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Abstract

In many application areas, it is important to consider maxitive measures (idem-
potent probabilities), i.e., mappings m for which m(A U B) = max(m(A),m(B)). In
his papers, J. H. Lutz has used Kolmogorov complexity to show that for construc-
tively defined sets A, one maxitive measure — fractal dimension — can be represented
as m(A) = sug f(x). We show that a similar representation is possible for an arbitrary
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maxitive measure.

1 Introduction

1.1 Probabilities: Reminder

o-additive measures. In probability theory, a probability measure on the set X is defined
as as follows. First, a o-algebra over the set X is defined as a family A4 C 2% of subsets of the
set X that is closed under complement and countable union. A function P : A — R{ from
a o-algebra A to the set R of all non-negative numbers is called o-additive if P(AU B) =
P(A) + P(B) when AN B = () and, more generally, for every countable family of sets {A;}

for which A; N A; = 0 for i # j, we have P (U Ai> =Y P(4;). A probability measure on
i=1 i=1
the set X is then defined as a o-additive measure P for which P(X) = 1.

Why we need a representation theorem. From the purely mathematical viewpoint,
the above definition is a correct standard definition of a probability measure. From a compu-
tational viewpoint, we may need to compute P(A) for an arbitrary set A. Storing a collection
of values P(A) for all possible sets A is prohibitive. Even when X is a finite set of reasonable
size n, if A = 2%, we would need to store 2" values, which is not feasible.
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From the computational viewpoint, it is therefore desirable to produce an alternative
representation of probability measures — ideally, a representation that requires, for sets of
size n, only linearly (or at most polynomially) many values to store. For probability measures,
such representations are well known.

Representation theorem for the finite case. When the universal set X is finite, it is
possible to define P(A) for all subsets A C X, i.e., take A = 2%. In this case, we have
A = [J{=}, hence, due to additivity, P(A) = > P({z}). Thus, in order to describe the

x€A €A
values P(A) for all 2" sets A C X, it is sufficient to describe n values p(z) % P({z}). The
following formula (“representation theorem”) enables us to reconstruct all the values P(A)

from the known values p(z): P(A) =Y p(x).
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Representation theorem for the general case. In the continuous case, e.g., for X = R,
many important probabilities measures can be represented in a similar way, with an integral

instead of the sum:
P(A) = / p(z) dz
A

re
for some continuous function p(x). The corresponding function p(z) — a continuous analogue
of point probabilities p(z) — is called a probability density function.

For some probability measures P, such an integral representation with a continuous
function p(x) is not possible: e.g., this representation is not possible for a point measure P,
for which P, (A) =11if 2o € A and P,,(A) = 0 otherwise.

For such measures, we can still have a similar integral representation if, instead of contin-
uous functions p(x), we also allow “functions” p(x) defined as limits of continuous functions
— with appropriately defined limits as integrals. Such limits are called generalized functions,
or distributions; see, e.g., [2].

For example, the above point measure P, (A) can be represented in the integral form if
we use a delta-function density p(z) = d(z — x¢)

1.2 Idempotent Probabilities, a.k.a. Maxitive Measures

What they are. In many application areas, it is important to consider “idempotent
probabilities” (maxitive measures), i.e., functions m from sets into real numbers for which
m(AU B) = max(m(A), m(B)).

Let us give three examples of maxitive measures.

Example 1: rare events. Many examples of maxitive measures come from the analysis
of rare events; see, e.g., [7]. Rare events — such as unusually large deviations — are extremely
important, because they account for catastrophic failures of technical systems, for natural
disasters such as earthquakes and floods, etc. Since they are rare, we do not have a large
number of observed events of this type and therefore, we cannot use traditional engineering
statistical techniques for processing such events. As an alternative, statisticians have devel-
oped asymptotic techniques, in which instead of describing the probability p(L) of a specific



large deviation L, we try to describe an asymptotic expression p,(L) that describes how the
probability p(L) of a deviation of size > L depends on L. By definition of asymptotic, when
L is large, the actual probability is close to this asymptotic expression, and the larger L (i.e.,
the more important the deviation), the closer this asymptotic estimate p,(L) to the actual
value p(L).

In many cases, for large deviations L, the dependence of p on L is scale-invariant, i.e.,
crudely speaking, leads to p(L) ~ C'- L™ for some real number «. In this case, we have two
parameters to characterize this dependence: C' and «. If we want to characterized the rarity
of an event by a single parameter, then which of these two parameters should we choose? A
small change in « leads to a much faster decrease in p(L) than a small change in C| so it is
natural to select a as a measure of rarity.

In this case, if we have two rare events with rarities a(A) and «(B), what is the rarity
of AU B? In other words, how can we estimate the probability of the event that either
A or B will lead to a large deviation > L? One can easily see that if, say, a(A) < a(B),
then P4(L) > Pgp(L), moreover, Pg(L)/P4(L) — 0 and therefore, asymptotically, the total
probability Psg (L) is equal to pa(L). In other words, our newly defined measure of rarity
satisfies the condition a(A U B) = max(«a(A),«(B)) — i.e., it is a maxitive measure. It is
easy to see that the same property holds if AN B # ().

Usually, o-additive probability measures lead to o-maxitive measures m, i.e., functions
m : A — R for which m(A U B) = max(m(A),mn(B)) and also m <U Ai> = supm(4;).
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Example 2: Hausdorff (fractal) dimension. It is known that many processes in nature
are not smooth, many natural sets are not traditional sets with smooth or piece-wise smooth
boundaries. To characterize such sets, researchers have invented a notion of Hausdorff di-
mension — also known as fractal dimension; see, e.g., [5].

To illustrate this notion (and to show why the resulting function is a maxitive measure),
let us use the following example. Suppose that a fast food company wants to place its
restaurants in a region S. The company has decided on the largest distance ¢ that a person
has to travel from any point to reach the nearest restaurant. What is the smallest number
of restaurants that we need to build to satisfy this requirement?

In mathematical terms, we want to find a finite set S C S such that for every s € S,
there exists s’ € S’ for which D(s,s’) < e, where D(s, ") denotes the distance between the
points s and s’. The smallest possible number of elements in such a set S’ is called the
e-entropy of the set S and denoted by N.(95).

Let us first consider the case when a region S is simply a straight line segment [0, L] (e.g.,
a region along a road). In this case, every restaurant covers at most a stretch of length 2e
(¢ on one side of the restaurant and ¢ on the other side). So, to cover the whole segment,
we need to place at least N(e) > L/(2¢) restaurants. Vice versa, if we have exactly L/(2¢)
restaurants, we can place them at points €, 3¢, ..., (20 + 1) - €, ..., and cover the entire
segment. In general, for a smooth curve, N.(S) ~ ¢/e for some constant ¢ (proportional to
the length of the curve).

If a region S is a square, then each restaurants covers a subregion of area ~ &2, so we
need > c/e? restaurants; vice versa, if we place the restaurants on a grid, we will have an



arrangement with N < ¢/e?. In general, for a regular-shaped 2-D domain S (with piece-wise
smooth boundaries), we have N.(S) ~ ¢/e%.

For a 3-D domain (e.g., if we want to place restaurants in space), we have N.(S) ~ ¢/e&3.
In general, for regular sets for which the notion of a dimension is well defined, N.(S) ~ ¢/&,
where d is the dimension of the region S.

However, e.g., for a trajectory S of a Brownian motion (which is known to be very non-
smooth), with probability 1, we have N.(S) ~ ¢/e'. Tt is natural to say that this trajectory
has dimension 1.5. In general, if for a set S, we have N.(S) ~ ¢/e®, then we say that the
Hausdorff dimension of S is equal to a.

For some sets S, the asymptotic of N, is more complex; e.g., similarly to computational
complexity, we may have logarithmic factors like N.(S) ~ ¢/(g - log(e)). To cover such
cases, we need a slightly more complex definition of the Hausdorff dimension.

Why is this dimension maxitive? Let A and B be two sets with dimensions a(A) < a(B);
this means that to cover A, we can use c4/e*4 elements, and to cover B, we need cp/c“?
elements. Thus, overall, to cover AU B, we need c/e“4 + cp/e*8 ~ cp/e*B elements, so
N.(AUB) =< cg/e*s. On the other hand, to cover both A and B, we need at least as
many elements as to cover B, so N.(AU B) = c¢g/e*8, hence N.(AU B) ~ cp/e*s and
a(AU B) = a(B). Similar arguments cover the case when a(A) = a(B), so, in general, we
have a(AU B) = max(a(A), «(B)) — i.e., Hausdorff dimension is indeed a maxitive measure.

It can also be proven that it is a o-maxitive measure.

Example 3: possibility measures. Maxitive measures are also actively used to describe
the degree of possibility in human reasoning; see, e.g., [1, 6]. The corresponding maxitive
measures are also called possibility measures.

Representation theorem for the finite case. When the universal set X is finite, it is

possible to define m(A) for all subsets A C X. In this case, we have A = [ {z}, hence,
x€A
due to maxitivity, m(A) = max m({x}). Thus, in order to describe the values m(A) for all

2" sets A C X, it is sufficient to describe n values f(z) & m({z}). The following formula

(“representation theorem”) enables us to reconstruct all the values m(A) from the known
values f(x): m(A) = max f(z).
T

Representation theorem for the continuous case: a problem. In the continuous
case, such a representation is no longer possible: e.g., when m(A) is the Hausdorff (fractal)
dimension of a set A, we have f(x) = m({z}) = 0 for all points z, but, e.g., for an interval

A, m(A) =1>0=max f(x).

Lutz’s result. In [4, 3], Jack H. Lutz used Kolmogorov complexity to show that for
constructively defined sets A, the fractal dimension m(A) can be represented as m(A) =

sup f(z).
€A



What we do: in brief. In this paper, we show that a similar representation is possible
for an arbitrary o-maxitive measure.

2 Result

Let us start by describing what we mean by a constructive set. Intuitively, a set is con-
structive if there exists a constructive procedure for producing elements of this set. Every
procedure has to be described by a finite sequence of instructions, i.e., by a finite sequence
of symbols in some alphabet used to describe these instructions. Since there are countably
many such sequences, there can only be countably many constructive sets. We thus arrive
at a following definition:

Definition 1. Let X be a set, and let F C 2% be a countable family of subsets of X.
Elements of F will be called constructive sets.

When we define a maxitive measure, it is reasonable to demand that it is defined, in
particular, for all constructive sets.

Definition 2. By a o-maxitive measure on X, we mean a mapping m : A — R, where
A C 2% is a o-algebra that contains all constructive sets (F C A), and for every sequence

(0.@)
of sets A; € A, m <U Ai> = supm(A;).

i=1 ¢
Comment. In some situations, it is necessary to use an alternative definition of a maxitive
measure, where the value m(A) can be infinite. For example, for the Hausdorff dimension,
we can have infinite-dimensional sets. In this paper, we only consider real-valued maxitive
measures, for which m(A) < +oo for every set A.

Representation theorem. For every o-maxitive measure on X, there exists a function
f: X — R such that for every constructive set A, we have m(A) = sup f(x).
z€A

Proof. In this proof, we use a known monotonicity property of a maxitive measure: that
if A,B € Aand A C B, then m(A) < m(B). Indeed, since AU B = B, we have m(B) =
m(AU B) = max(m(A), m(B)), hence m(B) > m(A).

Let us show that the statement of the theorem holds for f(z) % inf{m(S) : z € S € F}.
Let A be a constructive set. For every point x € A, from the definition of f(z), it follows
that f(z) < m(S) for all constructive sets S that contain this point . In particular, we have
f(z) <m(A). Since m(A) > f(z) for every x € A, we thus conclude that m(A) > sugf(x).
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Let us now take an arbitrary € > 0 and prove that m(A) < sup f(x)+e. If we prove this
€A

for every ¢, then we will be able to conclude that m(A) < sup f(x) hence m(A) = sup f(x).
z€A z€A

Indeed, for every x, by definition of f(z) as the infimum, there exists a constructive set
S, 3 x for which m(S,) < f(x) 4+ €. Since every point z € A belongs to one of the sets S,

we conclude that A C (] S,.
€A
Since the family of constructive sets is countable, the family of all the constructive sets

S, corresponding to all the points z € A is also countable. Thus, since m is a o-maxitive



measure, we conclude that m <U Sx> = supm(S;). Since m(S;) < f(x) + ¢, we thus
2EA €A

conclude that m ( U Sx> = sup(f(x)+¢) = sup f(z)+e. Due to the monotonicity property
€A €A €A

of maxitive measures and the fact that A C | J S, we thus get m(A) < sup f(z) +¢. The
2EA €A
theorem is proven.

Comment. The above representation holds not only for constructive sets, but for more
general sets as well — e.g., as one can easily show by using o-maxitivity, for countable unions
of constructive sets.

For example, let X be a separable metric space, i.e., a metric space with a metric d that
has a countable everywhere dense sequence {x1,s,...,x,,...}. The standard real line or
Euclidean space are separable: we can take points with rational coordinates as x;.

Let F be a family of all the open balls of rational radii with centers in x;. Then, every
open set is a union of such “constructive” sets, and thus, the above representation theorem
holds not only for constructive sets, but for all open sets as well.
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