths will also
change; however, if the current values of slownesses are reasonable, the differ-
ences in slowness are not large, and thus, paths will not change much. Thus,
in the first approximation, we can assume that the paths are the same, i.e.,
that for each i and j, the length `ij remains the same. In this approximation,
the new travel-times are equal to

∑
`ij · (sj + ∆sj). The desired condition is

then
∑

`ij · (sj + ∆sj) = t̃i. Subtracting the formula ti =
∑
j

`ijvj from this

expression, we conclude that the corrections ∆sj must satisfy the following
system of (approximate) linear equations:

∑
`ij ·∆sj ≈ ∆ti.

Solving this system of linear equations is not an easy task, because we have
many observations and many cell values and thus, many unknowns, and for a
system of linear equations, computation time required to solve it grows as a
cube n3 of the number of variables n. So, instead of the standard methods for
solving a system of linear equations, researchers use special faster geophysics-
motivated techniques (described below) for solving the corresponding systems.
These methods are described, in detail, in the next subsection.

Once we solve the corresponding system of linear equations, we compute the
updated values ∆sj, compute the new (corrected) slownesses sj + ∆sj, and
repeat the procedure again. We stop when the discrepancies become small;

usually, we stop when the mean square error
1

n

n∑

i=1

(∆ti)
2 no longer exceeds

a given threshold. This threshold is normally set up to be equal to the mea-
surement noise level, so that we stop iterations when the discrepancy between
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the model and the observations falls below the noise level – i.e., when, for all
practical purposes, the model is adequate.

Algorithm for the inverse problem: details. Let us describe, in more
detail, how the corresponding linear system of equations is usually solved. In
other words, for a given cell j, how do we find the correction ∆sj to the current
value of slowness sj in this cell?

Let us first consider the simplified case when there is only path, and this path
is going through the j-th cell. In this case, cells through which this path does
not go does not need any correction. To find the corrections ∆sj for all the cells
j through which this path goes, we only have one equation

∑
j

`ij ·∆sj = ∆ti.

The resulting system of linear equations is clearly under-determined: we have
a single equation to find the values of several variables ∆sj. Since the system
is under-determined, we have a infinite number of possible solutions. Our
objective is to select the most geophysical reasonable of these solutions.

For that, we can use the following idea. Our single observation involves several
cells; we cannot distinguish between the effects of slownesses in different cells,
we only observe the overall effect. Therefore, there is no reason to assume that
the value ∆sj in one of these cells is different from the values in other cells.
It is thus reasonable to assume that all these values are equal to each other:
∆sj = ∆sk = . . . = ∆s. Substituting these equal values into the equation∑
j

`ij · ∆sj = ∆ti, we conclude that Li · ∆s = ∆ti, where Li =
∑
j

`ij is the

overall length of i-th path. Thus, in the simplified case in which there is only
one path, to the slowness of each cell j along this path, we add the same value

∆s =
∆ti
Li

.

Let us now consider the realistic case in which there are many paths, and
moreover, for many cells j, there are many paths i which go through the
corresponding cell. For a given cell j, based on each path i passing through this

cell, we can estimate the correction ∆sj by the corresponding value ∆sij
def
=

∆ti
Li

. When there are several (nj) paths Pi going through the j-th cell Cj

(Pi ∩ Cj 6= ∅), we have, in general, several different estimates ∆sj ≈ ∆sij.

Now, we have an over-determined system of equations: we have a single vari-
able ∆sj and as many equations (nj) as there are paths i going through this

cell. Ideally, we would like all the differences ei
def
= ∆sj −∆sij to be equal to

0, i.e., we would like the corresponding difference vector e = (ei, ei′ , . . .) to be
equal to 0. In general, the estimates ∆sij are different, so we cannot find a
single correction ∆sj which is equal to all of them – and thus, we cannot have
all the components of the difference vector e to be equal to 0. Since we cannot
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make e exactly equal to 0, it is reasonable to find the value ∆sj for which the
corresponding vector e is as close to 0 as possible, i.e., for which the distance√

s2
i + s2

i′ + . . . between e and 0 = (0, 0, . . .) is the smallest possible.

Since the square root is a monotonic function, the square root of the expres-
sion is the smallest if and only if the expression itself is the smallest. Thus,
minimizing the distance is equivalent to minimizing the sum s2

i + s2
i′ + . . .

Thus, we arrive at the Least Squares method for solving a system of over-
determined equations. For the system ∆sj ≈ ∆sij the solution is well known:
the arithmetic average of different estimates:

∆sj =
1

nj

∑

Pi∩Cj 6=∅

∆ti
Li

.

This is the formula used in Hole’s algorithm.

Comment. The above formula treats all the paths equally. In reality, some
paths may barely touch the cell, while other paths really traverse the entire
cell. The paths which barely touch the cell should not have the same influence
on the cell as the others. How can we achieve this objective?

In the expression ∆ti =
∑
j

`ij ·∆sj, the value ∆sj occurs with a coefficient `ij.

Thus, for the same accuracy in travel-times ∆ti, the resulting accuracy with
which we can determine ∆sj from i-th path is proportional to 1/`ij. In other
words, the accuracy σi with which ∆sj ≈ ∆sij is proportional to 1/`ij. By ap-
plying the Least Square Method to this new system of equations, we conclude

that
∑
i

e2
i

σ2
i

→ min, i.e., that
∑
i
(∆sj −∆sij)

2 · `2
ij → min. Differentiating over

∆sj, we conclude that

∆sj =

∑
j

∆sij · `2
ij

∑
j

`2
ij

,

i.e., that instead of a simple average, we take a weighted average of estimates
coming from different paths i, with weights proportional to `2

ij. This method
has also been used in solving the inverse problem; it uses slightly more compu-
tations on each iteration but, since iterations are somewhat more reasonable,
requires fewer iterations.

Successes of the known algorithms. The known algorithms have been
actively used to reconstruct the slownesses, and, in many practical situations,
they have led to reasonable geophysical models.
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Limitations of the known algorithms. As we have mentioned, the in-
verse problem is often under-determined: we have fewer observations than
unknowns. As a result, based on the same measurement results, we may have
many different velocity models vj = 1/sj that are all consistent with the same
measurement results.

The above algorithms selects one of these velocity models; often, however,
the velocity model that is returned by the existing algorithm is not geophysi-
cally meaningful: e.g., it predicts velocities outside of the range of reasonable
velocities at this depth. To get a geophysically meaningful model, a geophysi-
cist tries to adjust the initial approximation – so as to avoid this discrepancy
between the actual distribution and the geophysical knowledge.

This adjustment usually requires several iterations. It is a very time-consuming
process, because there is no algorithmic way of adjusting the initial data,
only heuristic recipes, and as a result, each adjustment requires many time-
consuming trial-and-error steps. Moreover, because of the non-algorithmic
character of adjustment, it requires special difficult-to-learn skills; as a result,
the existing tools for solving the seismic inverse problem are not as widely
used as they could be.

What we do in this paper. To enhance the use of the seismic data, it
is imperative to make the corresponding tools more accessible and their han-
dling more algorithmic. To achieve this goal, we must incorporate the expert
knowledge into the algorithm for solving the inverse problem.

In this paper, we describe how to do it.

3 How to Use Explicit Expert Knowledge: Interval and Fuzzy In-
formation

Main idea. As we have mentioned, one of the reasons why the mathemati-
cally valid solution is not geophysically meaningful is that at some points, the
velocity is outside the interval of values which are possible at this depth for
this particular geological region.

Additional information provided by experts: case of interval infor-
mation. To take this expert knowledge into consideration, it is reasonable to
explicitly solicit, from the experts, the intervals of possible values – and then
modify the inverse algorithms in such a way that the velocities are always
within these intervals.
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To be more precise, for each cell j, a geophysicist provides us with the smallest
and largest possible value of slowness for this cell. In other words, for each cell
j, the expert provides us with an interval [sj, sj] that is guaranteed to contain
the actual (unknown) value of slowness sj.

We select the initial model s
(0)
j that is consistent with this information, i.e.,

for which s
(0)
j ∈ [sj, sj] for all j. Then, we modify the algorithm form solving

the inverse problem in such a way that on all iterations, slownesses always
stay within the corresponding intervals.

Comment. For some cells – e.g., in some cells which are close to the surface
and for which the geophysical structure is well known – we may even know
the exact values sj of slowness. It is worth mentioning that this information
can also be expressed in interval terms – by saying that for each of these cells,
the geophysicist provides us with a degenerate interval [sj, sj].

How to use interval information: first idea. To explain our first idea,
let us reformulate the problem. Suppose that we start with the slowness values
s
(0)
j which are within the given intervals: s

(0)
j ∈ [sj, sj]. On the next iteration,

however, we may get values s
(0)
j + ∆sj which are outside the corresponding

intervals.

For example, we may know the exact values of slownesses in the upper lay-
ers (closer to the surface), and these are exactly the values which we select
as the initial approximation for the corresponding cells. Since we know the
exact slownesses for the surface cells, for paths which only go through these
surface cells, the predicted travel-times are close to the measured ones – so
no correction is needed. However, for paths which do go through deeper cells
as well, we will, in general, need a correction. The existing algorithms evenly
spread the resulting correction ∆s to all the cells along the path. So, if we
follow these algorithms, then, in addition to the deeper cells, we also update
slownesses in the upper layer cells. This update changes the slowness values
and thus, leads to values outside the given (degenerate) interval [sj, sj].

To remedy this situation, we can do the following. For each cell j, after an
iteration of, say, Hole’s algorithm, we have a corrected value of the slowness
s
(k)
j which approximates the actual (unknown) slowness sj: sj ≈ s

(k)
j . We also

know that sj should be located in the interval [sj, sj]. Similar to our previous
analysis, it is therefore reasonable to use the Least Squares Method to combine
these two piece of information: i.e., we look for the value sj ∈ [sj, sj] for which

the square (sj − s
(k)
j )2 is the smallest possible. In geometric terms, we look for

the value within the given interval [sj, sj] which is the closest to s
(k)
j . Thus:
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• If the value s
(k)
j is already within the interval, we keep it intact.

• If the value s
(k)
j is to the left of the interval, i.e., if s

(k)
j < sj, then the closest

point from the interval is its left endpoint sj.

• Similarly, if the value s
(k)
j is to the right of the interval, i.e., if s

(k)
j > sj,

then the closest point from the interval is its right endpoint sj.

Algorithm resulting from the first idea. We thus arrive at the following
modification of the existing iterative algorithms for solving the seismic inverse
problem. This modification takes into account that for each cell j, we know
an interval [sj, sj] which is guarantee to contain the actual (unknown) value
of slowness sj.

We start with an initial approximation s
(0)
j which is consistent with this infor-

mation, i.e., for which s
(0)
j ∈ [sj, sj] for all j. On each iteration, we first apply

the iteration step from the existing algorithms, and then update the resulting
values s

(k)
j as follows:

• if s
(k)
j < sj, we replace the value s

(k)
j with sj;

• if s
(k)
j > sj, we replace the value s

(k)
j with sj;

• if sj ≤ s
(k)
j ≤ sj, we keep the value s

(k)
j .

After this additional step, we perform the next iteration, etc.

Advantage of the first idea. The main advantage of this approach is that
on every iteration, we get slownesses which are within the given intervals.
Thus, in contrast to the existing algorithms, we always remain within the
given intervals and thus, avoid non-physical solutions.

First idea: main problem. The main problem with this approach is that it
is still too slow. Let us explain why it may be even slower than the traditional
algorithms. We will illustrate this on the same example on which we explained,
above, why the un-modified Hole’s algorithm can lead us outside the desired
interval for sj. In this example, Hole’s algorithm equally distributes the dis-
crepancy ∆ti between all the cells along the i-th path: both surface cells and
the deeper cells, as ∆s = ∆ti/Li. After the slowness adjustment of all these
cells, we change the original predicted travel-time value of ti =

∑
j

`ij · sj to

the new value ti +
∑
j

`ij ·∆sj = ti + ∆s ·Li = ti + ∆ti, i.e., to t̃i. Thus, on the

next iteration, the discrepancy along this path will be much smaller (or even
disappear completely).
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In the new algorithm, after producing the same correction ∆s = ∆i/Li, we, in
effect, dismiss it for all the upper-layer cells – because for these cells, adding
this correction will bring us outside the given (degenerate) interval. As a result,
after the correction, the resulting addition to the travel-time comes only from
the deeper cells, and is is thus equal to `i ·∆s, where `i is the overall length
of all deep portions of the i-th path. Since the path also covers several upper-
layer cells, we have `i < Li, thus `i ·∆s < Li ·∆s = ∆ti; so, a large portion of
discrepancy re-appears in the next iteration.

Second idea. To speed up computations, it is desirable not just to dismiss
the slowness corrections that lead us outside the given intervals [sj, sj], but
also to re-distribute the travel-time discrepancy that remains uncovered as
a result of this dismissal. In other words, instead of simply repeating each
iteration step from Hole’s algorithm, we modify these steps so as to make
computations faster and still remain within given slowness intervals.

On each iteration of the new procedure, we start with the slowness values s
(k−1)
j

which are within given intervals [sj, sj], and we want to produce corrected

values s
(k−1)
j + ∆sj within these same intervals. The condition s

(k−1)
j + ∆sj ∈

[sj, sj] is equivalent to ∆sj ∈ [∆j, ∆j], where ∆j
def
= sj−s

(k)
j , and ∆j

def
= sj−s

(k)
j .

If the values ∆sij corresponding to each path i are within the desired interval
[∆j, ∆j], then their average is also inside this same interval – and, if we want to
use the weighted average instead (as mentioned above), this weighted average
is also guaranteed to be within the given interval. Thus, to guarantee that the
resulting average corrections are within the given intervals, it is sufficient, for
each path i, to produce the distribution of slowness corrections ∆sij which are
within the corresponding intervals [∆j, ∆j].

Let us therefore concentrate on a single path i. To better describe the idea,
let us assume that ∆ti > 0 (the case ∆ti < 0 is similar). In this case, our idea
is as follows:

• First, we distribute the time discrepancy ∆ti by the overall length Li of i-th
path, and get the correction value ∆sij = ∆ti/Li.

• If for all the cells j along the path i, we have ∆sij ≤ ∆j, then we are done.
• Otherwise, if there are some cells for which the correction ∆i/Li exceeds the

allowed maximum correction ∆i, then for these cells, we use the maximum
correction instead.

• These slowness corrections result in the travel-time change of t
(1)
i

def
=∑

j
`ij ·∆j, where the sum is taken only over the cells for which the slowness

correction is fixed at the value ∆j; the set of such cells will be denoted by

I(1). The remaining discrepancy ∆t
(1)
i

def
= ∆ti − t

(1)
i needs to be distributed
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between the remaining cells along the i-th path.
• Then, we divide the remaining discrepancy ∆t

(1)
i between the remaining

cells, producing the value ∆s
(1)
ij = ∆t

(1)
i /L

(1)
i , where L

(1)
i =

∑
j 6∈I(1)

`ij is the

total path within the remaining cells.
• If for all the remaining cells j, we have ∆s

(1)
ij ≤ ∆j, then we are done.

• Otherwise, if there are some cells for which the correction ∆t
(1)
i /L

(1)
i exceeds

the allowed maximum correction ∆i, for these cells, we use the maximum
correction instead; let us denote the set of such cells by I(2). These slowness

corrections result in the travel-time change of t
(2)
i

def
=

∑
j∈I(2)

`ij ·∆j.

• The remaining discrepancy ∆t
(2)
i

def
= ∆t

(1)
i − t

(2)
i is distributed between the

remaining cells along the i-th path, etc.

Comment. In general, the above algorithm leads to the assignment of slow-
ness corrections which stay within the desired intervals – and, at the same
time, still cover the discrepancy ∆ti. Sometimes, however, even after picking
each slowness correction at its highest allowed level ∆j, we will still not cover
the observed time discrepancy ∆ti: i.e.,

∑
j

`ij · ∆j < ∆ti. This means that

the observed travel-times are inconsistent with the intervals [sj, sj]. This in-
formation should be reported back to the experts, so that the experts will be
able to adjust their bounds for sj in such a way that the new bounds will be
consistent with the observations.

Advantage of the second idea. The main problem with the first idea was
that it while it guaranteed the slownesses within the given intervals, this idea
required, in general, more iterations than the original algorithm – because:

• in contrast to the original algorithm in which the discrepancy at the next
iteration is much smaller than in the previous one,

• in the first idea, the discrepancies may decrease only slightly.

When we use the second idea, then on each iteration, we decrease all the
discrepancies ∆ti as much as possible. As a result, on the next iteration, the
discrepancy (if any) is much smaller than the original one. Thus, the number
of iterations is about the same as for the original algorithm – and at the same
time, we always get slownesses within the given interval.

So, in terms of the number of iterations, the algorithm based on the second
idea is faster than the algorithm based on the first idea – and comparable
with the number of iterations in the traditional algorithm for solving seismic
inverse problems.
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Drawbacks of the second idea. The main drawback of the second idea
is that while the number of iterations goes down, the number of necessary
computations within each iteration drastically increases.

Indeed, for each path i, in the original Hole’s algorithm, all we need to do is
compute the overall length Li along the i-th path, divide ∆i by Li, and then
add the resulting slowness correction ∆s to all the slowness values. Computing
the length Li – by adding the lengths `ij of the segments within different cells
j – requires as many arithmetic operations as there are such cells; let us denote
this number by c. Division is 1 operation, and adding ∆s to all c slownesses
also requires c arithmetic operations. Thus, overall, we need c + 1 + c = O(c)
operations.

For the algorithm based on the second idea, we still need O(c) steps in the
first round, but we may then need second, third, etc., rounds. On each round,
at least one of the new slowness correction is assigned to one of the cells; thus,
the number of rounds cannot exceed the overall number of cells c along the
path. On the other hand, it is possible that we will need as many rounds as
there are cells. So, in the worst case, we need c rounds with O(c) operations
in each – to the total of O(c2) arithmetic operations.

In other words, each iteration may require O(c2) steps instead of O(s). Paths
can be long, up to 100-200 km, and cells can be of 1 km size, so we can
have c in hundreds. For such paths, a c times increase (= hundreds times
increase) can drastically increase the computation time of each iteration and
thus, drastically increase the overall computation time. It is thus desirable to
come up with a faster method of reallocating the travel-time discrepancy. Let
us describe such a method.

How to use interval information: third idea. We want to find the cor-
rections ∆sj ∈ [∆j, ∆j] for which

∑
j

`ij · ∆sj = ∆ti. Similarly to the above

derivation of the original Hole’s algorithm, the resulting system is clearly
under-determined: we have a single equation to find the values of several vari-
ables ∆sj. Since the system is under-determined, we have an infinite number
of possible solutions, so we must select the most geophysical reasonable of
these solutions.

Similarly to the above derivation of Hole’s algorithm, the idea is that there is
no reason to assume that the value ∆sj in one of these cells is different from
the values in other cells, so we assume that ∆sj ≈ ∆sj′ for all j and j′. In
Hole’s algorithm, we simply assumed that all these approximate equalities are
actual equalities, so all the values ∆sj along the path were equal, but that
assumption leads to slownesses outside given interval ranges. So, in general,
some of these equalities can only be approximately true. As we mentioned in
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our derivation of Hole’s code, this situation can be naturally handled by using
the Least Squares Method, i.e., in this case, by selecting, from all the solutions
of the above system of equations and inequalities, the values ∆sj for which
the objective function

∑
j 6=j′

(∆sj −∆sj′)
2 takes the smallest possible value.

For simplicity, we can add values j = j′ in the sum without changing the
value of the objective function – since, for j = j′, the corresponding differences
∆sj −∆sj′ are 0s anyway. This objective function can be further simplified if

we introduce the notations E
def
=

1

c

∑

j

∆sj and δj
def
= ∆sj−E, so that

∑
j

δj = 0.

In these notations, ∆sj −∆sj′ = δj − δj′ , so

∑

j,j′
(δj − δj′)

2 =
∑

j

δ2
j +

∑

j′
δ2
j′ − 2 ·∑

j

∑

j′
δj · δj′ .

The last term is the product of the two 0 sums

(
∑
j

δj

)
·
(

∑
j′

δj′

)
, and the first

two terms contain 2c2 expressions δ2
j – these two terms cover each of c squares

δ2
j the same number of times (namely, 2c2/c = 2c times). Thus, the objective

function is equal to 2c ·∑
j

δ2
j . So, minimizing the objective function is the same

as minimizing the population variance V =
1

c
·∑

j

δ2
j of the population ∆sj.

In case of no linear constraints, there exist efficient algorithms for minimizing
variance under interval uncertainty in time O(c · log(c)) (which is faster than
O(c2)); see, e.g., [6,10]. Let us show that these algorithms can be modified to
the case when have a linear constraint.

Third idea: towards a faster algorithm. Let us consider the case ∆ti >
0. The case ∆ti < 0 can be treated similarly.

If we have ∆sj ∈ [∆j, ∆j) for two different values j and j′ for which
∆sj 6= ∆sj′ , then we can replace both values ∆sj and ∆sj′ by their weighted

average
`ij ·∆sj + `ij′ ·∆sj′

∆sj + ∆sj′
without changing ∆ti, and the variance will only

decrease. Similarly, if for some j, we have ∆sj < ∆j, and for some other j′ 6= j,
we have ∆sj′ = ∆j′ > ∆sj, then we can replace both values by their weighted
average and thus, decrease the variance.

Thus, when the variance attains its minimum, all the values ∆sj which are not
“maxed out” to ∆j are equal to each other, and all the maxed-out values do
not exceed the common non-maxed-out value. Let p denote the overall number
of the values ∆sj which are maxed out when the variance is minimized. So, if
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we sort the bounds ∆1, . . . , ∆c into a non-decreasing sequence

∆(1) ≤ ∆(2) ≤ . . . ≤ ∆(c),

then the smallest value of the variance is attained when ∆s(1) = ∆(1), ∆s(2) =
∆(2), . . . , ∆s(p) = ∆(p), and ∆s(p+1) = . . . = ∆s(c) = δ. The common non-
maxed-out value δ can be found from the condition that

∑
j

`ij · ∆sj = ∆ti,

i.e., that Ap + Lp · δ = ∆ti, where

Ap
def
=

p∑

j=1

`i(j) ·∆(j) and Lp
def
=

c∑

j=p+1

`i(j).

Therefore, δ =
∆ti − Ap

Lp

. Thus, once we know the value p, we can easily com-

pute the corresponding slowness corrections ∆sj. The only remaining problem
is how to find the value p.

To find p, we must use the fact that since only p values ∆sj are maxed out,
the (p+1)-st value ∆s(p+1) is not maxed out, so δ = ∆s(p+1) < ∆(p+1). Hence,

from the above equation for ∆ti, we conclude that ∆ti < Sp
def
= Ap+Lp ·∆(p+1).

(For p = c, a similar inequality holds if we take ∆c+1) = ∞.)

Similarly, from the fact that the non-maxed-out value δ should be larger than
all the maxed-out ones, we conclude that δ ≥ ∆(p), hence ∆ti ≥ Ap +Lp ·∆(p).
Let us simplify this condition. By definition,

Ap + Lp ·∆(p) =
p∑

j=1

`i(j) ·∆(j) +
c∑

j=p+1

`i(j) ·∆(p).

By moving the term proportional to ∆(p) from the first into the second sum,
we conclude that

Ap + Lp ·∆(p) =
p−1∑

j=1

`i(j) ·∆(j) +
c∑

j=p

`i(j) ·∆(p) = Ap−1 + Lp−1 ·∆(p) = Sp−1.

So, the two conditions on ∆ti take the form Sp−1 ≤ ∆ti < Sp.

It is easy to check that for every p, when we go from Sp−1 to Sp, then for
every j, the coefficient at `i(j) can only increase, so Sp−1 ≤ Sp. Thus, the
sequence S0, . . . , Sc is non-decreasing: S0 ≤ S1 ≤ S2 ≤ . . . ≤ Sc, and p can be
found as the only value for which ∆i belongs to the corresponding subinterval
[Sp−1, Sp). So, we arrive at the following algorithm for computing slowness
corrections for each path.
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Third idea: algorithm. We start with the initial slowness values s
(0)
j which

are within the given intervals [sj, sj].

On each iteration of the new procedure, we start with the slowness values
s
(k−1)
j which are within given intervals [sj, sj]. We then compute, for each cell

j, the values ∆j = sj − s
(k−1)
j and ∆j = sj − s

(k−1)
j .

Based on these slownesses, we find the paths from the sources to the sensors,
compute the predicted travel-times ti along each path, and the discrepancies
∆ti = t̃i − ti.

Let us describe how we compute the correction ∆sj along the i-th path. Once
we have computed these corrections for all the paths, then for each cell j, we
take the average (or weighted average) of all the corrections coming from all
the paths which pass through this cell.

We will consider the case when ∆ti > 0; the case when ∆ti < 0 is treated
similarly. In this case, we first sort all c values ∆j along the i-th path into a
non-decreasing sequence

∆(1) ≤ ∆(2) ≤ . . . ≤ ∆(c).

Then, for every p from 0 to c, we compute the values Ap and Lp as follows:

A0 = 0, L0 = Li, Ap = Ap−1 + `i(p) ·∆(p), Lp = Lp−1 − `i(p).

After that, for each p, we compute Sp = Ap + Lp · ∆(p+1), and we find p for
which Sp−1 ≤ ∆ti < Sp. Once this p is found, we take ∆s(j) = ∆j for j ≤ p,

and for j > p, we take ∆s(j) =
∆ti − Ap

Lp

.

When ∆ti < 0, we similarly sort the values ∆j into a decreasing sequence,
and find p so that the first p corrections are “maxed out” to ∆j, and the rest

c− p corrections are determined from the condition ∆s(j) =
∆ti − Ap

Lp

.

Computational complexity of the new algorithm. Let us show that
this new algorithm is indeed faster.

• Sorting c values requires time O(c · log(c)).
• Computing each of c values Ap, Lp, and Sp requires a finite number (O(1))

of elementary arithmetic operations, so the overall computation time for
this step is O(c).

• Finally, once p is found, we need a finite number of step to compute each
of c slowness corrections ∆sj, so we also need O(c) steps.
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Overall, we thus need O(c · log(c)) + O(c) + O(c) = O(c · log(c)) steps.

Case of fuzzy uncertainty. Experts are often not 100% sure about the
corresponding intervals. They can usually produce a wider interval [sj, sj] of
which they are practically 100% certain, but in addition to that, they can also
produce narrower intervals about which their degree of certainty is smaller.
As a result, instead of a single interval, we have a nested family of intervals
corresponding to different levels of uncertainty – i.e., in effect, a fuzzy interval
(of which different intervals are α-cuts).

So, instead of simply saying that a given solution to the seismic inverse prob-
lem is satisfying or not, we provide a degree to which the given solution is
satisfying – as the largest α for which the velocity at every point is within the
corresponding α-cut intervals.

How we can use fuzzy uncertrainty. How can we incorporate the fuzzy
information into the inverse method? A natural way to do it is as follows:
instead of simply getting a solution in which all the slownesses belong to the
guaranteed (wide) intervals corresponding to α = 0, we try to find the largest
possible value α for which all the slownesses belong to the corresponding
(narrower) α-cuts.

We can find such α, e.g., by simply trying α = 0, α = 0.1, α = 0.2, etc., until
we reach such a value of α that the process no longer converges. Then, the
solution corresponding to the previous value α – i.e., to the largest value α
for which the process converged – is returned as the desired solution to the
seismic inverse problem.

Comment. What we have just described is the basic straightforward way
to take fuzzy-valued expert knowledge into consideration. Several researchers
have provided other ideas for successfully using fuzzy expert knowledge in
geophysical problems; see, e.g., [2,4,12] and references therein. We plan to add
some of these ideas to our modified algorithms.

4 How to Use Implicit Expert Knowledge

Implicit knowledge: case of interval uncertainty. In other cases, for
each 3-D point, the reconstructed velocity is within the corresponding inter-
val, but the geophysical structure is still not reproduced right. In such cases, it
is difficult to explicitly describe, to a computer system, what exactly is wrong,
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but often, we can describe it implicitly. Namely, the seismic inverse algorithm
– like many other algorithms for solving the inverse problem – is based on
the assumption that the measured errors are independent and normally dis-
tributed. As a result, as a criterion of how well the velocity model fits the
measurement results, these algorithms use of mean square error

E
def
=

N∑

i=1

(xi − x̃i)
2,

where N is the overall number of measured travel-times, xi is the i-th travel-
time according to the model, and x̃i is the measured travel-time.

For geophysically adequate reconstructions, this mean square error is indeed
reasonably small, and the individual differences xi− x̃i are indeed more or less
normally distributed. On the other hand, for geophysically meaningless mod-
els, while the mean square error E is also small, several individual differences
|xi − x̃i| are very large in comparison with the others – so that the resulting
empirical distribution of these differences is far from normal.

To avoid this problem, it is desirable to require not only that the mean square
error be small, but that all individual differences |xi − x̃i| be small as well.
Ideally, we should have an exact upper bound ∆ on such a difference, and
dismiss a solution as non-physical if at least one of the differences exceeds ∆.

How we can use interval uncertrainty. How can we guarantee that we
only get solutions which are physical in the above sense?

• Traditionally, once the mean square error is small, we stop iterations.
• Instead, we propose to continue iterations until all the differences are under

∆.

If this does not happen, then we need to do what traditional algorithms do if
we do not get a convergence – restart computations with a different starting
velocity model.

Implicit expert knowledge: fuzzy uncertainty. Experts cannot always
provide us with exact upper bounds ∆; instead, based on the expert’s experi-
ence of solving inverse problems, we can have different bounds with different
degrees of certainty – i.e., again, in effect, a fuzzy number as an upper bound.

How we can use fuzzy uncertainty. How can we use this fuzzy infor-
mation? A natural idea is – like in the use of explicit expert knowledge – to
find the largest α for which we can decrease all the differences xi − x̃i into
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the corresponding α-cut intervals. Similar to the case of explicit knowledge,
we can do it, e.g., by trying α = 0, α = 0.1, etc.

Future work: need for data fusion. Yet another way to detect velocity
models that are not geophysically reasonable is to take into consideration other
geophysical and geological data, such as the gravity and geological maps, etc.
– in other words, fuse several different types of data. Preliminary results of
such fusion are indeed very encouraging; see, e.g., [1].
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Appendix: Computational Complexity of the Seismic Inverse Prob-
lem and Why Traditional Methods of Solving Inverse Problems Do
Not Work Well in the Seismic Case

Most inverse problems in science and engineering are ill-posed. The
above ill-posedness of the seismic problem is a common feature in applications:
most inverse problems in science and engineering are ill-posed; see, e.g., [14].

Smoothness: traditional approach to solving ill-posed inverse prob-
lems. A typical way to solve an inverse problem is to find a natural physically
meaningful property of actual solution, and use this a priori information to se-
lect a single most physically meaningful solution among many mathematically
possible ones. This process is called regularization.

Typically, in inverse problems, this natural property is smoothness. Smooth-
ness can be naturally described in precise mathematical terms. For example,
when we reconstruct a 1-D signal x(t), then the degree of smoothness can be
defined as follows. At a given moment of time t, the larger the absolute value
|x′(t)| of the derivative x′(t), the less smooth the signal is. Thus, at a given
time t, the value |x′(t)| is a natural degree of the signal’s non-smoothness.
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Overall, a natural degree of non-smoothness can be defined as a mean square

of these degrees corresponding to different moments t, i.e., as J
def
=

∫
(x′(t))2 dt.

Most regularization techniques try to find, among many signals that are con-
sistent with given observations, the smoothest signal, i.e., the signal with the
smallest possible value of the degree of non-smoothness J .

Smoothness: discrete case. In real life, we only have the values

x(t1), x(t2), . . . ,

of the signal x(t) at discrete moment of time

t1, t2 = t1 + ∆t, . . . , ti+1 = ti + ∆t, . . .

Based on this discrete data, we can approximate the derivative x′(t) as a
difference

x(ti+1)− x(ti)

∆t
,

so minimizing the integral J is equivalent to minimizing the corresponding
integral sum

Jdiscr
def
=

∑

i

(x(ti+1)− x(ti))
2.

Smoothness: 2-D case. For a 2-D velocity distribution f(n1, n2), similarly,
a natural assumption is that this distribution is smooth. Similarly to the 1-D
case, a natural way to describe the degree of smoothness of a given distribution
is to use the integral sum

J
def
=

∑
n1,n2

s(n1, n2),

where

s(n1, n2)
def
=

(f(n1 + 1, n2)− f(n1, n2))
2 + (f(n1, n2 + 1)− f(n1, n2))

2.

Alternatively, we can describe this criterion as the sum of the squares of the
differences in intensity between all possible pairs (p, p′) of neighboring pixels
p = (n1, n2) and p′ = (n′1, n

′
2):

J =
∑

p,p′ are neighbors
(f(p)− f(p′))2.
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Smoothness makes problems computationally solvable. A practically
useful property of the above degrees of non-smoothness J is that the expression
J is a convex function of the signal x(ti) or f(n1, n2). Thus, if the conditions
describing the fact that the unknown velocity distributions is consistent with
the observations is also described by linear or, more generally, smooth inequal-
ities, then the problem of finding the regularized solution can be reformulated
as a problem of minimizing a convex function J on the convex set.

Similarly, if we fix the degree of non-smoothness and look, among all the solu-
tions with a given degree of non-smoothness, for the one that is the closest to
the original approximate solution, we also have a problem of minimizing a con-
vex function (distance) on the convex set (of all functions that are consistent
with the observations and have the desired degree of smoothness).

It is known that, in general, the problems of minimizing convex functions over
convex domains are algorithmically solvable (see, e.g., [15]), and smoothness-
based regularization has indeed been efficiently implemented; see, e.g., [14].

For the seismic inverse problem, we only have piecewise smoothness.
In geophysics, we have clear layers of different types of rocks, with sharp
difference between different layers, so we face an inverse problem with only
piecewise smoothness; see, e.g., [11].

Traditional smoothness measures are not adequate for piecewise
smoothness. In the piecewise smooth case, the above measure of non-
smoothness is not applicable, because it would include neighboring pixels on
the different sides of the border between the two layers.

Appropriate smoothness measures for piecewise smoothness case.
To avoid the above problem, we need to only take into account the pairs of
neighboring pixels that belong to the same zone (layer), i.e., consider the sum

J(Z) =
∑

p,p′ are neighbors in the same zone
(f(p)− f(p′))2,

where Z denotes the information about the zones. This measure makes com-
putational sense only if we know beforehand where the zones are – i.e., where
is the border between the two zones.

However, in real life, finding the border is a part of the problem. In this case,
we can use the same smoothness criterion not only to reconstruct the original
velocity distribution, but also to find the border location. Specifically, we want
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to look for the zone distribution and for the zone location for which the above
criterion J takes the smallest possible value.

In other words, we fix the number of zones, and we characterize the non-
smoothness of an velocity distribution by a criterion

J∗ = min
all possible divisions Z into zones

J(Z).

The resulting problem is no longer convex. The resulting functional
is no longer convex, because the division into zones is a discrete problem.
It is known that non-convex problems are, in general, more computationally
difficult than the corresponding convex ones (see, e.g., [8]), and adding discrete
variables makes the problems even more computationally difficult; see, e.g.,
[13].

Complexity of piecewise smooth inverse problems. In the following
sections, we show that in general, the inverse problem for piecewise smooth
case is computationally intractable (NP-hard) even when the relation express-
ing the consistency between the measured results and the desired velocity
distribution is linear.

This proof will follow the proof of NP-hardness of different signal processing
problems described, e.g., in [3,9].

Let us prove that in general, the inverse problem for piecewise smooth case is
computationally intractable (NP-hard).

Main idea of the proof: reduction to a subset problem. To prove
NP-hardness of our problem, we will reduce a known NP-hard problem to the
problem whose NP-hardness we try to prove: namely, to the inverse problem
for piecewise smooth velocity distributions.

Specifically, we will reduce, to our problem, the following subset sum problem
[9,13] that is known to be NP-hard:

• Given:
• m positive integers s1, . . . , sm and
• an integer s > 0,

• check whether it is possible to find a subset of this set of integers whose
sum is equal to exactly s.
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For each i, we can take xi = 0 if we do not include the i-th integer in the
subset, and xi = 1 if we do. Then the subset problem takes the following
form: check whether there exist values xi ∈ {0, 1} for which

∑
si · xi = s.

We will reduce each instance of this problem to the corresponding piecewise
smooth inverse problem.

Reduction to a subset problem: details. Let us consider the following
problem. We want to reconstruct an m×m velocity distribution f(n1, n2). Let
d = bm/2c. We want a piecewise smooth velocity distribution f(n1, n2) that
consists of two zones.

The following linear constraints describe the consistency between the obser-
vations and the desired velocity distribution:

• f(n1, n2) = 1 for n2 > d;

• m∑
i=1

si · f(i, d) = s; and

• f(n1, n2) = 0 for n2 < d.

The problem that we consider is to find the solution with the smallest possible
value of smoothness J∗ among all the velocity distributions that satisfy these
linear constraints.

Let us show that the minimum of J∗ is 0 if and only if the original instance
of the subset problem has a solution.

Indeed, if J∗ is 0, this means that all the values within each zone must be the
same. Since we have values 1 for n2 > d and values 0 for n2 < d, we must
therefore have every value to be equal either to 0 or to 1. Thus, if we have
such a solution, the corresponding values f(i, d) ∈ {0, 1} provide the solution
to the original subset problem

∑
si · xi = s.

Vice versa, if the selected instance of the original subset problem has a solution
xi, then we can take f(i, d) = xi and get the solution of the inverse problem
for which the degree of non-smoothness is exactly 0.

So, if we can solve the inverse problem for piecewise smooth velocity distrib-
utions, we will thus be able to solve the subset sum problem.

This reduction proves that the inverse problem for piecewise smooth velocity
distributions is indeed NP-hard.
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