If an Exact Interval Computation Problem Is NP-Hard, then the
Approximate Problem Is Also NP-Hard: A Meta-Result

Aline B. Loreto!, Laira V. Toscani!, Leila Robeiro?,
Dalcidio M. Cldudio?, Liara S. Leal?,
Luc Longpré?®, and Vladik Kreinovich?

Mnstitute of Computer Science, PPGC
URFGS — Public University of Rio Grande do Sul, Brazil
{loreto,laira,leila}@inf.ufrgs.br

2PUCRS - Pontifical University Catholic of the Rio Grande do Sul, Brazil
dalcidio@inf.pucrs.br, liara@pucrs.br

3Computer Science, University of Texas, El Paso, TX 79968, USA
longpre@cs.utep.edu, vladik@utep.edu

Abstract

In interval computations, usually, once we prove that a problem of computing the exact range is
NP-hard, then it later turns out that the problem of computing this range with a given accuracy is also
NP-hard. In this paper, we provide a general explanation for this phenomenon.

Formulation of the problem. One of the main problems of interval computations is, given a function
f(x1,...,x,) and n intervals x;, to compute the range f(xy,...,X,) of possible values of f when z; € x;.

In interval computations, many subclasses of this general problem are NP-hard: e.g., the problem of
computing the range of a quadratic function, the problem of computing the range of the solution to the
system of linear questions with linear coefficients, the problem of computing the range of variance with
interval data, etc.; see, e.g., [1, 2].

Usually, once we prove that a problem of computing the exact range is NP-hard, then it later turns out
that the problem of computing this range with a given accuracy is also NP-hard.

In theory of computing in general, it is possible that a problem is NP-hard but its approximation is easy
to solve; several packing and scheduling problems have this property; see, e.g., [3]. In this paper, we provide
a general explanation why in interval computations, the introduction of approximations does not make the
problem much easier.

How NP-hardness is proved in general. In general, most proofs of NP-hardness reduce a known
discrete NP-complete problem to the problem in question.

Definition 1. By a discrete problem, we mean the following problem: we are given a discrete object g,
and we need to find a discrete object o such that P(g,0) is true, where the property P can be checked in
polynomial time.

For example, we may start with a propositional satisfiability problem in which g is a propositional formula,
and o are the values of the propositional (“yes”-“no”) variables that make it true.

In most interval computation proofs, this reduction is usually set up in the way that is formally described
below. We show that in this case, the approximate interval computation problem is also NP-hard.

Definition 2. By an algebraic function of n variables, we mean an expression P(x1,...,2Tn,y) that is
formed from n + 1 real-valued variables by using arithmetic operations +, —, -, and /, and functions min
and max, and for which for every x = (x1,...,x,), there exists one and only one y for which P =0 — i.e.,
for which the equality P = 0 determines y as a function of x1,...,%y.

Comment. The corresponding function (explicit or implicit) will be denoted by fp.
We allow implicit functions since we want to also cover the cases when the value y comes, e.g., from solving

a system of linear equations. Explicit functions y = f(z1,...,x,) are a particular case of this definition —
we can, e.g., take P(x1,...,2,) =y — f(z1,...,2,).
Definition 3. By an exact interval computation problem, we mean a class of tuples (P,x1,...,Xy), where

P is an algebraic expression of n intervals, and x; are rational-valued intervals such that for each of these
problems, the values

def , _ def
r = inf{fp(x1,...,2n) : x1 €X1,...,Tp € Xp} and T = sup{fp(21,...,&pn) : T1 € X1,...,&p € Xp}

are rational numbers.

Definition 4. A reduction from a discrete problem P to an exact computation problem P means that for
each instance of the discrete problem P — i.e., for each object g — we feasibly (i.e., in polynomial time) form
an instance Py of the corresponding interval computation problem, so that from the solution to Py, we can
feasibly check whether the original instance of the discrete problem has a solution.

Definition 5. We say that an exact interval computation problem P has a traditional NP-hardness proof if
there is a reduction from a discrete NP-complete problem P to this problem which has the following properties:

e the original instance of the discrete problem has a solution if and only if the range [r,7] of the corre-
sponding interval problem satisfies the inequality v < a(g) (or, alternatively, T > a(g)), where a(g) is
a feasibly computable rational-valued function of g;

e based on a solution o of the discrete problem, we can feasibly compute the values x1, ..., x, for which
fg(mla e axn) S a(g) (COT’T',, fg(xla e axn) Z a(g))z
e vice versa, if we know the values x; for which fq(x1,...,z,) < a(g) (corr., folzi,...,zn) > alg)),

then we can feasibly compute a solution o to the original discrete problem;

e the value r (coor.,) is attained at one of the discretely many points x(d), where d is a discrete string
of length n, and x(d) is a feasible function of d.

Comment. In interval computations, most known NP-hardness results have proofs which are traditional in
this sense. For example, for a quadratic function f,(z1,...,z,), for each variable z;, the minimum of f,
is attained if either (1) z; = z; or (2) z; = T;, or (3) 0f/0x; = 0. If we know, for each 4, which of these
cases d; € {1,2,3} occurs, then we get a system of linear equations from which we can feasibly find the

corresponding point x(d) (where d ... dp).

Definition 6. By an accuracy function, we mean a feasible function € that maps every natural number n
into a positive rational number e(n).

Definition 7. Let C be an exact interval computation problem, and let € be an accuracy function. By
the corresponding approximate interval computations problem, we mean the following problem: given
(P,X1,...,Xn) € C, compute rational numbers a and @ which are €(n)-close to the values r and T corre-
sponding to the exact problem.

Result. If an exact interval computation problem P has a traditional NP-hardness proof, then there exists
an accuracy function for which the corresponding approzimate interval computations problem is also NP-hard.

Proof. We know that a(g) can be computed in polynomial time, i.e., in time < T (n), where n is the size
of the problem and Tj(n) is a polynomial. We also know that r = x(d), hence r can also be computed in
polynomial time (< T5(n)) — once we know a sequence d.

This means that once we know d, then we can compute both the numerators and the denominators of

both fractions p/q) and v'/q Lef a(g) in time < T'(n) err (n) + T5(n). Since in one computation step,

we can produce at most one bit of an integer, this means that the values p, ¢, p’, and ¢’ cannot have more
than T'(n) binary digits — hence p,q,p’,q < 27,

Let us show that if we can compute r with an accuracy , l.e., if we can compute a value 7
for which |7 — 7| < (1/4) - 2727 then we will still be able to check whether r > a(g) — and thus, the
approximate interval computations problem is still NP-hard.

Indeed, we need to check whether r < a(g) or r > a(g). If r < a(g), then 7 < a(g) + (1/4) - 2727("),

Let us now consider the case when r > a(g). In this case, the positive difference r — a(g) = p/q —p'/¢
is equal to 7/(q - ¢') for some positive integer r > 0. Since 7 > 0, we have r > 1, hence r > a(g) + 1/(q - ¢').
Since ¢, ¢’ < 27 we have 1/(q-¢') > 272T(") so we conclude that in this case r > a(g) + 2727, Hence,
F>r—(1/4) 27270 > q(g) + (3/4) - 2727,

So, we will have either 7 < a(g) + (1/4) - 2727 or 7 > a(g) + (3/4) - 2727(™), Based on the rational
value 7, we can feasibly tell which of the two inequalities is true — and thus, we will be able to tell whether
r>alg).

Thus, the original NP-hard problem is reduced to the approximate interval computation problem of
computing 7 — hence, this approximate problem is NP-hard. The statement is proven.

272T(n)72

Comment. We have shown that the approximate interval computation problem is NP-hard for some small
accuracy €. A natural question is: is it NP-hard for all accuracies? The answer to this question depends on
the problem.

Some interval computation problems are scale-invariant — e.g., the problem of computing the range of a
quadratic polynomial. In this case, if we know how to compute the range of an arbitrary instance problem f

with an accuracy ¢, then, in particular, for every § > 0, we will be able to compute the range of f’ def (f/e)-0
with an accuracy ¢ — which is equivalent to computing the range of f with accuracy é.

For such problems, if computing the range with any given accuracy is NP-hard, then it is NP-hard for
any other accuracy as well.

Other problems are not scale-invariant — e.g., if we restrict ourselves only to quadratic polynomials with
coefficients from [—1,1]. In some such cases, we have a prior bound B on the range. In this situation, the
problem of computing the range with, e.g., accuracy B is trivial — just return 7 = 0.

Acknowledgments. This work was supported in part by NASA under cooperative agreement NCC5-209,
NSF grant EAR-0225670, NIH grant 3T34GMO008048-20S1, and Army Research Lab grant DATM-05-02-C-
0046.

References

[1] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, “Exact Bounds on Finite Populations
of Interval Data”, Reliable Computing, 2005, Vol. 11, No. 3, pp. 207-233.

[2] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity and feasibility of data
processing and interval computations, Kluwer, Dordrecht, 1997.

[3] V. Vazirani, Approzimation algorithms, Springer-Verlag, Barlin, 2001.

