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ABSTRACT
In chip design, one of the main objectives is to decrease its
clock cycle. On the design stage, this time is usually esti-
mated by using worst-case (interval) techniques, in which we
only use the bounds on the parameters that lead to delays.
This analysis does not take into account that the probabil-
ity of the worst-case values is usually very small; thus, the
resulting estimates are over-conservative, leading to unnec-
essary over-design and under-performance of circuits. If we
knew the exact probability distributions of the correspond-
ing parameters, then we could use Monte-Carlo simulations
(or the corresponding analytical techniques) to get the de-
sired estimates. In practice, however, we only have partial
information about the corresponding distributions, and we
want to produce estimates that are valid for all distributions
which are consistent with this information.

In this paper, we develop general techniques that allow us,
in particular, to provide such estimates for the clock time.

1. CASE STUDY
Decreasing clock cycle: a practical problem. In chip
design, one of the main objectives is to decrease the chip’s
clock cycle. It is therefore important to estimate the clock
cycle on the design stage.

The clock cycle of a chip is constrained by the maximum

path delay over all the circuit paths D
def
= max(D1, . . . , DN ),

where Di denotes the delay along the i-th path. Each path
delay Di is the sum of the delays corresponding to the gates
and wires along this path. Each of these delays, in turn,
depends on several factors such as the variation caused by
the current design practices, environmental design charac-
teristics (e.g., variations in temperature and in in supply
voltage), etc.
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Traditional (interval) approach to estimating the
clock cycle. Traditionally, the delay D is estimated by
using the worst-case analysis, in which we assume that each
of the corresponding factors takes the worst possible value
(i.e., the value leading to the largest possible delays). As a
result, we get the time delay that corresponds to the case
when all the factors are at their worst.

It is necessary to take probabilities into account. The
worst-case analysis does not take into account that different
factors come from independent random processes. As a re-
sult, the probability that all these factors are at their worst
is extremely small. For example, there may be slight vari-
ations of delay time from gate to gate, and this can indeed
lead to gate delays. The worst-case analysis considers the
case when all these random variations lead to the worst case;
since these variations are independent, this combination of
worst cases is highly unprobable.

As a result, the current estimates of the chip clock time are
over-conservative, over up to 30% above the observed clock
time. Because of this over-estimation, the clock time is set
too high – i.e., the chips are usually over-designed and under-
performing; see, e.g., [6, 7, 8, 22, 21, 23, 24]. To improve
the performance, it is therefore desirable to take into account
the probabilistic character of the factor variations.

Robust statistical methods are needed. If we knew
the exact probability distributions of the corresponding pa-
rameters, then we could use Monte-Carlo simulations (or
the corresponding analytical techniques) to get the desired
estimates. In practice, however, we only have partial infor-
mation about the corresponding distributions. For a few
parameters, we know the exact distribution, but for most
parameters, we only know the mean and some characteris-
tic of the deviation from the mean – e.g., the interval that
is guaranteed to contain possible values of this parameter.

In principle, we could pick up some distributions which
are consistent with this partial information – e.g., truncated
normal distributions. However, the resulting estimates de-
pend on which distributions we pick; so, if we simply pick
some distributions and it turns our that the actual distri-
butions are different, we may be underestimating the clock
time. It is therefore desirable to provide bounds that work
for all the distributions which are consistent with the given
information.



In statistics, estimates which are guaranteed for all dis-
tributions from some non-parametric class are called robust
(see, e.g., [13]). In these terms, our objective is to provide
robust statistical estimates for the clock time.

What we do in this paper. In this paper, we develop
general techniques that allow us, in particular, to provide
robust estimates for the clock time.

In deriving these estimates, we will use the extensions of
interval methods to cases with partial information about
probabilities described, e.g., in [11, 17, 18, 19]; see also [1,
2, 3, 4, 5, 20].

2. TOWARDS A MATHEMATICAL FOR-
MULATION OF THE PROBLEM

Case study: how the desired delay D depends on the
parameters. The variations in the each gate delay d are
caused by the difference between the actual and the nomi-
nal values of the corresponding parameters. It is therefore
desirable to describe the resulting delay d as a function of
these differences x1, . . . , xn. Since these differences are usu-
ally small, we can safely ignore quadratic (and higher order)
terms in the Taylor expansion of the dependence of d on xi

and assume that the dependence of each delay d on these
differences can be described by a linear function.

As a result, each path delay Di – which, as we have men-
tioned, is the sum of delays at different gates and wires –
can also be described as a linear function of these differences,

i.e., as Di = ai +

nX
j=1

aij · xj .

Thus, the desired maximum delay D = max
i

Di has the

form

D = max
i

 
ai +

nX
j=1

aij · xj

!
. (1)

How we can describe such functions in general
terms. In this paper, we will use two properties of the
time delay. First, we will use the fact that the time delay
is always non-negative; second, we will use the fact that the
dependence (1) is convex.

Let us recall that a function f : Rm → R is called convex
if

f(α · x + (1− α) · y) ≤ α · f(x) + (1− α) · f(y)

for every x, y ∈ Rm and for every α ∈ (0, 1). It is known that
the maximum of several linear functions is convex, so the
function (1) is convex. Vice versa, every convex function can
be approximated, with an arbitrary accuracy, by maxima of
linear functions – i.e., by expressions of type (1).

So, in general terms, we can say that we are inter-
ested in the robust statistical properties of the value y =
F (x1, . . . , xn), where F is a non-negative convex function of
the variables xj .

In which characteristics of y = F (x1, . . . , xn) we are
interested. We would like to get as much information as
possible about the probability distribution of y. In engi-
neering, statistical analysis usually starts with estimating
the first and the second moments of the distribution. Let
us therefore find estimates for the first moment M1

def
= E[y]

and for the second moment M2
def
= E[y2].

It is often also useful to find the values of the higher mo-

ments Mv
def
= E[yv] for v > 2.

In many practical situations, e.g., for the clock timing,
one of the possible objectives is to find a value y0 such that
y ≤ y0 with the probability ≥ 1− ε (where ε > 0 is a given
small probability).

Once we know M1 and M2, how can we estimate
y0: general case. If we have no additional information
about the probability distribution of y, then, to estimate
the desired value y0, we can use Chebyshev inequality (see,
e.g., [27]), according to which, for every k0 > 0, we have

Prob(|y −M1| > k0 · σ) ≤ 1/k2
0,

where σ
def
=
√

V =
p

M2 −M2
1 is the standard deviation of

y. We would like this probability to be ≤ ε, so we have to
take k0 for which 1/k2

0 = ε, i.e., k0 = ε−1/2. As a result, we

get y0 = M1 + k0 ·
p

M2 −M2
1 for k0 = ε−1/2.

If we want to guarantee that y ≤ y0 with a high prob-
ability, e.g., by choosing ε = 10−3, then we must take
y0 = E + 30σ.

How good are these estimates for y0. It is well known
that as we increase the number of terms in a linear combi-
nation of several small random variables, the resulting dis-
tribution of a sum tends to Gaussian – this Central Limit
Theorem is one of the main reasons why Gaussian distri-
bution is so frequent in practice; see, e.g., [27]. So, it is
reasonable to assume that the distribution of each path de-
lay Di is close to Gaussian. It therefore makes sense to also
assume that the distribution for y = max Di is Gaussian as
well. Under this assumption, we get much better estimates
for y0; for example:

• with 90% probability, we have y ≤ y0 = M1 + 2σ =
M1 + 2 ·

p
M2 −M2

1 ; for the Chebyshev inequality, a
similar bound with probability ε = 0.1 would require
M1 + 3σ;

• with 99.9% probability, we have D ≤ y0 = M1 + 3σ =
M1 + 3 ·

p
M2 −M2

1 ; for the Chebyshev inequality, a
similar bound with probability ε = 0.001 would require
M1 + 30σ.

We know that the distribution of y is sometimes close to
normal, and for the normal distribution, the actual bound is
much smaller: y0 = M1 +3σ. Thus, the bound based on the
first moments is, most probably, an overestimation – hence,
the first two moments may not be sufficient.

How to use higher moments in estimating y0. Since
the first two moments M1 = E[y] and M2 = E[y2] are not

sufficient, a natural idea is to use higher moments M2q
def
=

E[y2q] and M2q+1
def
= E[y2q+1].

The idea of using the higher moments to estimate y0 is
similar to Chebyshev’s inequality. Indeed, if we know the
central moment

C2q
def
= E[(y −M1)

2q] =

Z
ρ(y) · (y −M1)

2q dy,

then for σ2q
def
= C

1/(2q)
2q , we can conclude that the probability

of y > M1 + k0 · σ2q cannot exceed 1/k2q
0 : otherwise, for all

y > M1 + k0 · σ2q, we have (y −M1)
2q > (k0 · σ2q)

2q, so the
value C2q of the above integral will be higher than

Prob(y−M1 > k0 ·σ2q) · (k0 ·σ2q)
2q ≥ (1/k2q

0 ) · (k0 ·σ2q)
2q =



σ2q
2q = C2q.

Thus, to guarantee that y ≤ y0 with probability ≥ 1− ε, we
can take y0 = M1 + k0 · σ2q with k0 = ε−1/(2q).

The larger q, the smaller k0. For example, for ε = 10−3:

• for q = 1, we needed k0 = (10−3)−1/2 ≈ 30;

• for q = 2, we need k0 = (10−3)−1/4 ≈ 5.5;

• for q = 3, we need k0 = (10−3)−1/6 ≈ 3.

So, to estimate y0, we must find the central moment C2q.
This can be done in a straightforward way. Let us show,
e.g., how this can be done for q = 2. Since

(y −M1)
4 = y4 − 4 · y3 ·M1 + 6 · y2 ·M2

1 − 4 · y ·M3
1 + M4

1 ,

we conclude that

C4 = E[(y −M1)
4] =

E[y4]− 4 ·E[y3] ·E + 6 ·E[y2] ·M2
1 − 4 ·E[y] ·M3

1 + M4
1 =

M4 − 4 ·M3 ·M1 + 6 ·M2 ·M2
1 − 3 ·M4

1 .

So, to estimate y0, we must estimate the values of the mo-
ments Mv.

What information we can use. What information can
we use for these estimations? We can safely assume that dif-
ferent factors xj are statistically independent. About some
of the variables xj , we know their exact statistical charac-
teristics; about some other variables xj , we only know their
interval ranges [xj , xj ] and their means Ej .

We are interested in the ranges of possible values of
Mv. For each j for which we do not know the exact prob-
ability distribution, there exist many different probability
distributions that are consistent with this information. For
different distributions, in general, we get different values of
Mv.

Our objective is thus to find the ranges of possible values
of Mv.

How to estimate the desired value y0 based on the
bounds for Mv: general case. We have already men-
tioned that if we knew the exact values of the moments,

then we could take y0 = M1 + k0 · σ2q, where σ2q = C
1/(2q)
2q

and k0 = ε−1/(2q).
Since we do not know the exact distribution, we can only

find the bounds [M1, M1] and [C2q, C2q] for the correspond-
ing moments. Thus, to guarantee that y ≤ y0 with the
probability ≥ 1−ε, we must take, as y0, the largest possible
value of y0 = M1 + k0 · σ · σ2q, i.e., we must take

y0 = M1 + k0 · σ2q,

where σ2q
def
= (C2q)

1/(2q).
So, to estimate y0, we must find the upper bound C2q on

the central moment C2q. This can be done in a straightfor-
ward way. Let us show, e.g., how this can be done for q = 2.
We have already mentioned that

C4 = M4 − 4 ·M3 ·M1 + 6 ·M2 ·M2
1 − 3 ·M4

1 .

Hence, as an upper bound C4 for C4, we can take

C4 = M4 − 4 ·M3 ·M1 + 6 ·M2 ·M2
1 − 3 ·M4

1.

Similar formulas can be produced for an arbitrary q.

Case of second moment: motivations. For the case
q = 1, we can get better estimates for y0. Indeed, when
we know the exact values of M1 and σ =

p
M2 −M2

1 , then
the corresponding value y0 is equal to M1 + k0 · σ for some
constant k0. Thus, to guarantee the desired inequality for
all possible values M1 ∈ [M1, M1] and M2 ∈ [M2, M2], we
should take, as y0, the largest possible value of M1 + k0 ·p

M2 −M2
1 when M1 and M2 are within the corresponding

intervals.
The desired expression is increasing w.r.t. M2, so its

maximum is attained when M2 takes the largest possi-
ble value M2. With respect to M1, this expression is
not always monotonic, its derivative is equal to 0 when

1 +
k0 · (−2M1)

2
q

M2 −M2
1

= 0, i.e., when M1 =

p
M2p

k2
0 + 1

. Once can

easily see that this value is the maximum of our expression.
Thus, we arrive at the following algorithm.

Algorithm for q = 1: description. First, we compute

the value E0
def
=

p
M2p

k2
0 + 1

. Then:

• If M1 ≤ E0, we take y0 = M1 + k0 ·
q

M2 − (M1)2.

• If M1 ≤ E0 ≤ M1, we take y0 = E0 + k0 ·
q

M2 − E2
0 .

• If E0 ≤ M1, we take y0 = M1 + k0 ·
q

M2 − (M1)
2.

Let us now describe how to estimate the bounds for the
moments.

3. FORMULATION OF THE PROBLEM
AND THE MAIN RESULT

GIVEN: • natural numbers n, k ≤ n, and v ≥ 1;

• a function y = F (x1, . . . , xn) (algorithmically
defined) such that for every combination of
values xk+1, . . . , xn, the dependence of y on
x1, . . . , xk is convex;

• n−k probability distributions xk+1, . . . , xn –
e.g., given in the form of cumulative distrib-
ution function (cdf) Fj(x), k + 1 ≤ j ≤ n;

• k intervals x1, . . . ,xk, and

• k values E1, . . . , Ek.

such that for every x1 ∈ [x1, x1], . . . , xk ∈ [xk, xk],
we have F (x1, . . . , xn) ≥ 0 with probability 1.

TAKE: all possible joint probability distributions on Rn

for which:

• all n random variables are independent;

• for each j from 1 to k, xj ∈ xj with prob-
ability 1 and the mean value of xj is equal
Ej ;

• for j > k, the variable xj has a given distrib-
ution Fj(x).

FIND: for the variable y = F (x1, . . . , xn), find the set

Mv = [Mv, Mv] of all possible values of Mv
def
=

E[yv] for all such distributions.



Comment: how this problem is related to interval computa-
tions and its known extensions. When the only information
we have is intervals of possible values of xj , then we can use
interval computations to estimate the range of an expression
y = F (x1, . . . , xn).

The main idea behind interval computations is as follows.
When a computer computes an expression, it parses it, i.e.,
represents this expression as a sequence of elementary op-
erations a ⊗ b such as +, ·, and max. For each elementary
operation, we know how to transform the intervals of a and
b of possible values of a and b into the interval c of possible
values of c = a ⊗ b; the corresponding interval operations
are called interval arithmetic. It is therefore reasonable to
replace, in the sequence of elementary operations that form
the computation of D, each operation with real numbers by
the corresponding interval operation. The resulting interval
is guaranteed to enclose the desired range – and sometimes,
it is equal (or close) to this range; see, e.g., [14].

In [11, 17, 18, 19], interval arithmetic has been extended to
the case when, in addition to the interval of possible values,
we also have an additional information about the probabil-
ities of different values within these intervals. In principle,
we can similarly replace, in the computation of D, each op-
eration with real numbers by the corresponding operation
from [11, 17, 18, 19], and, e.g., get an enclosure for the de-
sired interval E. The problem with this approach is that,
similarly to the case of interval computations, in general,
we only get an enclosure which may be much wider than
the actual interval E.

The objective of this paper is to produce the exact inter-
vals Mv (or at least approximations within a given accu-
racy). The following result explains how we can compute
these intervals.

Proposition 1.

• The smallest possible value Mv is attained when for
each j from 1 to k, we use a 1-point distribution in
which xj = Ej with probability 1.

• The largest possible values Mv is attained when for
each j from 1 to k, we use a 2-point distribution for
xj, in which:

• xj = xj with probability p
j

def
=

xj − Ej

xj − xj

.

• xj = xj with probability pj
def
=

Ej − xj

xj − xj

.

Resulting algorithm for computing exact bounds on
Mv. Because of Proposition 1, we can compute the bounds
Mv and Mv by using the following Monte-Carlo simulations:

• To estimate Mv, we:

• set the values xj , 1 ≤ j ≤ k, to be equal to Ej ,
and

• simulate the values xj , k < j ≤ n, as random vari-
ables distributed according to the distributions
Fj(x).

For each simulation, we get a value y = F (x1, . . . , xn);
the average of the v-th powers yv of resulting values y
is the estimate for Mv.

• To estimate Mv, we:

• set each value xj , 1 ≤ j ≤ k, to be equal to xj

with probability pj and to the value xj with the
probability xj ;

• simulate the values xj , k < j ≤ n, as random vari-
ables distributed according to the distributions
Fj(x);

for each simulation, we get a value y = F (x1, . . . , xn);
the average of the v-th powers yv of resulting values y
is the estimate for Mv.

Comment about Monte-Carlo techniques. Before presenting
the algorithm for computing the upper bound on y0, let us
remark that some readers may feel uncomfortable with the
use of Monte-Carlo techniques. This discomfort comes from
the fact that in the traditional statistical approach, when
we know the exact probability distributions of all the vari-
ables, Monte-Carlo methods – that simply simulate the cor-
responding distributions – are inferior to analytical methods.
This inferiority is due to two reasons:

• First, by design, Monte-Carlo methods are approxi-
mate, while analytical methods are usually exact.

• Second, the accuracy provided by a Monte-Carlo
method is, in general, proportional to ∼ 1/

√
Ni, where

Ni is the total number of simulations. Thus, to achieve
reasonable quality, we often need to make a lot of sim-
ulations – as a result, the computation time required
for a Monte-Carlo method becomes much longer than
for an analytical method.

In robust statistic, there is often an additional reason to be
uncomfortable about using Monte-Carlo methods:

• Practitioners use these methods by selecting a finite
set of distributions from the infinite class of all possible
distributions, and running simulations for the selected
distributions.

• Since we do not test all the distributions, this practical
heuristic approach sometimes misses the distributions
on which the minimum or maximum of the correspond-
ing distribution is actually attained.

In our case, we also select a finite collection of distributions
from the infinite set. However, in contrast to the heuristic
(un-justified) selection – which is prone to the above criti-
cism, our selection is justified. Proposition 1 guarantees that
the values corresponding to the selected distributions indeed
provide the smallest and the largest values of the character-
istics Mv.

In such situations, where a justified selection of Monte-
Carlo methods is used to solve a problem of robust statistics,
such Monte-Carlo methods often lead to faster computations
than known analytical techniques. The speed-up caused by
using such Monte-Carlo techniques is one of the main rea-
sons why they were invented in the first place – to provide
fast estimates of the values of multi-dimensional integrals.
Many examples of efficiency of these techniques are given,
e.g., in [25]; in particular, examples related to estimating
how the uncertainty of inputs leads to uncertainty of the
results of data processing are given in [26].



Comment about non-linear terms. In the formula (1), we
ignored quadratic and higher order terms in the dependence
of each path time Di on the parameters xj . It is known
that the maximum D = max Di of convex functions Di is
always convex. So, according to Proposition 1, the above
algorithm will work if we take quadratic terms into consid-
eration – provided that each dependence Di(x1, . . . , xk, . . .)
is still convex.
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