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Abstract—In 1951, K. J. Arrow proved that, under certain « to claim A; and A, to be of equal quality for the group
assumptions, it is impossible to have group decision making (denotedA; ~ A,) if there is a tie.
rules which satisfy reasonable conditions like symmetry. This

Impossibility Theorem is often cited as a proof that reasonable Case of three or alternatives is not easyWhen we have
group decision making is impossible.

We start our paper by remarking that Arrow's result only three or more alternatives, t'here is ho suph simply ruIeE to
covers the situations when the only information we have about b& more precise, we can still come up with many possible
individual preferences is their binary preferences between the group decision rules, but all these rules will be, in some sense,

alternatives. If we follow the main ideas of modern decision counter-intuitive.

making and game theory and also collect information about the

preferences between lotteries (i.e., collect the utility values of Arrow’s result. Arrow has explicitly formulated several rea-

dlffer_ent.alternatlves)l, then r_easor_1ab|e decision making rul_es are conable conditions and showed that no group decision rule

possible: e.g., Nash's rule in which we select an alternative for . Il th diti , diti

which the product of utilities is the Iargest possible. Can.sa“Sfy all these conditions. Arrow’s conditions are very
We also deal with two related issues: how we can detect indi- Straightforward and very natural.

vidual preferences if all we have is preferences of a subgroup, and  The first is the Pareto condition: that if all participants prefer

how we take into account mutual attraction between participants. A; to Ay, then the group should also prefdr to Ay.

The second condition is Independence from Irrelevant Alter-
|. GROUPDECISION MAKING AND ARROW S natives: the group ranking betweel) and A, should depend
IMPOSSIBILITY THEOREM only on how participants rankl; and 4, — and should not

) ) depend on how they rank other alternatives.
In 1951, Kenneth J. Arrow published his famous result aboutArroW has shown that every group decision rule which

group decision making [1], a result that became one of t

main reasons for his 1972 Nobel Prize; see also [16], [2 roup accepts the preferences of one of the participants as
[23], [34]. the group decision and ignores the preferences of all other
The problem. Arrow’s result deals with the following setting. Participants. This clearly violates another reasonable condition
A group ofn participantspl’ ..., P, needs to select betweenOf symmetry: that the group decision rules should not depend
one of m alternatives4, ..., A,,. To find individual prefer- on the order in which we list the participants.

ences, we ask each participaft to rank the alternatives;
from the most desirable to the least desirable: Il. BEYOND ARROW S IMPOSSIBILITY THEOREM: NASH’S
BARGAINING SOLUTION

Stisfies these two condition isdictatorshiprule when the

Aj1 i Aj2 ' Rt Ajn' ] . . o
It is sometimes claimed that reasonable group decision
Based on these: rankings, we must form a single groupmaking is impossible.Arrow’s Impossibility Theorem is often
ranking (in the group ranking, equivalenseis allowed). cited as a proof that reasonable group decision making is
impossible — e.g., that a perfect voting procedure is impossible;

Case of two alternatives is easyin the simplest case when
ee, e.g., [34].

we have only two alternativegl; and A, each participant S
either prefersd; or prefersAs. In this case, it is reasonable,arrow’s result is only valid if we have binary (partial)
for a group: information about individual preferences. We will see that
« to prefer A, if the majority prefersA;, the pessimistic interpretation of Arrow’s result is, well, too
« to prefer A, if the majority prefersA,, and pessimistic.



Indeed, Arrow’s result assumes that the only informatiotat two utility functionsu(B) and v/(B) corresponding to
we have about individual preferences is their binary (“yesWifferent choices of the reference pair are related by a linear
“no”) preferences between the alternatives. This informatigransformationu/(B) = a - u(B) + b for some real numbers
does not fully describe a persons’ preferences: e.g., the saie 0 and b. By using appropriate values and b, we can
preferenced; = A, = Az may indicate that a person stronglythen re-scale utilities to make the scale more convenient (e.g.
prefersA; to A,, and A, to Az, and it may also indicate thatin financial applications, closer to the monetary scale).
this person strongly preferd; to A,, and at the same time,

A, is almost of the same quality aks. Expected utility. Often, we have a “branching” situation

To describe this degree of preference, researchers in dé%Y-O'V'“g n incompatible eventsry, ..., £, W'th probab|||t|es-
sion making use the notion aitility: see, e.g., [22], [23]. p1,-- -, Pn SUCh that exactly one of them will occur. E.g. coins

can fall heads or tails, dice can show 1 to 6, etc. In such

What is utility: a reminder. A person’s rational decisions situations, for every» outcomesBy, ..., B,, we can form a
are based on the relative values to the person of different olatttery by assigning outcomg; if event E; occurs. If we know
comes. In financial applications, the value is usually measung utility ; = u(B;) of each outcome3;, and we know the
in monetary units such as dollars. However, the same monetgrgbability p, = P(F;) of each eventZ;, then the utility of
amount may have different values for different people: e.g.tlee corresponding lottery may be determined as follows.
single dollar is likely to have more value to a poor person We know the probabilityp; of each eventE;. Thus, the
than to a rich one. In view of this difference, in decisiotottery “B; if E;” if equivalent to the lottery in which we get
theory, to describe the relative values of different outcomeB; with probability p;. The fact thatu(B;) = u; means that
researchers use a specidlity scale instead of the moreeachB; is equivalent to gettingi* with probability u; and
traditional monetary scales. A~ with probability 1 — u,;. By replacing eachB; with this

There are many different ways to elicit utility from decisiomew “lottery”, we conclude that the lottery “i’; then B;” is
makers. A common approach is based on preferences ogdquivalent to a two-step lottery in which we:
decision maker amondptteries A simple way to define a , first select®; with probability p;, and
lottery is as follows. Take a very undesirable outcaoAte and « then, for eachi, selectA* with probability u; and A~
a very desirable outcomd™, and then consider the lottery with the probabilityl — u;.

y HES L " oo
A(p) in which we getA™ with probability p and A™ with | . two-step lottery, the probability of getting™ is equal

probability 1 —p (p is given and is usually understood a 0p1-u1+. . .+pn-u, (Often this is obtained by adding suitable

an “objective” probability). Clearly, the largep, the more . S . :

) P , . axioms on combination of lotteries, but the meaning should
prgferabIeA(p). p < p' implies A(p) < Alp). Tradmonal de- be intuitive here). Thus, by our definition of utility, the utility
cision theory is based on assumptions concerning preferences n

over lotteries. For example, the following two assumptions afé the lottery “if £; then B;” is equal tou = }_ p; - u; =
usually adopted as axioms: =1
« the comparison amongst lotteries is a linear order — i.e5
a person can always select one of the two alternative/glue of the utility, so this approach is often called éxpected
and utility approach
« the comparison is Archimedean - i.e. if for all> 0, In the traditional approach, between several alternatives we
an outcomeB is better thanA(p — ¢) and worse than select the one with the largest utility, hence the one with
A(p+e), then itis of the same quality as(p): B ~ A(p) the largest value of the expected utility.
(where A ~ B means thatd and B are of the same

;p(Ei) -u(B;). In mathematical termsy is the expected
1]

Nash’s bargaining solution. So, for each participant?,

quality). . ; : - ,
B ! lection ol— and A+ bl instead of knowing this participants’ preferences, we can
ojtf:?)l:r?:soargubretstiretcrtlgl = Aaon an d,wrgfsset trﬁ;;lofi € determine the utilityu;; def u;(A;) of all the alternatives
= A(0) — Ayq,...,A,. Once we know such utilities, we can ask the

A(1). Due to linearity, for everyp, either A(p) < B, or ion: h ¢ h K lities i
B~ A(p), or B < A(p). If we define theutility of outcome same question: how to transform these known utilities into a

dof reasonable group decision rule?
Basu(B) = sup{p|A(p) < B}, we haveA(u(B)—¢) < B The answer to this question was, in effect, provided by
andA(u(B)+¢) > B; thus, due to the Archimedean propertygnother future Nobelist John Nash who, in his 1950 paper [24],
we haveA(u(B)) ~ B. This valueu(B) is called theutility pag shown that under reasonable assumptions like symmetry,
of the outcomeB. 3 __independence from irrelevant alternatives, aoale invariance
~ As defined above utility always takes values within thg o “invariance under replacing the original utility function
interval [0,1]. It is also possible to define utility to takeu_(A) with an equivalent function - u;(A)), the only group

values within other intervals. Indeed, note that the numericgbcision rule is selecting an alternatidefor which the product
value u(B) of the utility depends on the choice of referenceﬁ A is the | iol
outcomesd~ andA™. If we select a different pair of referencel.fl”i( ) is the largest possible.

outcomes, then the resulting numerical utility valu§B)  Here, the utility functions must be scaled in such a way that
is different. The usual axioms of utility theory guarantethe “status quo” situatiorl(?) is assigned the utility 0. This re-



scaling can be achieved, e.g., by replacing the original utilitrobability u,,;q, otherwiseA~". Depending on the result of
valuesu; (A) with re-scaled values),(A) < u;(A)—u;(A©). this comparison, we can now halve the interjalu]:

For a more detailed discussion on Nash’s bargaining solu-e If, for the participant, the alternativé; is better than this
tion and its application to group decision making, see, e.g., lottery, then we know thati € [uniq,u], SO we have a
[18], [22], [23], [26]. new interval{umiqa, @] of half-width which is guaranteed

It is easy to see that the Pareto condition and Independence to containu.
condition are both satisfied for the Nash’s solution. Let us « If, for the participant, the alternativé; is worse than this

start with the Pareto condition. If all participants preféy lottery, then we know that. € [u, umid], SO we have a
to Ay, this means that;(A;) > u;(Ax) for everyi, hence new interval|u, u;q] of half-width which is guaranteed
g & to containu.

IT wi(A;) > [T ui(Ax) — which means that the group would
i:ré fer A 1o ;‘1=1 After each iteration, we decrease the width of the interval
P J b L . ,u] by half. Thus, afterk iterations, we get an interval of
The Independence condition is even either to check: acco Sth 2-* which contains the actual value— i.e.. we have
ing to Nash’s solution, we prefed; to Ay if ] u;(A;) > determinedu with the accuracy*.
=1

n

IT wi(Ax). From this formula, once can easily see that th&V. WHAT IS THE GUARANTEE THAT PARTICIPANTS WILL
PrRoOVIDE CORRECTUTILITY VALUES?

=1

group ranking betweem; and A, depends only on how
participants rank4; and A, — and does not depend on howProblem: sometimes it is beneficial to cheatThe above
they rank other alternatives. description relies on the fact that we can elicit true prefer-

ences (and hence, true utility functions) from the participants.

CommentNash's solution can be easily explained in terms qfioyever, sometimes, it is beneficial for a participant to cheat
fuzzy logic(see, e.g., [17], [29]: We want all participants tq,q provide false utility values.

be happy, so we _Want the first participant to be happy For example, if a participanP; know the utilities of all

the second participant to be happy, etc. We can @kel) he other participants, then it is sometimes advantageous to
as the “degree of happiness” of the first participan{A) as g1y false utility values. Indeed, as ideal situation Rris

the “degree of happiness” of the second participant, etc. If, When, out ofm alternativesd . .., A,,, the group as a whole

order to formalize “and”, we use the operatidn d’ (0ne of ggjects an alternativel,,, which is the best forP,, i.e, for
the two operations originally proposed by L. Zadeh to describg,; 1, wi(Am,) > ur (A )1 for all j # m,
my) — J .

“and”), then the degree to which all participants are satisfied ] . n

is equal to the produat; (A)-us(A)-. . .-u,(A). So, if we look It is not necessarily true that the produﬁ1 u;(A;) com-

for the alternative which leads to the largest possible degrggted based o ’s true utility is the largest for the alternative
of mutual satisfaction, then we must look for the alternativg,, . However, we can force this product to attain the maxi-
A for which the product; (4) -uz(A)-...-u,(A) attains the mum for A,,, if we report, e.g., a “fake” utility function (A)
largest possible value. for which v} (A,,,) = 1 andu/ (4;) = 0 for all j # m.

Potential applications. This idea can be applied to variousn case of uncertainty, cheating may hurt the cheater:
problems ranging from global problems such as the divisieth observation. In practice, we rarely encounter a situation
of a disputed territory [19], [20], [26] to more down-to-in which one person is familiar with the preferences of
Earth problems such as dividing a cake (or, in general, aifl the others while others have no information about this
inheritance). Many ingenious decisions of this problems aperson’s preferences. Usually, if other participants have no
known; see, e.g., [7], [8], [12], [13], [31]; our point is thatinformation about this person’s preferences, then this person

Nash’s solution can work as well. has no information about the preferences of the others as well.
In this case, cheating may be disadvantageous. For example,
lIl. How WE CAN DETERMINE UTILITIES if we report the above false utility function, then if others have

similar utility functions withu;(A4,,,) > 0 for somem; # m;
Itiis easy to determine, for each participaits his or her and v;(A4;) = 0 for all other j, then for every alternative
utility u,; of a given alternatived; with an arbitrary accuracy 4;, Nash's product is equal to 0. From this viewpoint, all
2. For example, we can use the iteratvisectionmethod ajternatives are equally good, so each of them can be chosen.

in which, at every step, we have an interjal @ that is |n particular, it may be possible that the group selects an
guaranteed to contain the actual (unknown) value of the Ut”ia{ternativeAq which is the worst forP, — i.e., for which

u. _ . ui(Aq) < ui(A4;) for all j # p.
As we have mentioned, in the standard scale; [0,1], SO On the other hand, by reporting the actual utility function,
we can start with the intervak, u] = [0, 1]. P; may lead to the selection of an alternatide which is

At each iteration, once we have an interval u] that petter thanA,.

containsu, we compute its midpointi,iq e (u + u)/2 So, in this example, by reporting a false utility function
and compare the alternativé; with the lottery “A™ with ] (A,) instead of the correct one; (4;), the participantP;



may hurt himself by reducing his payoff from;(A;) to takes the largest possible value.
ui(Ag) < ui(Ag). Pessimism corresponds ¢0= 1, optimistic corresponds to

Territorial division problem: a reminder. Let us show that o = 0, realistic approaches correspondee (0, 1).

in the reasonable case of dividing the territory, it is benefici@omment.While this combination may sound arbitrary, it
to report the correct utility values. is actually the only rule which satisfied reasonable scale-

CommentThis result was partly announced in [19], [20]. Invariance conditions; see, €.g., [25], [28].
In this case [26], we have a set to divide. Here, each For our problem, Hurwicz criterion means that we select a

alternative corresponds to a partition of the &énto n subsets Utility function v; (¢) for which the combination
n

X1,..., X, such that!lXi = Aand X; N X; = 0 when JW) % o min w(v), v, e, ..., v0)+

i # j. The utility functions have the form; (X) = [, v;(t) dt s

for given functionsu;(t) from the setA to the set of non- (I—a): max u(v),vr,vs,...,vp) (2)
. - . 25--5,Un

negative real numbers. Based on the utility functiof(s), we _ _

find a partitionX, ..., X,, for which Nash’s product;; (X)- attains the largest possible value.

.+~ uy(Xy) attains the largest possible value. For territorial division, it is beneficial to report the correct

fV\ath?.UI Iosmg generaht;l/_, let us concentrite on the ?\Ct'orﬂﬁilities: result. It turns out that unless we select the optimistic
of the first participant?. Let us assume t atl(t), IS the  criterion, it is always best to seleet (t) = v1(¢), i.e., to tell
actual utility function of this participant. The participai} the truth

can either report his/her actual function(¢), or he/she can
report a different utility functionv’(t) # wv;(t). For each Theorem 1.Whena > 0, the objective functiow(v}) attains
reported function] (¢), we can find the partitiorX;, ..., X,, its largest possible value far (t) = v (¢).

that maximizes the corresponding product Commentln the optimistic case, all choices are equivalent.

</ o (1) dt) . </ oa(t) dt> (/ on®) dt) ' _In such situations, when we have several different alterna-
X, X X, tives that lead to the same value of the objective function, a
As a result, the participanP, gets the sefX, so its actual natural id.ea is to use some other criterion to select between
utility is equal to [, v (#) dt. Let us denote this actual utility these optimal alternatives; see, e.g., [27]. In our case, a natural
by w(v), v1, s, - .. s 0p)- othgr criterion is to consider pessimism or Hurwicz pessimism-
The question is: which utility functionv/(¢) should optimism criterion. In both cases, we come to a conclusion that

the participantP, report in order to maximize his gaint€lling the truth is the best strategy.

u(vy, v1, ;... 0,)? We assume that we do not know theommentFor reader's convenience, the proof of this result is

utility functions vs(t),...,v,(t) of other participants. For presented in the appendix.

different v;(¢), different selections;(t) may lead to better

gain for P;. V. How TO FIND INDIVIDUAL PREFERENCES FROM
COLLECTIVE DECISIONMAKING : INVERSE PROBLEM OF

Decision making under uncertainty: a reminder. The sit-
GAME THEORY

uation of decision making under uncertainty is typical in

decision making; see, e.g., [22]. There are several knowoblem.We have mentioned that usually, it is relatively easy
approaches to solving a general problem of decision makit® elicit preferences from the participants, and to determine
under uncertainty. utility values based on these preferences.

We can choose aoptimistic approach in which, for each In some cases, however, we have a subgroup (“clique”) of
action A, we only consider its most optimistic outcome, withparticipants who do their best to make joint decisions and who
the largest possible gain®(A4) — and choose an action fordo not want to disclose their differences. This is a frequent
which this luckiest outcome is the largest. situation, e.g., within political groups — who are afraid that

Alternatively, we can choose @essimisticapproach in any internal differences can be exploited by the competing
which, for each action, we only consider its most pessimisticgroups. In such situations, it is extremely difficult to determine
outcome, with the smallest possible gain(A4) — and choose individual preferences based on the group decisions.
an action for which this worst-case outcome is the largest. For example, during the Cold War, this is what kremnlinol-

Realistically, both approaches appear to be too extreme.dgists tried to do — with different degrees of success.
real life, it is more reasonable to use, as an objective func-In this section, we will show how this determination can be
tion, a combination of pessimistic and optimistic cases. Sudone.
combined pessimism-optimism criterion (originally proposeg
in[15]): namely, we choose a real number € [0,1], and
choose an alternativd for which the combination

omment.Decision making and game theory are usually
trying, given individual preferences, to find the appropriate
group decision. Here, we encounteriawerse problemgiven

w(A)=a -u (A)+ (1 —-a) ut(A) the decisions, we want to reconstruct individual preferences.



Towards an algorithm for solving the inverse problem.Let for the known value®(q)™.
us assume that we have a grouproparticipantsP, ..., P, Dividing both sides of this equality byt —¢)™, we conclude
that does not want to reveal their individual preferencgs. Weat ﬁ (z + ui(A)) = p(q)"/(1 — ¢)". We can repeat this
can, however, ask the group as a whole to compare different ;=
preferences; we must use the result of this comparison Rgpcedure forn different valuesq = 0,1/n,2/n,..., (n —
determine individual utility functions. 1)/n, and getn different values of the function

We assume that when making group decision,s the group n
uses the Nash’s solution. Of course, since the Nash’s solution F(2) def H(z + u;(4)).
depends only on the product of the utility functions, in the best i=1
case, we will be able to determimeindividual utility functions  Thjs function F(z) is a product ofn linear functions with
without knowing which of these functions corresponds tgpefficient 1 at:; it is, therefore, a polynomial af—-th order
which individual. in terms of the unknown:
Comment.This is OK, because the main objective of our
determining these utility functions is to be able to make
decision of a larger group based on Nash’s solution — aSihce we know: valuesp(l/n)"/(1—1/n)" (0 < i < n—1) of
in making this decision, it is irrelevant who has what utilitythis function for the values; = ¢;/(1 — ¢;) (whereq, = 1/n),
function. we can thus determine the coefficientf this polynomial by

In this sense, our problem is easier than the problem solveglving the corresponding system oflinear equations with
by political analysts: from our viewpoint, it is sufficient ton unknownsa;:
know that one member of the ruling clique is more conserva-

F(z)=ap+ay-z2+...+ap_1-2""1 42"

tive and another is more liberal, but a political analyst would ag +a; -2, + ...+ ap—1 - zl"*l +2 = % (1)
also be interesting in knowing who exactly is conservative and (- a)
who is more liberal. 0<Ii<n-1
We have mentioned that the Ut|||ty function is determinegnce we have found these coefficients and thUS, the po]yno_
modulo an arbitrary linear transformatiaffA) — a - u(A4) + o

b. Thus, without losing generality, we can assume that trrpa'al Fz) = H (2+ui(A)), we can then determine the values

=1

individual utility functionswu;(A) are re-scaled in such a way—u;(A) as the roots of this polynomial — i.e., the values for
that for the status qual(®), we haveu;(A(®) = 0, and for a which F(—u,;(A)) = 0.
pre-selected very favorable outcore’, we haveu;(A*) = We can find one of the roots; there exist efficient algorithms
1. for that; see, e.g., [2]. Once we find a roet(A), we can

Let us now select an alternativé and let us show how divide the polynomial by:+u4 (A), and get a new polynomial
we can determine the values(A), ..., u,(A). For each real of ordern — 1. We can then use the same algorithm to find
numberg € [0, 1], we can form a lotteryl.(q) in which we the root of the new polynomial, etc., until we find allroots
have A+ with probability ¢ and A with probability 1 — q. For of the original polynomialF'(z).
this lottery L(q), the individual utility is equal to Thus, we arrive at the following algorithm.

u(L(q)) = q-u(AT) + (1 —q) - u(A) =g+ (1 —q) -u;(A); Algorithm for determining individual utility values. Let us

assume that we have a group wofparticipants. We can ask

h] this group to make joint decisions. Based on these decisions,
For the group, the quality of a lottery4* with probability we want to find the individual utility values, (A4), ..., u,(A)

p, otherwised (©)” increases wittp. Whenp = 0, this lottery is  of a given alternatived.

simply a status quel(?), so it is clearly worse than the lottery For that, we do the following. For eadhfrom 0 ton — 1,

L(q). For p = 1, this lottery is simplyA™, so it is clearly we form the valug; = I/n, and we ask the group to compare

preferable td.(q). Thus, by using the above-describe bisectiothe lottery “A* with probability ¢;, otherwise A” with the

method, for eachy, we can find (with arbitrary accuracy) thelotteries “A™ with probability p, otherwiseA®)” for different

value p(q) for which L(q) is equivalent to this lottery. p. By using bisection, we can find the valpég;) for which
For this new lottery, the individual utilities are equal to the lottery “A™ with probability ¢;, otherwiseA” is, for this

wi(A) = p(g) - w(AD) + (1 = p(q)) -u(A(O)) _ group, equivalent to the lotteryA" with probability p(q;),

therefore, Nash's product is equal {q (¢ + (1 — g) - ui(A)).

otherwiseA(®)”,

p(g) -1+ (1 —p(q)) -0 =p(q), After we find n valuesp(q;) (0 <1 < n — 1), we solve the
so Nash's product is equal ta(q)". Thus, from the fact that SyStem (1) ofr linear equations wit unknowns, and get the
the new lottery is equivalent to the(q), we conclude that the Coefficientsag, as, ... a,—,. Based on these coefficients, we
corresponding Nash’s products are equal, i.e., that form a polynomialF(z) = ag+a1-2+.. . +-ap—1-2" "' +2".

n Then, we apply one of the known factorization algorithms

H(q + (1= q) - us(A)) = plg)" to factorize the resulting polynomidf(z). It factors arez +

i u;(A), whereu;(A) are the desired values.



From individual utility values to individual utility profiles. CommentHere, the probability®) means the probability of
From the viewpoint of group decision making, it is sufficienthe status quo stated(®), p* means the probability of the

to find out individual utility valuesu;(A;) for all alternatives outcomeA™, and the utilities are scaled in such a way that
A;. However, from the more general viewpoint of solving théor each participanty;(A®) = 0 andu;(A*) = 1.

inverse problem, it is desirable to find out the individual utility Our main result is that after this re-scaling, the utility values
profiles. For example, if we have two alternativés and A;, are uniquely determined by the observed group preferences
we want not only to known valuesu;(A;) and n values — of course, modulo possible renaming (permutation) of the
u;(Ax), we also want to know which value;(Ax) goes with participants, because the Nash group decision model does not
which valuew;(A4;). change if two participants simply swap their utility functions

For that, we pick a real number € [0,1] and repeat the (and their preferences).
dure for the lottery “™“ A with probabilit " -
same procedure =4 p Y& Theorem 2.If two group utility functionsu;; and uj; lead to

otherwiseA,". Thus, we determine individual utilitiesu;(A)  the same preference, then they differ only by permutation, i.e.,

of this lottery. - . ;= uq(;),; for some permutation of the set{1,...,n} of
For the individual utilities, participants.

ui(A) = a-ui(Ay) + (1= a) - ui(Ag). In other words, modulo permutation of participants, we
Thus, if we only known valuesu;(A;), n valuesu,;(Ay), and can uniquely determine the utility values from the group
n valuesu;(A) — without knowing how these values matctpreferences.
— we can then, for each of valuesu;(4;), determine the  The proof of this result is also given in the Appendix.
corresponding utility value; (A ) as the only one of values

. VI. DESCRIPTION OFALTRUISM AND PARADOXES OF
up(Ay) for which the value

LovE
a-ui(4;) + (1 —a)- Ap(Ar) Interdependence of utilities: idea.In the previous text, we
is equal to one of the, valuesu;(A). implicitly assumed that the utility:;(A;) of a participantP;
If we selecta to be a random value uniformly distributeddepends only on the objective situation, i.e., on the alternative
on the interval0, 1], then the probability that A;. In real-life situations, however, the degree of a person’s

happiness is determined not only by the objective factors —
a-ui(Aj) + (1 —a) - Ap(Ax) like what this person gets and what others get — but also by

for some wrongy’ # p is also accidentally equal to one of thehe degree of happiness of other people.

n valuesu;(A) is 0, so this methods leads us to a guaranteedNormally, this dependence is positive, i.e., we feel happier

profile. if other people are happy. However, negative emotions such

What if we do not know how many people are in a group? aS jealousy are also common, when someone else’s happiness

In some cases, not only we do not know individual preferencd@2kes a person not happy.

but we also do not know how many people are in a group. The idea that_ a utility .of a person depends on utilities
In this case, we can repeat the above procedurenfer of others was first described in [32], [33]. It was further

1,2,... until we stop getting a meaningful solution for thel€veloped by another future Nobelist Gary Becker; see, e.g.,
corresponding system of linear equations (1); the largest sudh Se€ aiso [5], [9], [14], [38].

n is the number of participants. Interdependence of utilities: general descriptionln general,
Uniqueness in precise mathematical terms.et us describe the utility u; of i-th D(%TSO” under in}grdependence can be
the uniqueness result in precise mathematical terms. described asi; = fi(u; ',u;), wherew; ~ is the utility that

does not take interdependence into account.grafe utilities

Definition. Let integersn and m be fixed. The value will
of other people.

be callednumber of participantandm will be callednumber

of alternatives. Interdependence of utilities: linear approximation. The
« By alottery, we mean a vectas = (p(¥, p*,p1,...,pn) effects of interdependence can be illustrated on the example
for whichp; > 0 andp® +p* +p1 +... + pn = 1. of linear approximation, when we approximate the dependence
« By an individual utility function we mean a vector by the first (linear) terms in its expansion into Taylor series,
u1,...,u, Of positive numbers. i.e., when the utilityu; of i-th person is equal to
o By a group utility function, we mean a collection of 0)
utility functions (w1, wio, - . . , Uim )- ui = u” + Zaiﬁ U5

« We say that a group utility function. leadsto the _ _#i . o
following preference relation< between the lotteries: Where the interdependence is described by the coefficignts

p < ¢ if and only if

n m n m Paradoxes of love.This simple and seemingly natural model
pt+ ij g | < H pt+ qu -u;; | . leads to interesting and somewhat paradoxical conclusions;

- i=1 j=1 see, e.g., [4], [6], [21].

i=1 j=1



For example, mutual affection corresponds between persord on their subjective utility values, i.e., in which (in the
P, and P, means thatv;s > 0 and ap; > 0. In particular, linearized case)
selfless live, when someone else’s happiness means more than (0) (0)
) U; = U, +Zaj~u- .
one’s own, corresponds @, > 1. i : J
J

In general, for two persons, we thus have
0) In this approach, when we care about others’ well-being and

up = Ug + iz - ug; not their emotions, no paradoxes arise, and any degree of
Uy = ugm Foag -y altruism only improves the situation; see, e.g, [10], [11], [30].
This objective approach to interdependence was proposed
Once we know the original utility valuesgo) and uéo), we and actively used by yet another Nobel Prize winner: Amartya
can solve this system of linear equations and find the resultikg Sen; see, e.g., [35], [36], [37].

values of utility: Another alternative explanation of the paradoxes of love is
0) 0) that there is a time delagkt between the emotions of a person
Uy = Gl P RC! ; and the reaction of the other persons to these emotions. This
I—oqz-an time delay can be very small, in factions of a second need
ugo) T a9y .u§0) to process t.he information, but still, the.gtility of a person at
Uy =~ a moment timet depends not on the utility of others at the

1=aiz-a very same moment of time, but rather on the utility at some

As aresult, when two people are deeply in love with egch othSfevious moment of time— At. In this case, even if we have

(12 > 1 anday; > 1), then positive original pleasures” > mutual affection, we avoid negative values of utility
0 lead tou; < 0 —i.e., to unhappiness. This phenomenon ma

be one of the reasons why people in love often experienf&knowledgments.

deep negative emotions. This work was supported in part by NASA under cooper-
From this viewpoint, a situation when one person loveative agreement NCC5-209, NSF grant EAR-0225670, NIH

deeply and another rather allows him- or herself to be loveglant 3T34GM008048-20S1, and Army Research Lab grant

may lead to more happiness than mutual passionate love. DATM-05-02-C-0046.
A similar negative consequence of love can also happen in

situations like selfless Mother’s love whens > 0 may be
not so large butv,; is so large thatv;s - ay > 1. [1] K. J. Arrow, Social Choice and Individual Valug&Viley, New York,

. ) 1951,
There_' are also interesting consequences when we try {§ g Beauzamy, V. Trevisan, and P. S. Wang, “Polynomial factorization:
generalize these results to more than 2 persons. For example, sharp bounds, efficient algorithmsJpurnal of Symbolic Computations

we can define an ideal love, when each person treats othep’s 1993, Vol. 15, No. 4, pp. 393-413. o
€ C.a define an ideal love, € ea(‘: pe SO. eats o efS G. S. Becker,A Treatise on the FamilyHarvard University Press,
emotions almost the same way as one’s own, &gy, = o = Cambridge, Massachusetts, 1991.

1 — ¢ for a smalle > 0. For two people, frorml(.o) > 0, we [4] T. Bergstrom, “Love and spaghetti, the opportunity cost of virtue”,

) i ; ; ; Journal of Economic Perspectives989, Vol. 3, No., pp. 165-173.
getu; >0 —l.e., we can still have happlness. However, if we 5] B. D. Bernheim and O. Stark, “Altruism within the family reconsidered:

have three or more people in the state of mutual affection, i.€.,” do nice guys finish last?’American Economic Review988, Vol. 78,
if No. 5, pp. 1034-1045.
_ (0 6] T. Bergstron,Systems of benevolent utility interdependendmsiversit
Ui = U F o Z Uy 1 of Micﬂigan, Tgchnical Report, 1991. / P y
J#i [7] S. J. BramsTheory of MovesCambridge Univesity Press, Cambridge,
. L 0) Massachusetts, 1994.
then in case when everything is fine — el” = u(®) > 0— [g] S. J. Brams and A. D. Taylor, “An envy-free cake division protocol",
we have American Mathematical Month\1995, Vol. 102, No. 1, pp. 9-18.
[9] D. D. Friedman,Price Theory South-Western Publ., Cincinnati, Ohio,
. (1l—a-(n— —u - (2—e—(1—=¢)- — 40 1986.
ui-(l—a-(n-1))=u;-(2-e=(1-¢) n)=u", [10] J. S. HarsanyiRational behavior and bargaining equilibrium in games
hence and social sitgationsc;ambridge University P_ress, New York, 1977.
(0 [11] J. S. Harsanyi, “Morality and the theory of rational behavior”, In: A. Sen
<0 and B. Williams, Utilitarianism and Beyond Cambridge University
2—e—(1—-¢)'n ’ Press, Cambridge, UK, 1982, pp. 39-62.
i.e., we have unhappiness. This may be the reason why[]f-] l,;:i';m'?s'}"20“53”2,3’[‘?56‘,');"3,2?_53;‘1r_ getting a fair sharéimerican
person families are the main form — or, in other words, if twf13] W. Hively, “Dividing the spoils”, Discover March 1995, pp. 49-57.

eople care about the same person (e.g., his mother and[Hk H. Hori and S. Kanaya, “Utility functionals with nonpaternalistic interg-
peop P ( 9 erenational altruism”Journal of Economic Theory1989, \Vol. 49, pp.

wife), all there of them are happier if there is some negative 541 g5
feeling (e.g., jealousy) between them. [15] L. Hurwicz, A criterion for decision-making under uncertainfjechni-
o o . ) cal Report 355, Cowles Commission, 1952.

Comment.lt is important to distinguish between emotionali6] P. R. Kleindorfer, H. C. Kunreuther, and P. J. H. SchoemaRexi-
interdependence in which one’s utility is determined by the sion Sglences: An Integrated Perspecti@ambridge Universoty Press,
ility of other people, and “objective” altruism, in which one’ Cambridge. Massachusetts, 1993. i icati
Ut! ' y Or other people, J_ ) ’ S[17] G. Klir and B. Yuan Fuzzy sets and fuzzy logic: theory and applications.

utility depends on the material gain of other people — but Prentice Hall, Upper Saddle River, New Jersey, 1995.
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APPENDIX 1: PROOF THAT FOR TERRITORIAL DIVISION, u”(v]) = min w(vy,vr,v9,...,0)

V2,--+,Un
IT ISBENEFICIAL TO REPORT THECORRECTUTILITIES .
is larger than or equal td/n.

Structure of the proof. We start by re-scaling the values of | ot ys show that for the optimal partitiony; (X;) >
the utility functions so that all the gains become between 0 agg(X2)_ Indeed, according to [26], in the optimal partition
1. Then, we compute the optimistic gairt, the pessimistic there exists a threshold valuesuch that of all the points
gainwu~, and come up with the conclusion. from the unionX; U X5, points withvy(z)/vi(z) < X are
Re-scaling. Since the utility function is defined modulo an2SSigned taX; and points withuy () /v1 () > A are assigned
arbitrary multiplicative constant, we can always re-scale tihe X2 .
utility functions in such a way that;(A) = 1 for the entire Similar to the_proofs from [26], let us add a small neigh-
spaced, i.e., that[, v;(t) dt = 1 for all . borhood of a pointzy € Xo wherez;Q(x_o)/vl(g:O) ~ Ato th(_e
set X;. This addsz - v1(zg), wheree is the volume of this
Proof that u* < 1. Let us show that for every functiorf (), neighborhood, to the utility:;(X;) of the first participant,

the optimistic estimate and subtracts - vy (o) = € v1(xo) - A from uz(Xz). Thus, in
)\ def , Nash’s product, the subprodugt (X;) - u2(Xs) is replaced
ut(v]) = max u(vy,vi,va,...,v,) by
V2,0, Un

cannot exceed 1. (u1(X1) + € - vi(x0)) - (u2(X2) —e-v1(mg) - A) =



’U,l(Xl) . UQ(XQ) . ’L)l(i)j'o) cE (UQ(XQ) —A- Ul(Xl)) + O(E). By dIVIdIng the inequalitie&tl(Xl) < A (1/Tl) and1 —

> )\ - _
Since the partitionX;, X5, . . . was maximizing the Nash prod-ul(Xl) Z A+ (1= 1/n), we conclude that

uct, this change can only decrease the value of the product; w(X) _ 1n
so, we conclude that 1—wu(Xy) — 1—=1/n’
A up (X)) > ue(Xa). where the inequality is only possible when(t) = X - v} (t)
for all ¢.

Eor VaIUTS;E € )t(Z’ ‘f[\;]e havev2(| t)/vl((EX) = A, S0 ”|2(d z) tﬁ . Since bothvl( ) andv/ (t) are normalized to 1 in the sense
-v1(z). Integrating this inequality oveK,, we conclude tha that [, vi(t)dt = [,v,(t)dt = 1, the only way to have

_ _ L vi(t) = )\ vl( ) forall t € Ais to haveA = 1 and thus,
u2(X2) = /X2 va(t) dt 2 A X2 vi(t)dt = A~ (X). v} () = vy (t). We know thatv) (t) # vy (t), hence equality is

So, from\ - ui(X1) > ua(X>), we conclude that impossible, and
A up(Xq) > ua(X2) > X ug(Xa),

henceul(Xl) > Ul(XQ).
Similarly, uq(X1) > wu1(X;) for all <. By adding the
inequalities corresponding to= 1,2, ..., n, we conclude that 1 —uy (X)) S 1= 1/n

’U,1(X1) 1/TL
1 _ul(Xl) < 1-— 1/’[7,

Reversing both sides in this inequality, we get

X 1
n-ul(Xl)2ul(X1)—|-u1(X2)—|—...—|—u1(Xn): ) U1( 1) /TL
Adding 1 to both sides, we gét/u,(X;) > 1/(1/n) = n,
/ vi(t)dt + ... +/ vy (t) dt = / v (t)dt =1, henceu, (X;) < 1/n. The statement is proven.
X1 Xn A

Conclusion. When we report a correct utility function, we
henceu,(X7) > 1/n. P y

getut = 1 andu™ = 1/n. When we report a false utility
Proof that when we report the correct utility function function, then we get™ = 1v andu™ < 1/n. Thus, for every
vi(t) = v1(t), then v~ = 1/n. We have shown that for all a > 0, the value ofa.- u~ + (1 — «) - u™ is the largest when

utility functions,u~ > 1/n. Let us prove that there exist utility we report the correct utility function. The theorem is proven.
functions for whichu™ = 1/n.

Indeed, if we takevy(t) = ... = v, (t) = vy (t), then each APPENDIX 2: PROOF THAT, MODULO PERMUTATION, WE
point has the same value for allparticipants; so, we simply CAN UNIQUELY RECONSTRUCTINDIVIDUAL
divide the overall utility of 1 inton partsu; +. . .+u,, = 1 for PREFERENCES FROMSROUP DECISIONS
which the products; - ... u, is the largest possible. It is well  For every lottery, we can compare this lottery with lotteries
known (and easy to prove) that the largest value of this produetwhich ¢; = ... = ¢,, = 0, and thus, get a valug" for
is attained when ally; are equalu; = ... = u, = 1/n. In which
this case, each participant gets exactly the utility.. n

Thus, indeeds™ = 1/n. ()" =T[" +p1-via+ ...+ pm - thim).

i=1

Proof that when we report a false utility function v/ (t) #
v1(t), then uw~ < 1/n. If we report a utility functiony/ (), Inother words, based on the group preferences, for every

then, as we have just mentioned, wheiit) = ... = v,(t) = Nnon-negative valueg®, p1, ..., py, for whichp™ +p; +... +
v} (t), the participantP; can get, asX;, any set for which p» < 1, we can determine the value of the function
fX ’Ul dt = l/n n
Slncevl( ) # vi(t), let us take, asX;, the set of all the F(p™,p1,...,pm) def H(p++p1-ui1—|—. P i)+ (2)
values for whichuvy (t)/v](t) < A, where the threshold is i=1
determined by the condition that, vi(t)dt = 1/n. Fort € Thjs function is a polynomial ofi-th order in terms ofn + 1
X1, we havevi (t) < X - v}(t), hence variables. Each such polynomial has the form

uy (X1) = vtdtg)\~/v'tdt:)\-1n, . T ;
() /Xl 1(6) X1 1) (A/n) Z Z Z ai+,il,...,z‘naﬁ,u,...,im'(p+) +~p11 e Dy

and the equality is only possible if; (t) = A - vy (¢) for all **=1"=t =l

te X;. Thus, each such polynomial is uniquely determined by finitely
Similarly, for t ¢ X, we havev;(t) > X - v{(t), hence many coefficientsi;+ ;, ;. .
Based on the group preferences, we know the values of this
1—u1(X) :/ t)dt > A / = X-(1-1/n), polynomial at infinitely many points; based on these points,
_ X4

we can uniquely reconstruct the coefficients — by solving
and the equality is only possible if; (t) = A - v1(¢) for all the corresponding system of linear equations in terms of the
tZ X;. unknowna+ ;, .

~~~~



So, based on the group preferences, we can uniquely recon-
struct the polynomiaF (p™, p1,...,pm). The above represen-
tation (2) means that we factorize the polynomial intbnear
factors. Factorization of a polynomial into irreducible factors
is known to be unique modulo scalar factors: i.eF'i= [[ F;
andF = HF;, then each factoF; is equal t0c~ij for some
constantc and some factof’;. In our case, all factors have a
coefficient 1 atp*, soc = 1. Thus, modulo permutation, the
factorsp™ + p1 - w1 + ... + Pm - wim — hence the values,;;

— are uniquely determined by the group preferences.

The theorem is proven.



