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ABSTRACT

Our main result here is the development of a general procedure for transforming some initial

probability distribution into a new probability distribution in a way that the resulting distribution has

entropy at least as great as the original distribution.  A significant aspect of our approach is that it

makes use of the Zadeh's entailment principle which is itself a general procedure for going from an

initial possibility distribution to a new possibility distribution so that the resulting possibility has an

uncertainty at least as great of the original.

1. Introduction

In [1] Zadeh introduced a general framework for reasoning with uncertain information which

he denoted as GTU, for generalized theory of uncertainty.  This approach is based on an extension

and generalization of his theory of approximate reasoning (AR) [2].  Because of this at times we

shall find it convenient to synonymously refer to this as a generalized theory of approximate

reasoning (GTAR).  Fundamental to this approach is the idea that information can be viewed as a

constraint on a variable or collection of variables.  In this framework our knowledge base consists of

a collection of constraints.  A basic reasoning mechanism in the GTU involves the conjunction of

constraints in the knowledge base which induces further constraints.  Finally inferences are made

using these induced constraints.  Two other components of the reasoning mechanism in GTU are the

use of Zadeh's extension and entailment principles [3].

As indicated in [1, 4] a generalized constraint is the form V isr R.  Here V is a variable (or

joint variable) taking its value in the space X.  R is a constraining relation and r is an indexing

variable which identifies the modality of the constraint.  In [1, 4] Zadeh lists a number of constraint

modalities.  Among the principle constraint modalities are possibilistic (r = blank), probabilistic (r =

p) and veristic (r  = v).

In the case of probabilistic constraints (r = p) R is essentially a probability distribution P
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over the space X such that pi is the probability that V = xi.  Here of course we require  ∑i pi = 1.

In the case of a possibilistic constraint R is a possibility distribution over X.  In this situation

R(xi) ∈  [0, 1] is the possibility that V = xi.  It is often assumed that there exists some x* such

R(x*) = 1.  This is called normality.  Typically a possibility distribution is generated from a fuzzy

set F which is used to precisiate a linguistically expressed value of the variable V [5].  In this

situation the possibility of xi, R(xi) = F(xi) the membership grade of xi in F.  In the light of this we

shall use the terms fuzzy set and possibility distribution interchangeably.

In the case of veristic constraint V isv R, the set R is a fuzzy set corresponding to the set

values taken by V.  Here V is a value that can take multiple vales.  We refer the reader to [6] for a

detailed discussion of veristic variables. 

The development of the theory of approximate reasoning by Zadeh and others focused

mainly on the possibilistic type of constraints and as such a considerable body of literature exists on

the manipulation and management of these types of constraints.[7, 8].  While probability theory is

highly developed the techniques for managing probabilistic types of constraints within the spirit of

approximate reasoning are not as fully developed.  Our goal here is to begin to develop some tools

for managing probabilistically constrained variables within this generalized theory of approximate

reasoning.  In particular we will introduce a general procedure for transforming a probability

distribution into another probabilistic distribution so that the resulting probability distribution always

has at least as much entropy as the original probability distribution.  As we shall see this is closely

related to Zadeh's entailment principle [2] for possibility distributions. 

2. Measuring Information and Uncertainty

In probability theory a well known concept is the entropy.  If P is a probability distribution

on X = { x1, ..., xn} where pi is the probability of xi then the entropy of P is expressed as 

H(P) = - ∑i pi ln(Pi)

While there exists other formalizations of the concept of entropy [9], this expression, called the

Shannon entropy measure, is the most wildly used.  It is well known that entropy measures the
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uncertainty associated with the probability distribution P.  Conversely it measures the information

contained in P.  We note that increasing entropy corresponds to more uncertainty, less information

about the value of the variable.

An important paradigm associated with the concept of probabilistic entropy is the principle of

maximal entropy [10].  This principle has many applications in modern technology.  One application

is to use it to select from among a number of possible probability distributions.  In using this

principle we are selecting the distribution with the least information, the most uncertainty.

A related concept within the framework of possibilistic uncertainty is the idea of specificity

which has been studied in considerable detail by Yager [11-13] and Klir [14].  While a number of

measures for specificity have been suggested we shall find the following one, introduced in [15], to

be the most useful for our purposes.  Assume F is a possibility distribution on the space

X = {x1, ..., xn}.  Without loss of generality we shall assume the elements in X have been indexed

such that x1 has the largest membership grade in X.  Our measure of specificity of F is

Sp(F) = F(x1)   -  1
n - 1

F(xj)∑
j = 2

n
.

In effect, Sp(F) is the largest possibility grade in F minus the average of possibility grades of the

other elements.  We can easily show that Sp(F) ∈  [0, 1].  We also note that Sp(F) uniquely attains

its maximal value of 1 for the case when F(x1) = 1 and F(xj) = 0 for all j ≠ 1.  We see Sp(F) attains

its minimal value of zero when all elements have the same possibility.

In essence the measure of specificity is measuring the certainty with which we know the

value of V based on the constraint V is F.  It provides a measure of the information contained in the

constraining fuzzy set.

We note that decreasing specificity corresponds to more uncertainty, less information about

the value of variable.  In [16] Dubois and Prade investigate the principle of minimal specificity, a

concept analogous to the principle of maximal entropy in probability theory.

A very important special case of F is the normal case, where at least one element has

membership grade 1 with our special indexing we have F(x1) = 1; in this case
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Sp(F) = 1 - 1
n - 1

F(xj)∑
j = 2

n
.

We note this special case is closely related to Klir's concept of non-specificity [17]. 

We note that if F and E are two normal possibility distributions (fuzzy sets) such that

F ⊆  E, F(xj) ≤ E(xj) for all j, then Sp(F) ≥ Sp(E).   Thus if F and E are two normal fuzzy subsets

with F contained in E then the specificity of F is at least as great as E.

3. The Entailment Principle

Within the framework of the theory approximate reasoning, when confined to possibilistic

variables, a fundamental role is played by the entailment principle.  This principle essentially

formalizes the fact that if we know that the value of a variable V lies in the set A then we can naturally

say it lies in the set B.  Formally we express this principle as follows.  If A and B are two fuzzy

subsets of X such that A ⊆  B, A(x) ≤ B(x) for all x, then from the proposition V is A we can infer

the proposition V is B.  The use of this entailment principle involves a change of an initial

possibility distribution to a new possibility such that the information in the resulting possibility

distribution is not greater then in the  original possibility distribution.   In particular if from V is A

we infer V is B where A ⊆  B then Sp(A) ≥ Sp(B).  Thus we see that in applying the entailment

principle we are going from a situation of more specificity (information) to less specificity

(information).  Essentially we are going from more certainty to less certainty about V.

While the introduction, within the framework of GTU, of a principle for probabilistic

constraints analogous to the entailment principle for the case of possibilistic constraints would be a

very useful tool our goal here is slightly less ambitious.  Our purpose here is only to try to begin the

process of providing an analogous entailment principle by looking at the issue of entropy related

probability distributions.  It would appear that any form of entailment principle for probabilistic

constraints should have as one of its features not increasing the information in the original

probability distribution.  In particular if P is a probability distribution and we induce, using some

form of entailment principle, another probability distribution Q then we should require that the
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entropies of these two probability distributions satisfy the relation, H(P) ≤ H(Q).  That is Q has as

least as large entropy, no more information then P.  With this in mind we shall propose a general

methodology for transforming a given probability distribution into another probability distribution in

such a way that our resulting probability distribution has at least as great entropy as the original.  An

interesting aspect of our approach is that it makes use of the possibilistic entailment principle.

The basic steps in our methodology are the following . We shall first appropriately translate

the probabilistic constraint V isp P into a possibilistic constraint, V is F.  We then apply the

possibilistic entailment principle on this fuzzy constraint, to give us V is E.  We then appropriately

retranslate the fuzzy constraint V is E into a probabilistic constraint, V isp Q.  As we shall show

our methodology will satisfy the property of going for more information to less information.  In

particular we shall see that the entropies satisfy H(Q) ≥ H(P).

4. Possibilistic Probability Transformation

Central to our approach is the use of a probability-possibility transformation.  A number of

approaches have been suggested.in the literature [18-20]. We shall use an approach to possibility-

probability transformation which was initially described by Dubois and Prade in [21, 22].

Assume P is a probability distribution on X = {x1, ..., xn} where p1 ≥ p2 ≥ ..... ≥ pn.  The

elements have been indexed in descending order of their probabilities.  We associate with this a

possibility distribution on X such that uj is the possibility of xj where

un = n pn

uj = j (pj - pj - 1) + uj + 1 for j = n - 1 to 1                (I)

Example: Consider a probability distribution on X = {x1, x2, x3, x4, x5} where 

       p1 = 0.4, p2 = 0.3, p3 = 0.2, p4 = 0.1, p5 = 0.

In this case we get: u5 = 0, u4 = 0.4, u3 = 0.7, u2 = 0.9, u1 = 1.

Observation:  If we let pn + 1 = 0 we can more succinctly  express (I) as uj = ∑
k = j

n
k(pk - pk+1).
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From this we see uj = j pj + pk∑
k = j + 1

n

We note some properties of this approach.

Property 1: 1. If  pj = pj+1  then uj = uj+1

2. If pj › pj + 1then uj > uj + 1

Property 2: If pj = 0 then uj = 0

Property 3 If pj = 1n for all j then uj = 1 for all j.

Property 4: It is always the case that u1 = 1

Using formula (I) we can go in the opposite way and get the transformation from a

possibility distribution to a probability distribution.  Assume u1 ≥ u2 ≥ ... ≥ un is a normal

possibility distribution on X, u1 = 1.  We obtain an associated probability distribution on X where

pn = un
n

pj = pj + 1 + 
uj - uj +1

j
                      (II)

We easily see pj ≥ 0 for j.  Furthermore we also can show the following properties

1) If uj = uk then pj = pk

     If uj > uk then pj > pk

2) If uj = 0 then pj = 0

3) If uj = 1 for all j then pj = 1n for all j

4) ∑j pj = 1

If we denote un + 1 = 0 then we can more succinctly express II as pj = 
uk - uk + 1

k∑
k = j

n
.  It

also can shown that II can be expressed as pj = 
uj

j
 + (

uk
k (k - 1) 

)∑
k = j + 1

n
 .

If the application of I on a probability distribution P leads to a possibility distribution A then

the application of II on A brings us back to a probability distribution which is exactly P.

5. Entropy Conserving Probability Transformation

In the following we propose a general method for transforming an initial probability
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distribution into another probability distribution in such a way that the resulting probability

distribution always has at least as much entropy as the original probability distribution.

Assume P is a probability distribution on X = {x1, ..., xn} indexed such that p1 ≥ p2 ≥ ....≥

pn.  We define a ET transformation of the probability distribution P into a new probability

distribution Q, ET(P) −−> Q as follows:

1. We use the probability-possibility transform I on P to induce a possibility distribution A

on X such that the possibility of xi is ai where ai = i pi + pk∑
k = i + 1

n

2. Apply the possibilistic entailment principle on A to generate the possibility distribution B.

Specifically, we apply one of the available transformations of A implementing the entailment

principle. This results in a new possibility distribution B such that bi ≥ ai for all i.

3. Finally, after reordering if necessary, we apply the possibility to probability transformation

II on B to obtain a probability distribution Q on X, qi = bk - bk + 1
k∑

k = i

n
.

The following theorem provides a very significant relation between the entropy of the original

probability distribution and the resulting probability under this ET transformation

Theorem:  If ET(P) = Q then H(P) ≤ H(Q)

Proof:  We start with P and using I we induce the possibility distribution  A.  We can  denote these

as (p1, ..., pn) and (a1, ..., an).  We obtain B from bj by adding some value to aj hence bj ≥ aj.  For

simplicity we shall let b(i) be a permutation of the bi such b(i) is the ith largest of the elements in B.

We can denote B = (b(1), b(2), ..., b(n)) = (g1, g2, ..., gn).  It is easy to see that for each i b(i) ≥ ai.

We shall let F denote the process of going from a possibility distribution to a probability

distribution.  Thus F(A) takes A into a probability distribution and F(B) takes B into a probability

distribution.  Furthermore F(A) = P our original probability distribution.  Our objective is to show

that H(F(B)) ≥ H(F(A)) that is the entropy of the probability distribution induced by B is at least as

great as the entropy of P under the condition b(i) ≥ ai = a(i).
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In order to prove this it is sufficient to show that if we start with A = (a1, ..., an) and increase

any element in A to obtain A' then H(F(A')) ≥ H(F(A)).  More directly this simply requires us to

prove that 
∂H(F(A))

∂ak
 ≥ 0

By applying the chain rule formula to the expression H(F(A)) = ∑
j = 1

n
- pi log pi we get

∂H(F(A))
∂ak

  = (- log(pi) - 1)∑
i = 1

n ∂pi
∂ak

From this we get

∂H(F(A))
∂ak

 = - log(pi)∑
i = 1

n ∂pi
∂ak

 - 
∂pi
∂ak

∑
i = 1

n

Since pi = 1∑
i = 1

n
, we can conclude that 

0 = 

∂( pi∑
i = 1

n
)

∂ak
 = 

∂pi
∂ak

∑
i = 1

n

This implies

∂H(F(A))
∂ak

 = - log (Pi) 
∂Pi

∂ak
∑

i = 1

n

Due to the fact that

pi = 1
i
 ai - 

1
(j - 1)j∑

j = i + 1

n
aj

we obtain

∂pi
∂ak

  = -  1
(k - 1)(k)

 for i < k

∂pk
∂ak

 = 1
k

 for i = k

∂pi
∂ak

 = 0 for i > k

Substituting these into 
∂H(F(A))

∂ak
 = - log (pi) 

∂pi
∂ak

∑
i = 1

n
 we get

∂H(F(A))
∂ak

 = - 1
k

log(pk) + 1
(k)(k-1)

log(pi)∑
i = 1

k - 1

since p1 ≥ p2 ≥ p3 ≥... ≥ pn then for i < k we have pi ≥ pk and hence log(pi) ≥ log(pk).

From this we get
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∂H(F(A))
∂ak

 ≥ - 1
k

log(pk) + 1
(k)(k-1)

log(pk)∑
i = 1

k - 1

∂H(F(A))
∂ak

  ≥ - 1
k

log(pk) + (k - 1) 1
(k - 1) k

 log(pk)

∂H(F(A))
∂ak

  ≥ - 1
k

log(pk) + 1
k

 log(pk) ≥ 0

Thus we see that applying the ET transformation on a probability distribution P always

results in a probability distribution with more entropy, it tends to increase the uncertainty.

We observe that for any probability distribution P there always exists an ET transformation

into the probability distribution Q such that qi = 1n for all i.  We see this as follows.  If from P we get

the possibility distribution A with values ai then if we increase each ai by ∆i such that bi = ai + ∆i =

1 then in this case qi = 1n for all i..

Another important property of the ET transformation is the following.

Property:  Let P be a probability distribution such that p1, the probability of x1, is the largest.  Then

if ET(P) = Q we always have that q1, the probability of x1, is also always the largest, q1 ≥ qj for all j.

We shall say that an ET transform is order preserving if ordering of pj ≥ pk results in

qj ≥ qk.  We can guarantee this condition as follows.  Assume pj ≥ pk for j < k and let aj be the

possibility transformation of pj.  In this case a1 ≥ a2, ..., ≥ an.  If we modify aj to bj, ie bj = aj + ∆j

such that b1 ≥ b2, ..., ≥ bn then q1 ≥ q2, ..., ≥ qn.  Here we get order preservation.

It is interesting to observe the effect of modifying one of the ai.  Again assume we start with

P where p1 ≥ p2 ≥ ... ≥ pn.  From this we generate the possibility distribution a1 ≥ a2 ≥ ... ≥ an.  If

we directly use the ai to obtain qi we  get qj = 
ak - ak + 1

k∑
k = j

n
 = pj.  Assume we just modify ai by

adding ∆, thus bi = ai + ∆ and bj = aj for all j ≠ i.  Using the fact that qj = bk - bk + 1
k∑

k = j

n
.  First we

see that for j > i, the smaller elements, since ak = bk for k > i we get 

qj =  bk - bk + 1
k∑

k = j

n
 = 

ak - ak + 1
k∑

k = j

n
 = pj

For j = i we have

qi = bk - bk + 1
k∑

k = j

n
  = bi - bi + 1

i
 + bk - bk + 1

k∑
k = i + 1

n
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Since for k > i, bk = ai and bi = ai + ∆ we 

qi =
ai + ∆ - ai + 1

i
 + 

ak - ak + 1
k∑

k = i + 1

n

qi = ∆
i
 + 

ak - ak + 1
k∑

k = i

n

qi = ∆
i
 + pi

Thus the ith largest probability has increased by ∆
i
.

Consider now any j < i, the elements with larger probabilities.  In this case again,

qj = bk - bk + 1
k∑

k = j

n

qj = bk - bk + 1
k∑

k = j

i - 2
 + 

(bi - 1 - bi)
i - 1

 + 
(bi - bi - 1)

i
 + bk - bk + 1

k∑
k = i + 1

n

qj = 
ak - ak + 1

k∑
k = j

i - 2
 + 

(ai - 1 - ( ai + ∆))
i - 1

 + 
(( ai + ∆) - ai - 1)

i
 + 

ak - ak + 1
k∑

k = i + 1

n

qj = 
ak - ak + 1

k∑
k = j

n
 - ∆

i - 1
 + ∆

i
  = Pj - ∆

( i - 1) i

qj =  Pj - (∆ i
) 1
(i - 1)

We see that the amount added to pi, 
∆
 i

, has been accounted for by uniformly subtracting

( 1
i - 1

)∆
i
 from all probabilities greater than pi.

Thus we see in this case if we just increase ai by ∆ the following changes in P have

happened.  All probabilities less the pi have been unchanged. pi has been increased by ∆
i
.  All

probabilities greater then pi have been diminished by (∆
 i

) 1
(i - 1)

.

Let us now consider the case in which we modify two of the possibility distribution.  For

simplicity we consider changing two contiguous ones.  Thus here we let bi = ai + ∆ and

bi–1 = ai–1 + d and bj = aj for all j ≠ i, i - 1.  Here again qj = bk - bk + 1
k∑

k = j

n
.  From this we  easily

see that for j > i, qj = pj no change.  For j = i, qi = pi + ∆
i
.  This is as in the preceding.  Consider

now j = i - 1.  Here we have

qi-1 = bk - bk + 1
k∑

k = i - 1

n
 = bi - 1 - bi

i - 1
 + bi - bi + 1

i
 + bk - bk + 1

k∑
k = i + 1

n

qi-1 =  = 
ai - 1 +d - (ai + ∆)

i - 1
 + 

ai + ∆ - ai + 1
i

 + bk - bk + 1
k∑

k = i + 1

n
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qi-1 = d - ∆
i - 1

 + ∆
i
 + 

ak - ak + 1
k∑

R = i - 1

n

qi -1 = pi - 1 + d
i - 1

 - ∆
(i)(i - 1)

We can easily show that for j < i - 1 we have

qj = pj - 
∆

(i)(i - 1)
 -  d

(i - 1)(i - 2)
.

Based upon the preceding we can make some general observations about the relationship of

qj and pj for the order preserving case.  Let bj = aj + ∆j for j = 2 to n.  Note we can't change a1 as it

already equals 1.  In this case we have that qj = pj + 
∆j

j
 - ∆k

(k)(k - 1)∑
k = j - 1

n
.  We observe that the

smallest probability to increase its value of aj, have a non-zero ∆j, will always display an increase in

probability.  We also note that since ∆1 must always be zero then if any of the ai increases we will

have a decrease in p1, that is q1 < p1.

We not something similar was done in Dubois and Hullermeier [23] where the authors used

the possibility probability transformation proposed by Moral [24].

6. Certainty Qualification of Probabilistic Constraints

We now consider a special case of ET transformations.  Here we let ∆j = (1 - aj) α where

α ∈  [0, 1].  Thus we add an amount proportional to the distance from 1. Here then we have for k = 1

to n that 

bk = ak + (1 - ak)α 

bk = α + (1 - α) ak 

We still require that bn + 1 = an + 1 = 0.  In order to guarantee this we can express 

bn + 1 = α + (1 - α )an + 1 - α 

Using this we have

qj = bk - bk + 1
k∑

k = 1

n
 = bk - bk + 1

k∑
k = 1

n - 1
 + bn - bn + 1

n

qj = 
α  + (1 - α)ak - (α + (1 - α)ak+1)

k∑
k = 1

n - 1
 + 

α  + (1 - α)an
n  - 

(α + (1 - α)an + 1 - α)
n
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qj = 
α  + (1 - α)ak - (α + (1 - α)ak + 1)

k∑
k = 1

n
 + αn

qj = (1 - α) 
ak - ak + 1

k∑
k = 1

n
 + αn

qj = (1 - α) pj+ α  1n

Thus here as α goes from zero to one we move from our given probability distribution to a state of

complete ignorance.

This transformation can have an interesting use within the framework of the theory of

Generalized Approximate reasoning.  Assume we have a possibilistic constraint V is G with which

we have an associated degree of confidence λ.  We recall one approach [25, 26] to representing this

is to discount the basic statement by using a constraint V is H where  H(xi) = Max[G(xi), 1 - λ].

This process is called certainty qualification.

The preceding ET transformation can provide the basis for an analogous operator of certainty

qualification for a probabilistic constraint.  Assumes we have a probabilistic constraint V isp P with

which we associate a of degree of certainty or confidence λ.  We can transform this to another

probabilistic constraint V isp Q where

Q(xi) = λ p(xi) + (1 - λ) 1n

In this we see α = 1 - λ.  Thus as our confidence in the original information decreases, λ, goes to

zero we get close to completely discounting the distribution provided.

7. Conclusion

Our main result here is the development of a general procedure for transforming some initial

probability distribution into a new probability distribution in a way that the resulting distribution has

entropy at least as great as the original distribution.  An significant aspect of our approach is that it

makes use of the Zadeh's entailment principle which is itself a general procedure for going from an

initial possibility distribution to a new possibility distribution so that the resulting possibility has an

uncertainty at least as great of the original.
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