
Detecting Outliers under Interval Uncertainty: A New
Algorithm Based on Constraint Satisfaction

Evgeny Dantsin
Alexander Wolpert

Department of Computer Science
Roosevelt University

Chicago, IL 60605, USA
{edantsin,awolpert}@roosevelt.edu

Martine Ceberio
Gang Xiang

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968, USA
{mceberio,vladik}@cs.utep.edu

Abstract

In many application areas, it is
important to detect outliers. The
traditional engineering approach
to outlier detection is that we
start with some “normal” values
x1, . . . , xn, compute the sample
average E, the sample standard
deviation σ, and then mark a value
x as an outlier if x is outside the k0-
sigma interval [E − k0 · σ,E + k0 · σ]
(for some pre-selected parameter
k0). In real life, we often have only
interval ranges [xi, xi] for the normal
values x1, . . . , xn. In this case, we
only have intervals of possible values
for the bounds L

def= E − k0 · σ and
U

def= E + k0 · σ. We can therefore
identify outliers as values that are
outside all k0-sigma intervals, i.e.,
values which are outside the interval
[L, U]. In general, the problem of
computing L and U is NP-hard;
a polynomial-time algorithm is
known for the case when the mea-
surements are sufficiently accurate,
i.e., when “narrowed” intervals[
x̃i − 1 + α2

n
·∆i, x̃i +

1 + α2

n
·∆i

]

– where α = 1/k0 and
∆i

def= (xi − xi)/2 is the inter-
val’s half-width – do not intersect
with each other. In this paper, we
use constraint satisfaction to show
that we can efficiently compute L
and U under a weaker (and more

general) condition that neither of
the narrowed intervals is a proper
subinterval of another narrowed
interval.

Keywords: Outliers, Interval Un-
certainty, Constraint Satisfaction.

1 Formulation of the problem

1.1 Outlier detection is important

In many application areas, it is important to
detect outliers, i.e., unusual, abnormal values;
see, e.g., [3]. In medicine, unusual values may
indicate disease; in geophysics, abnormal val-
ues may indicate a mineral deposit or an er-
roneous measurement result; in structural in-
tegrity testing, abnormal values may indicate
faults in a structure, etc.

The traditional engineering approach to out-
lier detection (see, e.g., [5]) is as follows:

• first, we collect measurement results
x1, . . . , xn corresponding to normal situ-
ations;

• then, we compute the sample average

E
def=

1
n
·

n∑

i=1

xi of these normal val-

ues and the (sample) standard deviation
σ =

√
V , where V

def= M − E2 and

M
def=

1
n
·

n∑

i=1

x2
i ;

• finally, a new measurement result x is
classified as an outlier if it is outside

the interval [L,U] (i.e., if either x < L

or x > U), where L
def= E − k0 · σ,

U
def= E + k0 · σ, and k0 > 1 is some pre-

selected value (most frequently, k0 = 2,
3, or 6).

1.2 Outlier detection under interval
uncertainty

In some practical situations, we only have in-
tervals xi = [xi, xi] of possible values of xi.
This happens, for example, if instead of ob-
serving the actual value xi of the random
variable, we observe the value x̃i measured
by an instrument with a known upper bound
∆i on the measurement error; then, the ac-
tual (unknown) value is within the interval
xi = [x̃i − ∆i, x̃i + ∆i]. For different values
xi ∈ xi, we get different bounds L and U .
Possible values of L form an interval – we will
denote it by L def= [L, L]; possible values of U

form an interval U def= [U, U]. In other words,
we arrive at the following computation prob-
lem:

GIVEN:

• an integer n ≥ 1;

• n intervals xi = [xi, xi];

• a real number k0 > 1.

COMPUTE the intervals

L def= {L(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn};

U def= {U(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn};
where:

L
def= E − k0 · σ, U

def= E + k0 · σ,

E
def=

1
n
·

n∑

i=1

xi, σ
def=

√
M −E2, and

M
def=

1
n
·

n∑

i=1

x2
i .

How do we now detect outliers? There are
two possible approaches to this question: we
can detect possible outliers and we can detect
guaranteed outliers:

• a value x is a possible outlier if it is
located outside one of the possible k0-
sigma intervals [L,U] (but is may be in-
side some other possible interval [L, U]);

• a value x is a guaranteed outlier if it is
located outside all possible k0-sigma in-
tervals [L,U].

Which approach is more reasonable depends
on a possible situation:

• if our main objective is not to miss an
outlier, e.g., in structural integrity tests,
when we do not want to risk launching a
spaceship with a faulty part, it is reason-
able to look for possible outliers;

• if we want to make sure that the value
x is an outlier, e.g., if we are planning a
surgery and we want to make sure that
there is a micro-calcification before we
start cutting the patient, then we would
rather look for guaranteed outliers.

The two approaches can be described in terms
of the endpoints of the intervals L and U:

• A value x is guaranteed to be normal –
i.e., it is not a possible outlier – if x be-
longs to the intersection of all possible in-
tervals [L,U], i.e., to the interval [L,U].

• A value x is possibly normal – i.e., it is
not a guaranteed outlier – if x belongs to
the union of all possible intervals [L, U],
i.e., to the interval [L, U].

So, to detect outliers under interval uncer-
tainty, we must compute the bounds L, U ,
L, and U .

1.3 Detecting outliers under interval
uncertainty: what is known

In [3, 4], it was shown that there exist efficient
algorithms for computing the bounds L and
U corresponding to possible outliers, but the
computation of bounds L and U correspond-
ing to guaranteed outliers is, in general, NP-
hard. It was also shown that if 1+(1/k0)2 < n

(which is true, e.g., if k0 > 1 and n ≥ 2), then
the maximum of U (correspondingly, the min-
imum of L) is always attained at some combi-
nation of endpoints of the intervals xi; thus,
in principle, to determine the values U and
L, it is sufficient to try all 2n combinations of
values xi and xi.

Efficient algorithms are known for the case
when all the interval midpoints (“measured
values”) x̃i

def= (xi + xi)/2 are definitely dif-
ferent from each other, in the sense that the
“narrowed” intervals

[
x̃i − 1 + α2

n
·∆i, x̃i +

1 + α2

n
·∆i

]

– where α = 1/k0 and ∆i
def= (xi−xi)/2 is the

interval’s half-width – do not intersect with
each other.

1.4 What we plan to do

In this paper, we use constraint satisfaction
techniques to extend known efficient algo-
rithms to a more general case when no two
narrowed intervals are proper subsets of one
another.

This is a more general case because if they do
not intersect, them, of course, they cannot be
proper subsets of one another – in the sense
that one of them is a subset of the interior of
the second one.

2 First Idea: Reduction to U

When we replace each xi with x′i = −xi, we
thus replace E with E′ = −E while σ remains
unchanged. Thus, we replace L with L′ = −U
and U with U ′ = −L. So, if we know how to
compute U , we can compute L as follows:

• first, we apply the algorithm for comput-
ing U to the intervals

x′1 = −x1, . . . ,x′n = −xn;

• then, we invert the sign of the resulting
value U

′: L = −U
′.

In view of this reduction, in the following text,
we only need to describe how to compute U .

3 Main Idea: Reduction to
Constraint Satisfaction

To find the values xi which maximize U , we
reduce the interval computation problem to
the constraint satisfaction problem with the
following constraints:

• for every i, if in the maximizing assign-
ment we have xi = xi, then replacing this
value with xi = xi will either decrease U
or leave U unchanged;

• similarly, for every i, if in the maximizing
assignment we have xi = xi, then replac-
ing this value with xi = xi will either
decrease U or leave U unchanged;

• finally, for every i and j, replacing both
values xi and xj with the opposite ends of
the corresponding intervals xi and xj will
either decrease U or leave U unchanged.

We will show that the solution to the resulting
constraint satisfaction problem indeed leads
to an efficient algorithm for computing U .

4 Algorithm

Let us first describe the algorithm itself; in
the next section, we provide the justification
for this algorithm.

• First, we sort of the values x̃i into an in-
creasing sequence. Without losing gener-
ality, we can assume that

x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we com-
pute the value V (k) = M (k) − (E(k))2 of
the population variance V for the vector
x(k) = (x1, . . . , xk, xk+1, . . . , xn), and we
compute U (k) = E(k) + k0 ·

√
V (k).

• Finally, we compute U as the largest of
n + 1 values U (0), . . . , U (n).

To compute the values V (k), first, we explic-
itly compute M (0), E(0), and V (0) = M (0) −

(E(0))2. Once we know the values M (k) and
E(k), we can compute

M (k+1) = M (k) +
1
n
· (xk+1)

2 − 1
n
· (xk+1)2

and E(k+1) = E(k) +
1
n
· xk+1 −

1
n
· xk+1.

5 Number of computation steps

It is well known that sorting requires O(n ·
log(n)) steps (see, e.g., a textbook [1]). Com-
puting the initial values M (0), E(0), and V (0)

requires linear time O(n). For each k from 0
to n− 1, we need a constant number of steps
to compute the next values M (k+1), E(k+1),
and V (k+1). Computing U (k+1) also requires
a constant number of steps. Finally, finding
the largest of n + 1 values U (k) also requires
O(n) steps. Thus, overall, we need

O(n · log(n)) + O(n) + O(n) + O(n) =

O(n · log(n)) steps.

It is worth mentioning that if the measure-
ment results x̃i are already sorted, then we
only need linear time to compute U .

6 Justification of the algorithm

We have already mentioned that the maxi-
mum U of the function U is attained at a vec-
tor x = (x1, . . . , xn) in which each value xi is
equal either to xi or to xi.

To justify our algorithm, we need to prove
that this maximum is attained at one of the
vectors x(k) in which all the lower bounds xi

precede all the upper bounds xi. We will
prove this by reduction to a contradiction.
Indeed, let us assume that the maximum is
attained at a vector x in which one of the
lower bounds follows one of the upper bounds.
In each such vector, let i be the largest up-
per bound index followed by the lower bound;
then, in the optimal vector x, we have xi = xi

and xi+1 = xi+1.

Since the maximum is attained for xi = xi,
replacing it with xi = xi − 2 · ∆i will either
decrease the value of U or keep it unchanged.

Let us describe how U changes under this re-
placement. Since U is defined in terms of E,
M , and V , let us first describe how E, M ,
and V change under this replacement. In the
sum for M , we replace (xi)2 with

(xi)
2 = (xi−2·∆i)2 = (xi)2−4·∆i ·xi+4·∆2

i .

Thus, the value M changes into M + ∆Mi,
where

∆Mi = − 4
n
·∆i · xi +

4
n
·∆2

i . (1)

The population mean E changes into E+∆Ei,
where

∆Ei = −2 ·∆i

n
. (2)

Thus, the value E2 changes into (E+∆Ei)2 =
E2 + ∆(E2)i, where

∆(E2)i = 2 · E ·∆Ei + ∆E2
i =

− 4
n
· E ·∆i +

4
n2
·∆2

i . (3)

So, the variance V changes into V + ∆Vi,
where

∆Vi = ∆Mi −∆(E2)i =

− 4
n
·∆i · xi +

4
n
·∆2

i +
4
n
·E ·∆i − 4

n2
·∆2

i =

4
n
·∆i ·

(
−xi + ∆i + E − ∆i

n

)
.

By definition, xi = x̃i +∆i, hence −xi +∆i =
−x̃i. Thus, we conclude that

∆Vi =
4
n
·∆i ·

(
−x̃i + E − ∆i

n

)
. (4)

The function U = E + k0 · σ attains its maxi-
mum if and only if the function u

def= α · U =
α · E + σ attains its maximum. After the
change, the value u changes into

u + ∆ui = α · (E + ∆Ei) +
√

V + ∆Vi,

so the condition u + ∆ui ≤ u leads to

α · (E + ∆Ei) +
√

V + ∆Vi ≤ α · E + σ.

By moving the term proportional to α
to the right-hand side, we conclude that√

V + ∆Vi ≤ σ − α · ∆Ei. In the new in-
equality, the left-hand side is the new value of

the standard deviation, so it is a non-negative
number, hence the right-hand side is also non-
negative, so we can square both sides of the
inequality and conclude that

V + ∆Vi ≤ σ2 − 2 · α · σ ·∆Ei + α2 · (∆Ei)2.

Moving all the terms to the left-hand side and
using the fact that V = σ2, we conclude that

zi
def= ∆Vi+2·α·σ ·∆Ei−α2 ·(∆Ei)2 ≤ 0. (5)

Substituting the known values of ∆Vi and
∆Ei, we get:

zi =
4
n
·∆i · ei, (6a)

where

ei = −x̃i + E − ∆i

n
− α · σ − α2 · ∆i

n
,

i.e.,

ei = (E − α · σ)−
(

x̃i +
1 + α2

n
·∆i

)
. (6b)

Thus, from zi ≤ 0, we conclude that

E − α · σ ≤ x̃i +
1 + α2

n
·∆i. (7)

Similarly, since the maximum of u is attained
for xi+1 = xi+1, replacing it with xi+1 =
xi+1 +2 ·∆i+1 will either decrease the value of
u or keep it unchanged. Let us describe how
variance changes under this replacement. In
the sum for M , we replace (xi+1)2 with

(xi+1)2 = (xi+1 + 2 ·∆i+1)2 =

(xi+1)
2 + 4 ·∆i+1 · xi+1 + 4 ·∆2

i+1.

Thus, the value M changes into M + ∆Mi+1,
where

∆Mi+1 =
4
n
·∆i+1 · xi+1 +

4
n
·∆2

i+1. (8)

The population mean E changes into E +
∆Ei+1, where

∆Ei+1 =
2 ·∆i+1

n
. (9)

Thus, the value E2 changes into

(E + ∆Ei+1)2 = E2 + ∆(E2)i+1,

where

∆(E2)i+1 = 2 · E ·∆Ei+1 + ∆E2
i+1 =

4
n
· E ·∆i+1 +

4
n2
·∆2

i+1. (10)

So, the variance V changes into V + ∆Vi+1,
where

∆Vi+1 = ∆Mi+1 −∆(E2)i+1 =

4
n
·∆i+1 · xi+1 +

4
n
·∆2

i+1−
4
n
· E ·∆i+1 − 4

n2
·∆2

i+1 =

4
n
·∆i+1 ·

(
xi+1 + ∆i+1 − E − ∆i+1

n

)
.

By definition, xi+1 = x̃i+1 − ∆i+1, hence
xi+1 + ∆i+1 = x̃i+1. Thus, we conclude that

∆Vi+1 =
4
n
·∆i+1·

(
x̃i+1 −E − ∆i+1

n

)
. (11)

Since u attains maximum at x, we have
∆ui+1 ≤ 0, i.e., zi+1 ≤ 0, where

zi+1
def=

∆Vi+1 +2 ·α ·σ ·∆Ei+1−α2 · (∆Ei+1)2. (12)

Substituting the expressions (11) for ∆Vi+1

and (9) for ∆Ei+1 into this formula, we con-
clude that

zi+1 =
4
n
·∆i+1 · ei+1, (13a)

where
ei+1

def=

−(E−α ·σ)+

(
x̃i+1 − 1 + α2

n
·∆i+1

)
(13b)

and

E − α · σ ≥ x̃i+1 − 1 + α2

n
·∆i+1. (14)

We can also change both xi and xi+1 at the
same time. In this case, from the fact that u
attains the maximum at x, we conclude that
u + ∆u ≤ u, i.e., that

z
def= ∆V + 2 · α · σ ·∆E − α2 · (∆E)2. (15)

Here, the change ∆M in M is simply the sum
of the changes coming from xi and xi+1:

∆M = ∆Mi + ∆Mi+1, (16)

and the change ∆E in E is also the sum of
the corresponding changes:

∆E = ∆Ei + ∆Ei+1. (17)

So, for

∆V = ∆M−∆(E2) = ∆M−2·E ·∆E−∆E2,

we get

∆V = ∆Mi + ∆Mi+1−

2 · E ·∆Ei − 2 · E ·∆Ei+1−
(∆Ei)2 − (∆Ei+1)2 − 2 ·∆Ei ·∆Ei+1.

Hence,

∆V = (∆Mi − 2 · E ·∆Ei − (∆Ei)2)+

(∆Mi+1 − 2 · E ·∆Ei+1 − (∆Ei+1)2)−
2 ·∆Ei ·∆Ei+1,

i.e.,

∆V = ∆Vi + ∆Vi+1 − 2 ·∆Ei ·∆Ei+1. (18)

Substituting expressions (16), (17), and (18)
into the formula (15) for z, we conclude that

z = ∆V + 2 · α · σ ·∆E − α2 · (∆E)2 =

∆Vi + ∆Vi+1 − 2 ·∆Ei ·∆Ei+1+

2α · σ ·∆Ei + 2α · σ ·∆Ei+1−
α2 · (∆Ei)2 − α2 · (∆Ei+1)2−

2 · α2 ·∆Ei ·∆Ei+1.

Hence,

z = (∆Vi + 2 · α · σ ·∆Ei − α2 · (∆Ei)2)+

(∆Vi+1 + 2 · α · σ ·∆Ei+1 − α2 · (∆Ei+1)2)−
2 · (1 + α2) ·∆Ei ·∆Ei+1.

From the formulas (5) and (12), we know that
the first expression is zi and that the second
expression is zi+1, so

z = zi + zi+1 − 2 · (1 + α2) ·∆Ei ·∆Ei+1.

We already have the expressions (6), (13), (2),
and (9) for, correspondingly, zi, zi+1, ∆Ei,

and ∆Ei+1, so we conclude that z =
4
n
·D(E′),

where E′ def= E − α · σ and

D(E′) def= ∆i ·
(

E′ −
(

x̃i +
1 + α2

n
·∆i

))
+

∆i+1 ·
(
−E′ +

(
x̃i+1 − 1 + α2

n
·∆i+1

))
+

2 · (1 + α2) · ∆i ·∆i+1

n
. (19)

Since z ≤ 0, we have D(E′) ≤ 0 (for the value
E′ = E−α·σ corresponding to the optimizing
vector x).

The expression D(E′) is a linear function of
E′. From (7) and (14), we know that

x̃i+1 − 1 + α2

n
·∆i+1 ≤ E′ ≤ x̃i +

1 + α2

n
·∆i.

For E′ = E− def= x̃i+1− 1 + α2

n
·∆i+1, we have

D(E−) = ∆i · fi +
2 · (1 + α2)

n
·∆i ·∆i+1,

where

fi
def= −x̃i + x̃i+1− 1 + α2

n
·∆i+1− 1 + α2

n
·∆i,

hence D(E−) = ∆i · gi, where

gi
def=

−x̃i + x̃i+1 +
1 + α2

n
·∆i+1 − 1 + α2

n
·∆i.

We assumed that no narrowed interval is a
proper subset of any other. How can we de-
scribe this condition in algebraic terms? Let

us denote δi
def=

1 + α2

n
·∆i; then, the i-th nar-

rowed interval has the form [x̃i − δi, x̃i + δi].
If [x̃i − δi, x̃i + δi] is a proper subinterval of
[x̃j − δj , x̃j + δj], this means that x̃i − δi >
x̃j−δj and x̃i +δi < x̃j +δj , i.e., equivalently,
that

δi − δj < x̃i − x̃j < δj − δi.

This inequality is equivalent to δj > δi and
|x̃i − x̃j | < δj − δi. Similarly, the condition

that the j-th narrowed interval is a proper
subinterval of the i-th is equivalent to δj < δi

and |x̃i − x̃j | < δi − δj . Both cases can be
described by a single inequality |x̃i − x̃j | <
|δi−δj |. Thus, the condition that no narrowed
interval can be a proper subinterval of any
other narrowed interval can be described as

|x̃i − x̃j | ≥ |δi − δj |. (20)

In particular, we have |x̃i− x̃i+1| ≥ |δi−δi+1|.
Let us first consider the case when

|x̃i+1 − xi| > |δi − δi+1|.

Since the values x̃i are sorted in increasing
order, we have x̃i+1 ≥ x̃i, hence

x̃i+1− x̃i = |x̃i+1− x̃i| > |δi−δi+1| ≥ δi−δi+1.

So, we conclude that D(E−) > 0.

For E = E+ def= x̃i +
1 + α2

n
·∆i, we have

D(E+) = ∆i+1 · fi+1 +
2 · (1 + α2)

n
·∆i ·∆i+1,

where
fi+1

def=

−x̃i + x̃i+1 − 1 + α2

n
·∆i+1 − 1 + α2

n
·∆i,

hence D(E+) = ∆i+1 · gi+1, where

gi+1
def=

−x̃i + x̃i+1 +
1 + α2

n
·∆i − 1 + α2

n
·∆i+1.

Here, from |x̃i+1 − x̃i| > |δi − δi+1|, we also
conclude that D(E+) > 0.

Since the linear function D(E′) is positive
on both endpoints of the interval [E−, E+],
it must be positive for every value E′ from
this interval, which contradicts to our con-
clusion that D(E′) ≤ 0 for the actual value
E′ = E − α · σ ∈ [E−, E+]. This contradic-
tion shows that the maximum of U is indeed
attained at one of the values x(k), hence the
algorithm is justified.

The general case when |x̃i − x̃j | ≥ |δi − δj |
can be obtained as a limit of cases when we

have strict inequality. Since the function U is
continuous, the value U continuously depends
on the input bounds, so by tending to a limit,
we can conclude that our algorithm works in
the general case as well.

Comment. It is worth mentioning that
there is another polynomial-time algorithm
for computing U [4] – an algorithm which
computes U for the case when no intervals are
proper subintervals of each other. That condi-
tion can be similarly described as |x̃i − x̃j | ≥
|∆i − ∆j |, hence that condition implies our
condition (20). So, our algorithm generalizes
that algorithm as well.

Acknowledgements

This work was supported in part by
NASA under cooperative agreement NCC5-
209, NSF grant EAR-0225670, NIH grant
3T34GM008048-20S1, and Army Research
Lab grant DATM-05-02-C-0046. The authors
are thankful to the anonymous referees for
valuable suggestions.

References

[1] Th. H. Cormen, C. E. Leiserson,
R. L. Rivest, and C. Stein (2001). Intro-
duction to Algorithms, MIT Press, Cam-
bridge, MA.

[2] L. Jaulin, M. Kieffer, O. Didrit, and
E. Walter (2001). Applied interval analy-
sis: with examples in parameter and state
estimation, robust control and robotics,
Springer Verlag, London.

[3] V. Kreinovich, L. Longpré, P. Patan-
gay, S. Ferson, and L. Ginzburg (2005).
Outlier Detection Under Interval Uncer-
tainty: Algorithmic Solvability and Com-
putational Complexity, Reliable Comput-
ing, 2005, Vol. 11, No. 1, pp. 59–76.

[4] V. Kreinovich, G. Xiang, S. A. Starks,
L. Longpré, M. Ceberio, R. Araiza,
J. Beck, R. Kandathi, A. Nayak, R. Tor-
res, and J. Hajagos (2006). Towards com-
bining probabilistic and interval uncer-
tainty in engineering calculations: al-
gorithms for computing statistics under

interval uncertainty, and their compu-
tational complexity, Reliable Computing
(to appear).

[5] S. Rabinovich (1993). Measurement Er-
rors: Theory and Practice, American In-
stitute of Physics, New York.

