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ABSTRACT
In data processing, we input the results exi of measur-
ing easy-to-measure quantities xi and use these results to
find estimates ey = f(ex1, . . . , exn) for difficult-to-measure
quantities y which are related to xi by a known relation
y = f(x1, . . . , xn). Due to measurement inaccuracy, the
measured values exi are, in general, different from the (un-
known) actual values xi of the measured quantities, hence
the result ey of data processing is different from the actual
value of the quantity y.

In many practical situations, we only know the bounds ∆i

on the measurement errors ∆xi
def
= exi − xi. In such situa-

tions, we only know that the actual value xi belongs to the
interval [exi−∆i, exi +∆i], and we want to know the range of
possible values of y. The corresponding problems of interval
computations are NP-hard, so solving these problems may
take an unrealistically long time. One way to speed up com-
putations is to use quantum computing, and quantum ver-
sions of interval computations algorithms have indeed been
developed.

In many practical situations, we also know some con-
straints on the possible values of the directly measured quan-
tities x1, . . . , xn. In such situations, we must combine inter-
val techniques with constraint satisfaction techniques. It is
therefore desirable to extend quantum interval algorithms
to such combinations. As a first step towards this combi-
nation, in this paper, we consider quantum algorithms for
discrete constraint satisfaction problems.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Numerical Algorithms and Prob-
lems; G.1.0 [Mathematics of Computing]: Numerical
Analysis—Error analysis; G.4 [Mathematics of Comput-
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ing]: Mathematical Software—Algorithm design and analy-
sis

1. INTRODUCTION

1.1 Importance of interval computations
In many practical problems, we are interested in the value

of a physical quantity y that is difficult or even impossible to
measure directly. Since it is difficult to measure y directly,
we then measure y indirectly, i.e., we measure the values
of easier-to-measure quantities x1, . . . , xn which are related
to y in a known way y = f(x1, . . . , xn), and then we use
the results exi of measuring xi to compute the estimate ey =
f(ex1, . . . , exn) for the desired quantity y.

Measurements are never 100% accurate; as a result, the
measured values exi is, in general, different from the actual

value xi of the measured property: ∆xi
def
= exi − xi 6= 0.

As a result, the estimate ey = f(ex1, . . . , exn) differs from the
actual value y = f(x1, . . . , xn) of the desired quantity –
even when we know the exact algorithm for the dependence
y = f(x1, . . . , xn) between xi and y.

Traditionally in science and engineering, it is assumed
that we know the probability of different values of measure-
ment errors ∆xi. These probabilities are usually determined
when we calibrate the measuring instrument used to measure
xi, i.e., when we compare the results of measuring with this
instrument and the results of measuring with a much more
accurate standard measuring instrument. However, in many
real life situations, we do not know these probabilities:

• in state-of-the-art measurements, the instrument we
use is the best available; in such situations, there is no
better measuring instrument and so, calibration is not
possible;

• in manufacturing, calibration is, in principle, possible,
but its cost is often much higher than the cost of the
sensor itself.

In such cases, instead of the probabilities, we only know the
bounds ∆i on the absolute value of the measurement error
provided by the manufacturer of the measuring instrument.
In this case, after we get the measurement result exi, the
only information that we have about the (unknown) actual
value xi of the i-th measured quantity is that xi belongs to



the interval xi
def
= [exi −∆i, exi + ∆i]. In this case, we must

determine the range

y
def
= {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}

of possible values of y = f(x1, . . . , xn). Computing this
range is the main problem of interval computations; see,
e.g., [14].

1.2 The need for quantum algorithms in inter-
val computations and in CSPs

In general, interval computation problems are difficult to
solve (NP-hard), even for quadratic functions f(x1, . . . , xn);
see, e.g., [15]. This means, in effect, that any algorithm for
computing the range will need, in the worst case, computa-
tion time which grows exponentially with the number n of
inputs. For large n, the resulting computation time becomes
unrealistically long.

One way to speed up computations is to use quantum al-
gorithms; see, e.g., [16]. The main attraction of quantum
computing is that it can speed up computations. In partic-
ular, Grover’s quantum algorithm [9, 10, 11, 18] searches an
unsorted list of N elements to find an element with a given
property. In non-quantum computations, every such search
algorithm requires, in the worst case, N steps; Grover’s al-
gorithm can find this element in time O(

√
N) with arbitrary

high probability of success.
It is known that in many interval computation problems,

constraint satisfaction techniques help [14]. It is also known
that in some practical problems, there are known relation
between the directly measured quantities x1, . . . , xn, so in-
stead of finding the range of the function f(x1, . . . , xn) on
the box x1× . . .×xn, we must find the range of this function
under the corresponding constraints.

It is therefore desirable to extend quantum algorithms de-
scribed in [16] to the case when we also have constraints.

1.3 Scope of this work
In this paper, we start with the simplest type of con-

straint satisfaction problems (CSP): discrete CSPs, and we
show how quantum algorithms can be used to solve these
problems.

We hope that these algorithms will eventually lead to ef-
ficient quantum algorithms for solving interval-related con-
tinuous CSP problems as well.

Remark. We only consider quantum computing within the
standard quantum physics. It is known that if we consider
non-standard versions of quantum physics (e.g., a version in
which it is possible to distinguish between a superposition
of |0〉 and |1〉 and a pure state) then, in principle, we can
solve NP-complete problems in polynomial time; see, e.g.,
[1] and references therein, and also [2, 17, 19].

2. K-CSP PROBLEMS
In this paper, we will consider discrete constraint satis-

faction problem (CSP), where each of n variables x1, . . . , xn

can take d ≥ 2 possible values, and the problem is to find
the values xi which satisfy given constraints. A simple ex-
haustive search can solve this problem in time ∼ dn, where
∼ means equality modulo a term which is polynomial in the
length of the input formula.

In this paper, we will mainly consider k-CSP, in which
every constraint contains ≤ k variables.

One of the fastest (in terms of proven worst-case complex-
ity) algorithms for k-CSP was proposed by Schöning [24].
Schöning’s algorithm is a multi-start random walk algorithm
that repeats the polynomial-time random walk procedure S
exponentially many times. This procedure S takes as input
a k-CSP problem and does the following:

• Choose an initial assignment a (x1 = a1, . . . , xn = am)
uniformly at random.

• Repeat 3n times:

• If all the constraints are satisfied by the assign-
ment a, then return a and halt.

• Otherwise, pick any constraint which is not sat-
isfied by a; choose one of the ≤ k variables xi

involved in this constraints uniformly at random;
modify a by changing the chosen variable xi from
its original value to one of the other d− 1 values
(chosen uniformly at random).

As shown in [24], if the formula F is satisfiable, then each
random walk of length 3n finds a satisfying assignment with
the probability ≥ (d · (1 − 1/k) + ε)−n, where ε can be
arbitrarily small. Therefore, for any constant probability
of success, after O((d · (1 − 1/k) + ε)n) runs of the ran-
dom walk procedure S, we get a satisfying assignment with
the required probability. Since S is a polynomial time pro-
cedure, the overall running time of this algorithm is also
T ∼ (d · (1− 1/k)+ ε)n. Schöning’s algorithm was, in effect,
derandomized in [6].

3. SATISFIABILITY: AN IMPORTANT
PARTICULAR CASE OF CSP

In the satisfiability problem (SAT), we are given a Boolean
formula F in conjunctive normal form C1 & . . . & Cm, where
each clause Cj is a disjunction l1 ∨ . . . ∨ lk of literals, i.e.,
variables or their negations. We need to find a truth as-
signment x1 = a1, . . . , xn = an that makes F true. Here,
clauses Cj are constraints.

A simple exhaustive search can solve this problem in time
∼ 2n.

k-CSP leads to k-SAT, a restricted version of SAT where
each clause has at most k literals. For k-SAT, Schöning’s
algorithm repeats the polynomial-time random walk proce-
dure S exponentially many times. This procedure S takes
an input formula F and does the following:

• Choose an initial assignment a uniformly at random.

• Repeat 3n times:

• If F is satisfied by the assignment a, then return
a and halt.

• Otherwise, pick any clause Cj in F such that Cj

is falsified by a; choose a literal ls in Cj uniformly
at random; modify a by flipping the value of the
variable xi from the literal ls.

The overall running time of this algorithm is T ∼ (2−2/k)n.
This upper bound is close to the best known upper bound
for k-SAT (see below).



4. AMBAINIS’ OBSERVATION FOR SATIS-
FIABILITY

As we have mentioned, a simple exhaustive search can
solve the satisfiability problem in time ∼ N = 2n. Grover’s
algorithm can find the satisfying assignment a in time
O(
√

N) with arbitrary high probability of success. (More
exactly, this reduction comes from the modification of the
original Grover’s algorithm called amplitude amplification
[3, 5].) Thus, a reasonably straightforward application of

Grover’s technique can solve SAT in time ∼ 2n/2.
Computer simulation of quantum computing suggests that

it may be possible to solve SAT even faster [12]. Can we
actually use quantum computing to solve SAT faster than
in time ∼ 2n/2?

In Schöning’s algorithm for 3-SAT [24], there are N ∼
(2 − 2/k)n results of different runs of S, and we look for
a result in which the input formula F is satisfied. Thus,
Schöning’s algorithm can be similarly sped up from time
T ∼ (2− 2/k)n to

√
T ∼ (2− 2/k)n/2; this observation was

first made by Ambainis [3].
For 3-SAT, Schöning’s algorithm was improved by Rolf

[22] to T ∼ 1.330n. This improvement also consists of expo-
nentially many runs of a polynomial-time algorithm. There-
fore, Rolf’s non-quantum running time T ∼ 1.330n leads to
the corresponding quantum time

√
T ∼ 1.154n.

5. THE FASTEST ALGORITHM FOR K-
SAT

We have mentioned that SAT is a particular case of a
more general discrete constraint satisfaction problem (CSP),
where variables x1, . . . , xn can take d ≥ 2 possible values,
and constraints can be more general than clauses. In par-
ticular, we can consider k-CSP, in which every constraint
contains ≤ k variables. Schöning’s algorithm can be natu-
rally extended from SAT to k-CSP [24]. The running time
of the corresponding algorithm is T ∼ (d · (1 − 1/k) + ε)n,
where ε can be arbitrarily small. Similar to Schöning’s algo-
rithm for k-SAT, this extension to k-CSP can be quantized
with the running time TQ ∼

√
T ∼ (d · (1− 1/k) + ε)n/2. A

different quantum algorithm for 2-CSP is described in [4].
The best known upper bound for k-SAT is given by the

algorithm proposed by Paturi, Pudlák, Saks, and Zane [20,
21]; this algorithm is called PPSZ. This algorithm consists
of exponentially many runs of a polynomial-time procedure.
This procedure is based on the following approach:

• Pick a random permutation π(1), π(2), . . . , π(n) of
the variables.

• Select a truth value of the variable xπ(1) at random.

• Simplify the input formula as follows:

– Substitute the selected truth value for xπ(1).

– If one of the clauses reduces to a single literal,
simplify the formula again by using this literal.

– Repeat such simplification while possible.

• Select a truth value of the first unassigned variable (in
the order π(1), π(2), . . .) at random.

• Simplify the formula as above.

• Continue this process until all n variables are assigned.

As shown in [21], the PPSZ algorithm runs in time T ∼
2n·(1−µk/k), where µk → π2/6 as k increases. The PPSZ
algorithm was derandomized in [23] for the case when there
is at most one satisfying assignment.

Since the PPSZ algorithm also consists of exponentially
many runs of a polynomial-time procedure, we can use
Grover’s technique to design its quantum version which re-
quires time TQ ∼

√
T .

A combination of the PPSZ and Shöning’s approaches
leads to the best known upper bound for 3-SAT: T ∼ 1.324n

(Iwama and Tamaki [13]). Similarly to the previous algo-
rithms, this algorithm also consists of independent runs of a
polynomial-time procedure. So, by applying Grover’s algo-
rithm, we can similarly get a quantum algorithm with time√

T ∼ 1.151n.

6. THE FASTEST ALGORITHM FOR SAT
WITH NO RESTRICTION ON CLAUSE
LENGTH

The best known upper bound for SAT with no restriction
on clause length is given in [8]. The corresponding algo-
rithm is based on the clause shortening approach proposed
by Schuler in [25]. This approach suggests exponentially
many runs of the following polynomial-time procedure S:

• Convert the input formula F to an auxiliary k-CNF
formula F ′. Namely, for each clause Cj longer than k,
keep the first k literals and delete the other literals in
Cj .

• Use a k-SAT algorithm, e.g., one random walk of
Schöning’s algorithm, to test satisfiability of F ′. As-
suming that F has a satisfying assignment a, there are
two possible cases:

– First, the k-SAT algorithm has found a; then we
are done.

– Second, some clause C′
j in F ′ is false under a. If

we could guess this clause, we could then reduce
the number of variables in F by substituting the
corresponding truth values for the variables of C′

j .
Therefore, we choose a clause in F ′ at random and
simplify F by replacing the variables that occur
in this clause with the truth values which come
from the assumption that this clause is false.

• Finally, we recursively apply S to the result of simpli-
fication.

The procedure S runs in polynomial time and finds a satis-
fying assignment (if any) with probability at least

2
−n·

 
1− 1

ln( m
n )+O(ln ln(m))

!
.

This probability can be increased to a constant by repetition
in the usual way, so the algorithm for SAT requires time

T ∼ 2
n·
 

1− 1
ln( m

n )+O(ln ln(m))

!
.

By using Grover’s technique, we can produce a quantum
version of this algorithm that requires time TQ:

TQ ∼
√

T ∼ 2
−(n/2)·

 
1− 1

ln( m
n )+O(ln ln(m))

!
.



7. ANALYZING POSSIBILITY OF FUR-
THER SPEED-UP

So far, we have used Grover’s technique to speed up the
non-quantum computation time T to the quantum computa-
tion time TQ ∼

√
T . Let us show that if Grover’s technique

is the only quantum technique that we use, then we cannot
get a further time reduction. Informally speaking, let us
call a quantum algorithm that uses only Grover’s technique
(and no other quantum ideas) Grover-based. We show that
the following two statements hold:

• Statement 1. If we have a Grover-based quantum
algorithm AQ that solves a problem in time TQ, then
we can “dequantize” it into a non-quantum algorithm
A that requires time T = O(T 2

Q).

• Statement 2. If we have a non-quantum algorithm
that solves a problem in time T , then any Grover-based
quantum algorithm for solving this problem requires
time at least TQ = Ω(

√
T ).

7.1 Demonstration of Statement 1
Without loss of generality, we can assume that the time is

measured in number of steps. Then TQ = t0 + t1 + . . . + ts,
where t0 denotes the number of non-quantum steps in AQ,
s denotes the number of Grover’s searches, and ti denotes
the time required for i-th quantum search.

To show that the first statement holds, let us recall that
the Grover’s algorithm searches the list of N elements to
find an element with the desired property. Exhaustive search
can find this element by N calls to a procedure which checks
whether a given element has this property. While the (worst-
case) running time of exhaustive search is r·N , where r is the
running time of the checking procedure, Grover’s algorithm
enables us to find the desired element in c ·

√
N calls to this

procedure, where c is a constant determined by the required
probability of success. So, the running time of Grover’s
algorithm is r · c ·

√
N .

In the i-th Grover’s search, ti = ri · c ·
√

Ni, where Ni is
the number of elements in the corresponding list and ri is
the running time of the corresponding checking procedure.
So, we can conclude that

Ni =
t2i

r2
i · c2

.

Hence, by using (non-quantum) exhaustive search algo-
rithm, we can perform the same search in time

t′i = ri ·Ni =
t2i

ri · c2
.

Since ri ≥ 1, we conclude that t′i ≤ c′ · t2i , where c′ =
max(1, c−2).

Since t0 is a non-negative integer, we have t0 ≤ t20; since
c′ ≥ 1, we have t0 ≤ c′ · t20. Thus, by replacing each Grover’s
search by the non-quantum search, we get the time T =
t0 + t′1 + . . . + t′s. Here, t′i ≤ c′ · t2i for all i, hence T ≤
c′ · (t20 + t21 + . . . + t2s). Since

t20 + . . .+ t2s ≤ (t0 + . . .+ ts)
2 = t20 + . . .+ t2s +2 · t0 · t1 + . . . ,

we conclude that T ≤ c′ · T 2
Q.

7.2 Demonstration of Statement 2
Since T ≤ c′ · T 2

Q, we have TQ ≥ (1/
√

c′) ·
√

T , i.e., TQ =

Ω(
√

T ).

Remark. Our observation is valid only if we restrict the
use of quantum computation to Grover’s algorithm. There
are quantum techniques which lead to a faster speed-up.
For example, the well-known Shor’s algorithm for factoring
large integers requires polynomial time [26, 27, 18], while all
known non-quantum factorization algorithms require, in the
worst case, exponential time. If we can use such techniques,
we might get more than quadratic speed-up.

8. CONCLUSION
In many real-life applications, we must solve a constraint

satisfaction problem (CSP), i.e., we must find the values
x1, . . . , xn of the quantities xi which satisfy given con-
straints. In general, such problems are difficult to solve
(NP-hard), which means, in effect, that any algorithm for
solving the corresponding problem will need, in the worst
case, computation time which grows exponentially with the
number n of inputs. For large n, the resulting computation
time becomes unrealistically long.

One way to speed up computations is to use quantum
algorithms which can speed up computations. In particular,
Grover’s quantum algorithm searches an unsorted list of N
elements, and in time O(

√
N), finds an element with a given

property. It is therefore desirable to use quantum computers
to speed up algorithms for solving CSPs.

In this paper, we consider the simplest type of constraint
satisfaction problems: discrete k-CSPs, where each of n
variables x1, . . . , xn can take d ≥ 2 possible values, and
every constraint contains ≤ k variables. A simple exhaus-
tive search can solve this problem in time ∼ dn. Several
algorithms have been proposed which solve k-CSP problems
faster, with worst-case time complexity T � dn. We show
that for these algorithms, Grover’s technique can reduce the
computation time to TQ ∼

√
T .

A similar reduction can be achieved for algorithms which
solve particular cases of discrete CSP problems, such as par-
ticular cases of propositional satisfiability. We also demon-
strate that if we only use Grover’s technique, then we can
achieve at most quadratic speed-up: namely, if we have a
non-quantum algorithm that solves a problem in time T ,
then any Grover-based quantum algorithm for solving this
problem requires time at least TQ = Ω(

√
T ).
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