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Abstract

In many real-life situations, we only have partial information about
the actual probability distribution. For example, under Dempster-Shafer
uncertainty, we only know the masses m1, . . . , mn assigned to different
sets S1, . . . , Sn, but we do not know the distribution within each set Si.
Because of this uncertainty, there are many possible probability distribu-
tions consistent with our knowledge; different distributions have, in gen-
eral, different values of standard statistical characteristics such as mean
and variance. It is therefore desirable, given a Dempster-Shafer knowledge
base, to compute the ranges of possible values of mean and of variance.

The existing algorithms for computing the range for the variance re-
quire ≈ 2n computational steps, and therefore, cannot be used for large
n. In this paper, we propose new efficient algorithms that work for large
n as well.

1 Formulation of the Problem

In many real-life situations, we only have partial information about the actual
probability distribution. In many practical situations, this uncertainty is natu-
rally described by a Dempster-Shafer (DS) approach (see, e.g., [14]), in which
the knowledge consists of a finite collection of sets S1, . . . , Sn and non-negative
“masses” (probabilities) m1, . . . , mn assigned to these sets in such a way that
m1 + . . . + mn = 1,

In particular, in the 1-D case, instead of the exact probability distribution,
we have a finite collection of intervals x1 = [x1, x1], . . . , xn = [xn, xn], and
we have non-negative “masses” (probabilities) m1, . . . , mn assigned to these
intervals in such a way that m1 + . . . + mn = 1.
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Definition 1. By a (1-D) Dempster-Shafer knowledge base, we mean a pair

K = 〈(x1, . . . ,xn), (m1, . . . , mn)〉, (1)

where xi are intervals and mi are positive numbers for which
∑

mi = 1.

Let us recall how the corresponding knowledge base is interpreted in proba-
bilistic terms. In the simplest case when the Dempster-Shafer knowledge base
consists of a single interval x1 with the mass m1 = 1, this means that we are
sure that the actual probability distribution with the probability density ρ1(x)
is located on this interval, i.e., ρ1(x) = 0 for x 6∈ x1, but we do not know what
exactly distribution we have (i.e., we do not know the exact probability density
ρ1(x)).

If we have several intervals xi, this means that:

• with probability m1, we select the interval x1,

• with probability m2, we select the interval x2,

• . . .

• with probability mn, we select the interval xn.

Then, within the selected interval xi, we select a value x according to some
probability distribution ρi(x) located on this interval. As a result, the overall
probability distribution takes the form

ρ(x) = m1 · ρ1(x) + . . . + mn · ρn(x). (2)

So, the original Dempster-Shafer knowledge base means that the actual (un-
known) probability distribution is of the above type, with ρi(x) located on the
interval xi.

Definition 2. Let K be a Dempster-Shafer knowledge base described by the
formula (1). We say that a probability distribution ρ(x) is consistent with K
if it has the form (2) for some probability distributions ρi(x) located on the
intervals xi.

Comment. For some probability distributions, there is no probability density
function: e.g., for a probability distribution that is located at a point x0 with
probability 1. In this case, instead of continuous functions ρ(x), we also allow
“functions” ρ(x) defined as limits of continuous functions – with appropriately
defined limits as integrals. Such limits are called generalized functions, or distri-
butions; see, e.g., [2]. For example, the above degenerate probability distribution
can be described by a delta-function density ρ(x) = δ(x− x0).
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There exist infinitely many probability distributions of the above type (2).
For each of these distributions ρ, we can find the value of the corresponding
statistical characteristic C(ρ) – e.g., the mean E =

∫
x · ρ(x) dx or the variance

V =
∫

(x − E)2 · ρ(x) dx. As a natural extension of the original probability
distribution to the Dempster-Shafer knowledge base, we can thus take the range
of values of the characteristic C(ρ) among all probability distributions ρ(x)
which are consistent with this knowledge base, i.e.,

C(K) def=
{

C(ρ) : ρ(x) =
n∑

i=1

mi · ρi(x) for some distributions ρi(x) located on xi

}
.

Definition 3. By a statistical characteristic, we mean a mapping which as-
signs, to every probability distribution ρ, a real number C(ρ).

Definition 4. Let C(ρ) be a statistical characteristic, and let K be a
Dempster-Shafer knowledge base. By a range C(K) of the characteristic C
on the knowledge base K, we mean the set of all the values C(ρ) when ρ is
consistent with K.

A natural question is: how can we compute this range for such natural sta-
tistical characteristics as mean and variance?

Algorithms for computing these ranges are known; see, e.g., [11]. However,
the number of computational steps which are needed for some of these algo-
rithms grows exponentially (as ∼ 2n) with the size n of the knowledge base. As
a result, while it is quite possible to compute the exact range when n is small
(e.g., n ≈ 10), for larger n (e.g., for n ≈ 100), these algorithms are no longer
feasible.

In this paper, we produce a new algorithm that computes these ranges in
feasible time – i.e., in time that grows polynomially with the size of the problem.

2 A Similar (But Different) Problem: Comput-
ing Mean and Variance Under Interval Uncer-
tainty

Formulation of the similar problem. A similar problem arises in the re-
lated situation of interval uncertainty. This similar problem is related to the
following natural question: if, instead of the actual distribution, we only have
a sample x1, . . . , xn from this distribution, how can we estimate the mean
and variance of the distribution? In practice, the most widely used esti-

mated are the population mean E =
x1 + . . . + xn

n
and the population average

V =
(x1 − E)2 + . . . + (xn − E)2

n
; see, e.g., [13].
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The values xi usually come from measurement, and measurement results
are never absolutely accurate; the measured values x̃i usually slightly differ
from the true (unknown) values xi of the measured quantities. Often, the only
information that we have about the measurement error ∆xi

def= x̃i − xi is the
upper bound ∆i provided by the manufacturer of the corresponding measuring
instrument; see, e.g., [12]. In this situation, the only information that we have
about the true (unknown) value xi is that xi belongs to the interval xi = [xi, xi],
where xi = x̃i −∆i and xi = x̃i + ∆i.

For different values xi ∈ xi, we get, in general, different values of mean and
variance. It is therefore desirable, given n intervals x1, . . . ,xn, to compute the
range

E def= {E(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}
of possible values of the population mean E and the range

V def= {V (x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of possible values of the population variance V .

Why the interval problem is similar to our DS problem. In the interval
problem, we have n intervals, and we want to find the ranges for the mean and
for the variance. In the particular case of the DS problem when all the masses
are equal (i.e., m1 = . . . = mn = 1/n), we also have n intervals x1, . . . ,xn and
we are also interested in finding the ranges for the mean and for the variance.

Because of this similarity, it is reasonable to use the experience of solving
the interval problem in solving our DS problem.

What is known about the interval problem. Since the population mean
is a monotonic function of n variables xi, its smallest possible value E is attained
when all the values xi are the smallest possible (i.e., when xi = xi for all i), and,
correspondingly, its largest possible value E is attained when all the values xi

are the largest possible (i.e., when xi = xi for all i). Thus, the range E = [E,E]
of the population average can be computed as follows:

E =
x1 + . . . + xn

n
, E =

x1 + . . . + xn

n
.

For the variance V = [V , V ], there exist efficient algorithms for computing
V and – under some reasonable condition – of computing V , but in general,
the problem of computing V has been proven to be NP-hard; see, e.g., [3, 4, 6].
(Crudely speaking, NP-hard means that in general, we cannot compute the
exact range V faster than in exponential time ≈ 2n.)

This NP-hardness result may sound somewhat discomforting. However, as
we will show in this paper, the DS problem is different from the similar interval
problem, and, because of this difference, we can modify the interval-related
algorithms into efficient DS algorithms.

4



Why the DS problem is different from the interval problem. We will
show that for variance, the interval range is, in general, different from the DS
range corresponding to the case m1 = . . . = mn = 1/n – even for the case when
we have a single interval [x1, x1].

Indeed, if we have a single interval, then in the Dempster-Shafer case this
means that we can have an arbitrary distribution located on this interval. One
can check that in this case:

• the smallest possible of the variance is 0 – when this distribution is located
on a single value x1 ∈ [x1, x1] with probability 1, and

• the largest possible value of the variance is equal to (x1−x1)
2/4 – when the

random variable is located at each of the endpoints with the probability
1/2.

Thus, in this case, C(K) = [0, (x1 − x1)
2/4].

On the other hand, for a single value x1 ∈ [x1, x1], the population variance
1
n
·

n∑

i=1

(xi − E)2 is equal to 0 no matter what is the actual value x1 ∈ [x1, x1].

Hence, the corresponding interval is equal to [0, 0] – i.e., for the case when
x1 < x1, the interval corresponding to the Dempster-Shafer case is different
from the interval corresponding to the population statistics.

One might think that this difference is caused by the fact that we have a
single interval. However, it is easy to come up with similar examples when we
have several intervals with m1 = . . . = mn = 1/n. For example, when n = 3
and x1 = x2 = x3 = [0, 1], in the DS approach, it is possible that on each of
these intervals, we have a distribution that is located on each endpoint with
probability 1/2. In this case, we attain the variance V = 1/4 – the largest
possible variance that we can attain for any probability distribution located on
the interval [0, 1].

If on each interval, we pick the same value 1/2 with probability 1, then the
variance is 0. Since the variance is always non-negative, we conclude that, in
the DS approach, V (K) = [0, 1/4].

Let us now estimate the corresponding interval range. Since the population
variance is a non-negative quadratic function, its maximum is attained when
each of the variables takes one of the extreme values xi = 0 or xi = 1. Out
of possible combinations, the population variance attains its largest value when
the values of xi are different, i.e., when two values coincide with 0 or 1, and the
third value is equal to, correspondingly, 1 or 0. In this case, the largest possible
value of population variance is

V =
1
3
·
((

2
3

)2

+ 2 ·
(

1
3

)2
)

=
1
3
· 6
9

=
2
9
,

which is smaller than 1/4.
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3 First (Simple) Result: Computing Mean (and
Other Monotonic Statistical Characteristics)
Under Dempster-Shafer Uncertainty

For the mean C = E, the algorithm E for computing the DS range E(K) is as
follows: the range is [E,E], where

E =
n∑

i=1

mi · xi, E =
n∑

i=1

mi · xi.

Proposition 1. The algorithm E always computes E(K) in time O(n).

Proof. The mean E of an arbitrary distribution of the type (2) can be de-

scribed as
n∑

i=1

∫
x ·ρi(x) dx, where each i-th integral

∫
x ·ρi(x) dx is over the i-th

interval [xi, xi]. For each i, the corresponding integral is the smallest if xi is the
smallest, i.e., if xi = xi with probability 1. Similarly, for each i, the correspond-
ing integral is the largest if xi is the largest, i.e., if xi = xi with probability 1.
Thus, the above formulas indeed describe the desired range for E.

Each of these two formulas requires n additions and one division, hence
overall, we need O(n) computational steps. The proposition is proven.

Comment. For the case when m1 = . . . = mn = 1/n, these DS-related formulas
coincide with the above formulas for the range of E under interval uncertainty.

It turns out that the same is true for all statistical characteristics which are
monotonic (in some reasonable sense). To describe this definition formally, let us
recall the notion of stochastic dominance – a natural generalization of standard
order to probability distributions. Namely, if we know the exact values x and
y of two variables, then we can say that y dominates x if y ≥ x. If x and y
are random variables, then it is natural to say that y dominates x if for every
real number t, the probability that y exceeds t is larger than (or equal to) the
probability that x exceeds t.

The probability Prob(x > t) that x > t can be described as 1−Fx(t), where
Fx(t) def= Prob(x ≤ t) is the corresponding value of the cumulative distribu-
tion function (cdf). Thus, the condition that 1 − Fy(t) ≥ 1 − Fx(t) can be
reformulated as Fy(t) ≤ Fx(t). So, we arrive at the following definition:

Definition 5. We say that a probability distribution with a cumulative dis-
tribution function Fy(t) dominates a probability distribution with a cumulative
distribution function Fx(t) if Fy(t) ≤ Fx(t) for every real number t.

Definition 6. We say that a statistical characteristic is monotonic if C(ρ) ≥
C(ρ′) whenever the distribution described by the density ρ dominates the distri-
bution described by the density ρ′.
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Comment. Mean is a monotonic characteristic; another monotonic character-
istic is the median, i.e., the value m for which F (m) = 1/2.

Proposition 2. For every monotonic statistical characteristic C, the range
C(K) is equal to [C(x), C(x)], where x is a probability distribution in which we
have xi with probability mi, and x is a probability distribution in which we have
xi with probability mi.

Comment. If, for several intervals xi, their lower endpoints xi coincide, then,
of course, we have to add the corresponding probabilities mi to describe the
probability of the corresponding lower endpoint; same for upper endpoints.

Variance is not monotonic: e.g., the degenerate distribution in which x = 1
with probability 1 dominates the uniform distribution on the interval [0, 1],
but the variance of the degenerate distribution is equal to 0 and is, hence,
smaller than the variance of uniform distribution. Thus, for the variance V , we
have to come up with new algorithms for computing the corresponding range
V (K) = [V , V ].

4 Main Result: Computing Variance Under
Dempster-Shafer Uncertainty

The algorithm V for computing V is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) < x(2) < . . . < x(q)

for some q ≤ 2n. We will take x(q+1)
def= +∞.

• Second, we use bisection to find the value k (1 ≤ k ≤ q) for which the
following two inequalities hold:

∑

j:xj≤x(k)

mj · (x(k) − xj) ≤
∑

i:xi≥x(k+1)

mi · (xi − x(k)); (3)

∑

j:xj≤x(k)

mj · (x(k+1) − xj) >
∑

i:xi≥x(k+1)

mi · (xi − x(k+1)). (4)

At each iteration of this bisection, we have an interval [k−, k+] that is
guaranteed to contain k. In the beginning, k− = 1 and k+ = q. At each
stage, we compute the midpoint kmid = b(k− + k+)/2c, and check both
inequalities (3) and (4) for k = kmid. Then:

– If both inequalities (3) and (4) hold for his k, this means that we
have found the desired k.

– If (3) holds but (4) does not hold, this means that the desired value
k is larger than kmid, so we keep k+ and replace k− with kmid + 1.
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– If (4) holds but (3) does not hold, this means that the desired value
k is smaller than kmid, so we keep k− and replace k+ with kmid − 1.

• Once k is found, we compute

Sk
def=

∑

i:x
i
≥x(k+1)

mi · xi +
∑

j:xj≤x(k)

mj · xj , (5)

and
Σk

def=
∑

i:x
i
≥x(k+1)

mi +
∑

j:xj≤x(k)

mj .

If Σk = 0, we take V = 0; otherwise, we compute rk = Sk/Σk, and then

V =
∑

j:xj≤x(k)

mi · (xj − rk)2 +
∑

i:x
i
≥x(k+1)

mj · (xi − rk)2.

Comment. In principle, it is possible that for all the values i, we have xi <
x(k+1) and x(k) < xi. In this case, Σk is the sum of an empty number of terms,
i.e., by a usual definition of such a sum, Σk = 0. In this case, V is also the sum
of an empty set of terms, i.e., 0.

Comment. For the case when m1 = . . . = mn = 1/n, this DS-related algo-
rithm coincides with the algorithm for computing V under interval uncertainty;
see, e.g., [6]. The explanation for this coincidence is given in the proof of the
algorithm’s correctness.

The algorithm V for computing V is as follows:

• First, we sort all n midpoints x̃i =
1
2
· (xi + xi) into a non-decreasing

sequence. After this sorting, we can assume that the intervals xi are
sorted in such a way that x̃1 ≤ x̃2 ≤ . . . ≤ x̃n. We take x̃n+1 = +∞.

We say that k is proper if x̃k > x̃k−1 or k = 1.

For each k, we denote by l(k) the largest value for which x̃l = x̃k, and
by s(k), the smallest value for which x̃s = x̃k. (Hence, the value s(k) is
always proper.)

• Second, we use bisection to find the value k (1 ≤ k ≤ n) for which the
following two inequalities hold:

n∑

j=k

mj · (xj − x̃k) <

k−1∑

i=1

mi · (x̃k − xi); (6)

n∑

j=k

mj · (xj − x̃k−1) ≥
k−1∑

i=1

mi · (x̃k−1 − xi). (7)
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At each iteration of this bisection, we have an interval [k−, k+] that is
guaranteed to contain k. In the beginning, k− = 1 and k+ = n + 1. At
each stage, we compute the midpoint kmid = b(k− + k+)/2c, and check
both inequalities (6) and (7) for k = kmid. Then:

– If both inequalities (6) and (7) hold for this kmid, this means that we
have found the desired k.

– If, for kmid, (6) holds but (7) does not hold, this means that the
desired value k is smaller than kmid, so we keep k− and replace k+

with kmid − 1.

– If, for kmid, (7) holds but (6) does not hold, this means that the
desired value k is larger than kmid, so we keep k+ and replace k−

with kmid + 1.

Once k is found, we compute

E
def=

k−1∑

i=1

mi · xi +
n∑

j=k

mj · xj ,

and then

V =
k−1∑

i=1

mi · (xi − E)2 +
n∑

j=k

mj · (xj − E)2.

• Third, we use bisection to find the proper value k (1 ≤ k ≤ n) for which
the following two inequalities hold:

n∑

j=l(k)+1

mj · (xj − x̃k) ≤
l(k)∑

i=1

mi · (x̃k − xi); (8)

n∑

j=k

mj · (xj − x̃k) ≥
k−1∑

i=1

mi · (x̃k − xi). (9)

At each iteration of this bisection, we have an interval [k−, k+] that is
guaranteed to contain k. In the beginning, k− = 1 and k+ = n. At each
stage, we compute the proper index kmid = s(b(k− + k+)/2c) correspond-
ing to the midpoint, and check both inequalities (8) and (9) for the proper
value k = kmid. Then:

– If both inequalities (8) and (9) hold for this kmid, this means that we
have found the desired k.

– If, for kmid, (8) holds but (9) does not hold, this means that the
desired value k is smaller than kmid, so we keep k− and replace k+

with kmid − 1.
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– If, for kmid, (9) holds but (8) does not hold, this means that the
desired value k is larger than kmid, so we keep k+ and replace k−

with l(kmid) + 1.

Once k is found, we compute

V =
k−1∑

i=1

(xi − x̃k)2 +
n∑

j=k

(xj − x̃k)2.

• Finally, as V , we take the largest of the two values of V obtained on the
second and on the third steps.

Comment. Since, as we have mentioned, even when m1 = . . . = mn = 1/n, the
DS-related bound V may be different from the corresponding interval bound,
this algorithm is different from the algorithms for computing V under interval
uncertainty.

Proposition 3. The algorithms V and V always compute the endpoints of the
range V (K) = [V , V ] in time O(n · log(n)).

Comment: how good are these algorithms? Since even simple sorting requires
at least O(n · log(n)) steps (see, e.g., [1]), algorithms like this, that compute
a bound of a statistical interval characteristic in O(n · log(n)) steps, can be
considered a “golden standard” for such algorithms.

Proof of Proposition 3. This proof is similar to the proofs from [5, 7, 8, 10]
in its use of convexity.

It is known that the variance V (ρ) is an example of a convex statistical
characteristic, i.e., a characteristic for which C(α · ρ + (1− α) · ρ′) ≤ α ·C(ρ) +
(1− α) ·C(ρ′) for every two distributions ρ and ρ′ and for every α ∈ (0, 1). For
convex characteristics, the following is true:

Lemma. Let C be a convex characteristic, and let

K = 〈(x1, . . . ,xn), (m1, . . . ,mn)〉
be a Dempster-Shafer knowledge base. Then, among all probability distributions
ρ which are consistent with K (i.e., all distributions of type (2)):

• The smallest possible value C is attained when for each i from 1 to n, we
use a 1-point distribution in which xi is equal to some value with proba-
bility 1.

• The largest possible value C is attained when for each i from 1 to n, we use
a 2-point distribution for xi, in which xi can only attain endpoint values
xi and xi.
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Proof of the Lemma. For simplicity, we will consider discrete distribu-
tions which are located on finitely many points. For example, the distribu-
tion ρ1 is located at points x

(1)
1 , . . . , x

(N1)
1 with probabilities, correspondingly,

p
(1)
1 , . . . , p

(N1)
1 ; similarly, for every i, the distribution ρi is located at points

x
(1)
i , . . . , x

(Ni)
i with probabilities, correspondingly, p

(1)
i , . . . , p

(Ni)
i ;

With respect to computing expectations like V (ρ), every continuous distri-
bution can be approximated, with arbitrary accuracy, by discrete ones. So,
the result holds for all possible probability distributions. (Alternative, we can
consider continuous distributions and integrals instead of sums; the proof will
remain largely the same.)

Let us replace the two values x
(j)
i and x

(j′)
i whose probabilities are, corre-

spondingly, mi · p(j)
i and mi · p(j′)

i , with their convex combination

xi
def= α · x(j)

i + (1− α) · x(j′)
i

(where α
def= p

(j)
i /(p(j)

i +p
(j′)
i )) whose probability is mi·pi, where pi

def= p
(j)
i +p

(j′)
i .

Since the characteristic C is convex, the resulting value C can only decrease.
Since both values x

(j)
i and x

(j′)
i were in the interval [xj , xj ], their convex

combination xi is also in this same interval.
Thus, if the minimum of C is attained for some distribution ρi which is

located at Ni different points x
(j)
i , then we can replace two different values by

their convex combination and attain the same minimum by using a distribution
located at Ni−1 different points. We can repeat this reduction again and again
until we reach a distribution located at a single point xi.

So, the minimum of C(ρ) is indeed attained when each distribution ρi (1 ≤
i ≤ n) is located at a single point xi with probability 1.

Similarly, if, in the distribution ρi, we replace a point x
(j)
i whose probability

is p
(j)
i by two points xi and xi with probabilities p

(j)
i ·α and p

(j)
i · (1−α), where

α
def=

xi − x
(j)
i

xi − xi

, then x
(j)
i = α · xi + (1− α) · xi. Therefore, due to convexity of

C, this replacement can only increase the corresponding value of C(ρ).
Thus, if the maximum of C is attained for some distribution ρi in which

Ii internal points x
(j)
i ∈ (xi, xi) have non-zero probabilities, then, by replacing

each internal point x
(j)
i with a probabilistic combination of endpoints xi and xi,

we get a new distribution that attains the same maximum and in which only
Ii − 1 internal points have non-zero probability. We can repeat this reduction
again and again until we reach a distribution located only at the endpoints xi

and xi. This is exactly the distribution described in the Lemma; thus, the
Lemma is proven.

Proof of the result about V . Due to the Lemma, the smallest possible value
V of the variance V is attained when for each i, the distribution ρi is located
at some point xi ∈ [xi, xi] with probability 1. One can check that in this case,
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the variance takes the form V =
n∑

i=1

mi · x2
i −E2, where E =

n∑
i=1

mi · xi. So, to

find the value V , we must find the values xi ∈ xi for which this expression is
the smallest possible.

One can see that for the case when m1 = . . . = mn = 1/n, the above expres-
sion for V coincides with the standard expression for the population variance.
For this case, an algorithm for computing the smallest possible value of V is
given in [6]. In view of this fact, to solve our minimization problem, we will
generalize the algorithm from [6] to this more general case of possible different
masses mi.

Similarly to [6], let us start with simple calculus. Let f(x1, . . . , xn) be a
differentiable function on a box B

def= x1× . . .×xn, and let x− = (x−1 , . . . , x−n ) ∈
B be a point at which f attains its smallest value on this box.

Then, for every i, the function fi(xi)
def= f(x−1 , . . . , x−i−1, xi, x

−
i+1, . . . , x

−
n )

also attains its minimum on the interval [xi, xi] at the point xi = x−i .
According to the basic calculus, this minimum is either attained in the in-

terior of the interval, in which case dfi/dxi = 0 for xi = x−i , or the minimum
is attained at one of the endpoints of the interval [xi, xi]. If the minimum is
attained at the left endpoint xi, then the function fi cannot be decreasing at
this point, so dfi/dxi ≥ 0. Similarly, if the minimum is attained at the right
endpoint xi, then dfi/dxi ≤ 0.

By definition of the function fi(xi), the value of the derivative dfi/dxi for
xi = x−i is equal to the value of the partial derivative ∂f/∂xi at the point x−.
Thus, for each i, we have one of the following three cases:

• either xi < x−i < xi and ∂f/∂xi = 0;

• or x−i = xi and ∂f/∂xi ≥ 0;

• or x−i = xi and ∂f/∂xi ≤ 0.

For f = V , as one can easily see, ∂V/∂xi = 2mi · (xi − E), so the sign of
this derivative is the same as the sign of the difference xi − E. Therefore, for
the point x− at which the variance V attains its minimum, we have one of the
following three situations:

• either xi < x−i < xi and x−i = E;

• or x−i = xi and x−i ≥ E;

• or x−i = xi and x−i ≤ E.

In the first case, xi < E < xi; in the second case, E ≤ xi, and in the third case,
xi ≤ E.

Let us show that if we know where E is in comparison to the endpoints of
all the intervals, i.e., to which “zone” [x(k), x(k+1)] the value E belongs, we can
uniquely determine the values x−i for all i.

Indeed, when x(k+1) ≤ xi, this means that E ≤ x(k+1) ≤ xi, so E ≤ xi.
Thus, we cannot have the first case (in which E > xi), so we must have either
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the second or the third cases, i.e., we must have xi = xi or xi = xi. If the
interval xi is degenerate, then both cases lead to the same result. If the interval
is non-degenerate, then we cannot have the third case – in which xi < xi ≤ E
hence xi < E – and thus, we must have the second case, i.e., x−i = xi. Thus,
x(k+1) ≤ xi implies that x−i = xi.

Similarly, x(k) ≥ xi implies that x−i = xi, and in all other cases, we have
x−i = E.

All that remains is to find the appropriate k. Once k is fixed, we can find
the values x−i in linear time, and then compute the corresponding value V in
linear time. The only condition on k is that the average of the corresponding
values x−i should be within the corresponding zone [x(k), x(k+1)).

In principle, we can find k by exhaustive (linear) search. Since there are 2n
possible small intervals, we must therefore repeat O(n) computations 2n times,
which takes 2n · O(n) = O(n2) time. Together with the original sorting – that
takes O(n · log(n)) time – we thus get a quadratic time algorithm, since

O(n2) + O(n · log(n)) = O(n2).

Let us now show that we can find k faster. We want to satisfy the conditions
x(k) ≤ E and E < x(k+1). The value E is the weighted average of all the values
x−i , i.e., we have

E = Sk + (1− Σk) · E, (10)

where Sk is defined by the formula (5) and Σk is defined in the description of
the algorithm V. By moving all the terms proportional to E to the left-hand
side of (10), we conclude that Σk · E = Sk, i.e., that E = Sk/Σk (= rk; the
case when Σk = 0 is handled later in this proof). The first desired inequality
x(k) ≤ E thus takes the form Sk/Σk ≤ x(k), i.e., equivalently, Σk · x(k) ≤ Sk,
i.e.,


 ∑

i:xi≥x(k+1)

mi +
∑

j:xj≤x(k)

mj


 · x(k) ≤

∑

i:x
i≥x(k+1)

xi +
∑

j:xj≤x(k)

xj . (11)

If we subtract mi · x(k) (or, correspondingly, mj · x(k)) from each term in the
right-hand side and move terms proportional to xj−x(k) is to the left-hand side
of the inequality, we get the desired inequality (3).

When k increases, the left-hand side of the inequality (3) increases – because
each term increases and new terms may appear. Similarly, the right-hand side
of this inequality decreases with k. Thus, if this inequality holds for k, it should
also hold for all smaller values, i.e., for k − 1, k − 2, etc.

Similarly, the second desired inequality E < x(k+1) takes the equivalent form
(4). When k increases, the left-hand side of this inequality increases, while the
right-hand side decreases. Thus, if this inequality is true for k, it is also true
for k + 1, k + 2, . . .

If both inequalities (3) and (4) are true for two different values k < k′, then
they should both be true for all the values intermediate between k and k′, i.e.,
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for k +1, k +2, . . . , k′−1. Let us show that both inequalities cannot be true for
k and for k + 1. Indeed, if the inequality (3) is true for k + 1, this means that

∑

j:xj≤x(k+1)

mj · (x(k+1) − xj) ≤
∑

i:xi≥x(k+2)

mi · (xi − x(k+1)). (12)

However, the left-hand side of this inequality is not smaller than the left-hand
side of (4), while the right-hand side of this inequality is not larger than the
right-hand side of (4). Thus, (12) is inconsistent with (4). This inconsistency
proves that there is only one k for which both inequalities are true, and this k
can be found by the bisection method as described in the above algorithm V.

How long does this algorithm take? In the beginning, we only know that k
belongs to the interval [1, 2n] of width O(n). At each stage of the bisection step,
we divide the interval (containing k) in half. After I iterations, we decrease the
width of this interval by a factor of 2I . Thus, to find the exact value of k, we
must have I for which O(n)/2I = 1, i.e., we need I = O(log(n)) iterations. On
each iteration, we need O(n) steps, so we need a total of O(n · log(n)) steps.
With O(n · log(n)) steps for sorting, and O(n) for computing the variance, we
get a O(n · log(n)) algorithm. The statement about the algorithm V is proven.

Comment. In the above text, we considered the case when Σk 6= 0. In a com-
ment after the description of the algorithm for computing V , we have mentioned
that it is possible to have Σk = 0, i.e., it is possible that for all the values i, we
have xi < x(k+1) and x(k) < xi.

In this case, since the values x(k) are sorted endpoints xi and xi, from the
fact that xi < x(k+1), we conclude that xi ≤ x(k) – since x(k) is the largest of
the endpoints which are smaller than x(k+1).

Similarly, x(k) < xi implies that x(k+1) ≤ xi. Therefore, in this case, xi ≤
x(k) ≤ x(k+1) ≤ xi for all i. Hence, all the intervals xi contain the value x(k). If
on each interval xi, we take a distribution that is located at x(k) with probability
1, we get the resulting 1-point distribution for which V = 0. Thus, in this case,
indeed V = 0 (in accordance with the above algorithm).

Proof of the result about V . Due to the Lemma, the largest possible value
V of the variance V is attained when for each i, the distribution ρi is located at
two points: xi and xi. Let pi denote the probability of xi; then the probability
of xi is equal to 1− pi. One can check that in this case, the variance takes the
form

V =
n∑

i=1

mi · (pi · x2
i + (1− pi) · x2

i )− E2,

where

E =
n∑

i=1

mi · (pi · xi + (1− pi) · xi).

So, to find the value V , we must find the values pi ∈ [0, 1] for which this
expression V is the largest possible.
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Let us apply the calculus-based analysis to the above problem of maximizing
the expression V as a function of n variables p1, . . . , pn. Here,

∂V

∂pi
= mi · (x2

i − x2
i )− 2 · E · (xi − xi) =

2mi · (xi − xi) ·
(

xi + xi

2
− E

)
= 2mi · (xi − xi) · (x̃i − E),

where x̃i is the midpoint of the interval xi. So, the sign of this derivative
coincides with the sign of the difference x̃i − E. Thus, similarly to the case of
V , from the fact that V attains maximum, we conclude that for every i, we have
three possible situations:

• either 0 < pi < 1 and x̃i = E;

• or pi = 0 and x̃i ≤ E;

• or pi = 1 and x̃i ≥ E.

Let us show that if we know where E is in comparison to the midpoints x̃i

of all the intervals, then we can uniquely determine almost all the values pi –
except a few with the same x̃i.

Indeed, when x̃i > E, then we cannot have neither the first case (in which
E = xi) nor the second case, so we must the third case pi = 1, i.e., we must
have xi = xi with probability 1.

Similarly, when x̃i < E, then we have pi = 0, i.e., we have xi = xi with
probability 1.

When x̃i = E, then we cannot say anything about pi: all we know is that
we have xi with some probability pi and xi with the probability 1− pi.

In our algorithm, we have sorted the intervals in such a way that their
midpoints form an increasing sequence. So, we can assume that the values x̃i

are already sorted. In principle, there are two possible cases:

• the mean value E corresponding to the optimal distribution is different
from all the values x̃i, and

• the mean value E corresponding to the optimal distribution coincides with
one of the values x̃i.

Let us show that both cases are indeed possible:

• If we have two intervals [−5,−4] and [4, 5] with probability 1/2 each, then
the mean value E must be within the interval [(−5 + 4)/2, (5 − 4)/2] =
[−0.5, 0.5] and therefore, cannot coincide with any of the midpoints −4.5
and 4.5.

• On the other hand, in the above-cited example where we have three in-
tervals [0, 1] with probability 1/3 each, we must have E = x̃i for some i,
because otherwise all three distributions ρi would be concentrated on one
of the endpoints, and we already know that this way, we cannot attain the
maximum of V (K).

Let us analyze these two cases one by one.

15



In the first case, let k denote the smallest integer for which x̃k > E. Then,
according to the above description, we have xi = xi for i < k and xj = xj

for j ≥ k, hence E =
k−1∑
i=1

mi · xi +
n∑

j=k

mj · xj . Our selection of k means that

x̃k−1 ≤ E < x̃k. Substituting the expression for E into this double inequality,
we get the inequalities described in the algorithm.

Similar to the proof of correctness for the algorithm V, we can conclude that
there is only one such k, and that the corresponding value k can indeed be found
by the bisection described in the algorithm.

In the second case, let k be the first value for which E = x̃k. By definition
of k, we must have x̃k > x̃k−1, so this k is a proper value. Let us recall that
for each k, by l(k) we denoted the largest index for which x̃l(k) = x̃k. Then, we
have

E = x̃k =
k−1∑

i=1

mi · xi +
l(k)∑

i=k

mi · Ei +
n∑

j=l(k)+1

mj · xj ,

where by Ei, we denoted the mean of ρi(x). Since Ei ∈ [xi, xi], we can find the
interval of possible values of the right-hand side of this expression – namely, to
get the lower bound, we replace Ei with xi, and to get the upper bound, we
replace Ei with the upper bound xi. Thus, we conclude that the actual value
x̃k must be between the endpoints of this interval:

l(k)∑

i=1

mi · xi +
n∑

j=l(k)+1

mj · xj ≤ x̃k ≤
k−1∑

i=1

mi · xi +
n∑

j=k

mj · xj .

Similarly to the proof for V , we can now conclude that Part 3 of the algorithm
describes how to find the corresponding value k.

We will just mention that when x̃k = E, then (xi −E)2 = (xi −E)2, hence,
no matter what pi is, the corresponding two terms

mi · pi · (xi −E)2 + mi · (1− pi) · (xi − E)2

in the expression for the variance always add up to the same value mi ·(xi−E)2.
The proposition is proven.

Comment. Similar algorithms can be described not only for the variance, but
also for the characteristic C = E + k0 · σ) (where σ =

√
V and k0 is a fixed

number), a characteristic which is useful in describing confidence intervals and
outliers; see, e.g., [9, 13].

For C, the Lemma is still true: indeed, replacing two points with their mean
decreases σ and leaves E intact, hence decreases C as well. Thus, in this case,
the minimum of C is also attained for 1-point distributions; so we can use
a natural generalization of interval algorithms from [9] to describe this more
general case as well.
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For C, the maximum is also attained for two-point distributions. Differ-
entiating the resulting expression for C w.r.t. pi, we conclude that the sign of
the derivative coincides with the sign of the difference x̃i − E′ for some linear
combination E′ of E and σ. So, once we know where E′ is in relation to the
midpoints, we can make a similar conclusion about the maximizing distributions
ρi – the only difference is that now the formulas expressing E′ in terms of the
selected values xi are more complex.

5 Conclusions

In many real-life situations, we only have partial information about the actual
probability distribution. For example, under Dempster-Shafer uncertainty, we
only know the masses m1, . . . , mn assigned to different sets S1, . . . , Sn, but we
do not know the distribution within each set Si. Because of this uncertainty,
there are many possible probability distributions consistent with our knowledge;
different distributions have, in general, different values of standard statistical
characteristics such as mean and variance. It is therefore desirable, given a
Dempster-Shafer knowledge base, to compute the ranges of possible values of
mean and of variance.

The existing algorithms for computing the range for the variance require
≈ 2n computational steps, and therefore, cannot be used for large n. In this
paper, we propose new efficient algorithms that work for large n as well.

It is worth mentioning that while for the Dempster-Shafer uncertainty, there
exist efficient algorithms for computing the range of the variance, in a similar sit-
uation of interval uncertainty, the problem of computing the range for variance
is NP-hard. Thus, with respect to computing the values (and ranges) of statisti-
cal characteristics, the case of Dempster-Shafer uncertainty is computationally
simpler than the case of interval uncertainty.
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