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ABSTRACT

Our main result here is the development of ageneral procedure for transforming someinitial
probability distribution into anew probability distribution in away that the resulting distribution has
entropy at least as great as the original distribution. A significant aspect of our approach is that it
makes use of the Zadeh's entailment principle which isitself ageneral procedure for going from an
initial possibility distribution to a new possibility distribution so that the resulting possibility has an

uncertainty at least as great of the original.

1. Introduction

In [1] Zadeh introduced a general framework for reasoning with uncertain information which
he denoted as GTU, for generalized theory of uncertainty. This approach is based on an extension
and generalization of his theory of approximate reasoning (AR) [2]. Because of this at times we
shall find it convenient to synonymously refer to this as a generalized theory of approximate
reasoning (GTAR). Fundamental to this approach is the idea that information can be viewed as a
constraint on avariable or collection of variables. In thisframework our knowledge base consists of
acollection of constraints. A basic reasoning mechanism in the GTU involves the conjunction of
constraints in the knowledge base which induces further constraints. Finally inferences are made
using these induced constraints. Two other components of the reasoning mechanism in GTU are the
use of Zadeh's extension and entailment principles[3].

Asindicated in [1, 4] ageneralized constraint istheform V isr R. HereV isavariable (or
joint variable) taking its value in the space X. R is aconstraining relation and r is an indexing
variable which identifies the modality of the constraint. In[1, 4] Zadeh lists a number of constraint
modalities. Among the principle constraint modalities are possibilistic (r = blank), probabilistic (r =
p) and veristic (r =v).

In the case of probabilistic constraints (r = p) R is essentially a probability distribution P



over the space X such that pj isthe probability that V = x;. Here of course werequire »j pj = 1.

In the case of apossibilistic constraint R is apossibility distribution over X. In this situation
R(xj) O [0, 1] is the possibility that V = xj. It is often assumed that there exists some x* such
R(x*) = 1. Thisiscalled normality. Typically apossibility distribution is generated from a fuzzy
set F which is used to precisiate a linguistically expressed value of the variable V [5]. In this
situation the possibility of xj, R(xj) = F(xj) the membership grade of xj in F. In thelight of thiswe
shall use the terms fuzzy set and possibility distribution interchangeably.

In the case of veristic constraint V isv R, the set R is afuzzy set corresponding to the set
valuestaken by V. HereV isavalue that can take multiple vales. We refer the reader to [6] for a
detailed discussion of veristic variables.

The development of the theory of approximate reasoning by Zadeh and others focused
mainly on the possibilistic type of constraints and as such a considerable body of literature exists on
the manipulation and management of these types of constraints.[7, 8]. While probability theory is
highly developed the techniques for managing probabilistic types of constraints within the spirit of
approximate reasoning are not as fully developed. Our goal hereisto begin to develop some tools
for managing probabilistically constrained variables within this generalized theory of approximate
reasoning. In particular we will introduce a general procedure for transforming a probability
distribution into another probabilistic distribution so that the resulting probability distribution always
has at |east as much entropy as the original probability distribution. Aswe shall seethisis closely
related to Zadeh's entailment principle [2] for possibility distributions.

2. Measuring Information and Uncertainty

In probability theory awell known concept is the entropy. If P isa probability distribution
on X ={ X1, ..., Xn} wWhere pj isthe probability of x; then the entropy of P is expressed as
H(P) =- 3 pj In(P)
While there exists other formalizations of the concept of entropy [9], this expression, called the

Shannon entropy measure, is the most wildly used. It iswell known that entropy measures the



uncertainty associated with the probability distribution P. Conversely it measures the information
contained in P. We note that increasing entropy corresponds to more uncertainty, lessinformation
about the value of the variable.

An important paradigm associated with the concept of probabilistic entropy is the principle of
maximal entropy [10]. This principle has many applications in modern technology. One application
is to use it to select from among a number of possible probability distributions. In using this
principle we are selecting the distribution with the least information, the most uncertainty.

A related concept within the framework of possibilistic uncertainty is the idea of specificity
which has been studied in considerable detail by Yager [11-13] and Klir [14]. While a number of
measures for specificity have been suggested we shall find the following one, introduced in [15], to
be the most useful for our purposes. Assume F is a possibility distribution on the space
X ={X1, ..., Xn}. Without loss of generality we shall assume the elementsin X have been indexed

such that x1 has the largest membership grade in X. Our measure of specificity of Fis

Sp(F) =F(x)) - 155 F(x).
j=2

In effect, Sp(F) is the largest possibility grade in F minus the average of possibility grades of the
other elements. We can easily show that Sp(F) O [0, 1]. We also note that Sp(F) uniquely attains
its maximal value of 1 for the case when F(x1) = 1 and F(Xj) =0foralj#1 WeseeSp(F) attains
itsminimal vaue of zero when all e ements have the same possibility.

In essence the measure of specificity is measuring the certainty with which we know the
value of V based on the constraint VV isF. It provides a measure of the information contained in the
congtraining fuzzy set.

We note that decreasing specificity corresponds to more uncertainty, less information about
the value of variable. In[16] Dubois and Prade investigate the principle of minimal specificity, a
concept anal ogous to the principle of maximal entropy in probability theory.

A very important special case of F is the normal case, where at least one element has

membership grade 1 with our special indexing we have F(x1) = 1, in this case



n
Sp(F)=1- n?lj 2 Fox)
We note this special caseis closaly related to Klir's concept of non-specificity [17].

We note that if F and E are two normal possibility distributions (fuzzy sets) such that
FOE, F(Xj) < E(Xj) for al j, then Sp(F) = Sp(E). Thusif F and E are two normal fuzzy subsets

with F contained in E then the specificity of Fisat least asgreat asE.

3. The Entailment Principle

Within the framework of the theory approximate reasoning, when confined to possibilistic
variables, a fundamental role is played by the entailment principle. This principle essentially
formalizes the fact that if we know that the value of avariable V liesin the set A then we can naturally
say it liesin the set B. Formally we express this principle as follows. If A and B are two fuzzy
subsets of X such that A [0 B, A(x) < B(x) for al x, then from the proposition V is A we can infer
the proposition V is B. The use of this entailment principle involves a change of an initial
possibility distribution to a new possibility such that the information in the resulting possibility
distribution is not greater then in the original possibility distribution. In particular if fromV isA
we infer V is B where A [0 B then Sp(A) = Sp(B). Thus we see that in applying the entailment
principle we are going from a situation of more specificity (information) to less specificity
(information). Essentially we are going from more certainty to less certainty about V.

While the introduction, within the framework of GTU, of a principle for probabilistic
constraints analogous to the entailment principle for the case of possibilistic constraints would be a
very useful tool our goa hereis dlightly less ambitious. Our purpose here isonly to try to begin the
process of providing an analogous entailment principle by looking at the issue of entropy related
probability distributions. It would appear that any form of entailment principle for probabilistic
constraints should have as one of its features not increasing the information in the original
probability distribution. In particular if P is a probability distribution and we induce, using some

form of entailment principle, another probability distribution Q then we should require that the



entropies of these two probability distributions satisfy the relation, H(P) < H(Q). That isQ hasas
least as large entropy, no more information then P. With this in mind we shall propose a general
methodology for transforming a given probability distribution into another probability distribution in
such away that our resulting probability distribution has at least as great entropy asthe origina. An
interesting aspect of our approach is that it makes use of the possibilistic entailment principle.

The basic steps in our methodology are the following . We shall first appropriately trandate
the probabilistic constraint V isp P into a possibilistic constraint, V is F. We then apply the
possibilistic entailment principle on this fuzzy constraint, to give usV isE. We then appropriately
retranslate the fuzzy constraint V is E into a probabilistic constraint, V isp Q. Aswe shall show
our methodology will satisfy the property of going for more information to less information. In

particular we shall see that the entropies satisfy H(Q) = H(P).

4. Possibilistic Probability Transformation

Central to our approach is the use of a probability-possibility transformation. A number of
approaches have been suggested.in the literature [18-20]. We shall use an approach to possibility-
probability transformation which wasinitialy described by Dubois and Pradein [21, 22].

Assume P is a probability distribution on X = {X1q, ..., Xn} wherepq 2p2=>....2pp. The
elements have been indexed in descending order of their probabilities. We associate with this a
possibility distribution on X such that Uj Isthe possibility of X where

Un =NPn

Uj:j(pj-pj_1)+Uj+1 forj=n-1tol (D)

Example: Consider a probability distribution on X = {x1, X2, X3, X4, X5} where
P1=04,p2=0.3,p3=02,p4=0.1, p5=0.
Inthis case we get: us =0, ug =0.4,u3=0.7,up=0.9, u =1

n
Observation: If welet pn + 1 = 0 we can more succinctly express (1) asuj = z K(Pk - Pk+1)-
k=]



n
Fromthiswe seeu; =j pj + Z Pk
k=j+1
We note some properties of this approach.

Property 1: 1. If pj =pj+1 thenuj = uj+1
2.1fpj> pj + 1thenyj>uj + 1

Property 2. If pj = 0 then uj=0
Property3  1f pj = 1 forallj thenuj = 1 for all j.
Property 4. Itisawaysthecasethat ug =1

Using formula (1) we can go in the opposite way and get the transformation from a
possibility distribution to a probability distribution. Assume uq = up = ... 2 up is a normal
possibility distribution on X, ug = 1. We obtain an associated probability distribution on X where

pn:UT?
U - U
Dj=pj+1+ j”l (n

We easily see pj=0 for j. Furthermore we aso can show the following properties

1) Iij = uk then Pj = Pk
If uj > uy then pj > py
2) Iij :Othenpj =0
3) If uj = Lfor all j then pj = L for all j

AH2jp=1
n
If we denote up, + 1 = 0 then we can more succinctly express 1 aspj = Z &kk*l It
kK=j
U; n u
) k
alsocanshownthatllcanbeexpressedaspj j + z (k(k-l))'

k=j+1
If the application of | on a probability distribution P leads to a possibility distribution A then

the application of 11 on A brings us back to a probability distribution which is exactly P.

5. Entropy Conserving Probability Transfor mation

In the following we propose a general method for transforming an initial probability



distribution into another probability distribution in such a way that the resulting probability
distribution always has at |east as much entropy as the original probability distribution.

Assume Pis a probability distribution on X = {X1, ..., Xn} indexed suchthat pj 2po=>...2
Pn. We define a ET transformation of the probability distribution P into a new probability
distribution Q, ET(P) ——>Q asfollows:

1. We use the probability-possibility transform | on P to induce a possibility distribution A

n
on X such that the possibility of x; isaj wheregj =i pj + Z Pk
k=i+1
2. Apply the possibilistic entailment principle on A to generate the possibility distribution B.

Specifically, we apply one of the available transformations of A implementing the entailment
principle. Thisresultsin anew possibility distribution B such that bj = g; for all i.

3. Finally, after reordering if necessary, we apply the possibility to probability transformation

n

11 on B to obtain a probability distribution Q on X, gj = z b"iﬁ"”
k=i

The following theorem provides avery significant relation between the entropy of the original
probability distribution and the resulting probability under this ET transformation
Theorem: If ET(P) = Q then H(P) < H(Q)
Proof: We start with P and using | we induce the possibility distribution A. We can denote these
as(p1, .- Pn) @nd (ay, ..., ). Weobtain B from bj by adding some value to g hence bj > g. For
simplicity we shall let b(i) be a permutation of the bj such b(i) istheith largest of the elementsin B.
We can denote B = (b(1), b(2), .-, b(n)) = (91, 92, ..., On). Itiseasy to seethat for eachi b(j) = 4.
We shall let F denote the process of going from a possibility distribution to a probability
distribution. Thus F(A) takes A into a probability distribution and F(B) takes B into a probability
distribution. Furthermore F(A) = P our original probability distribution. Our objectiveisto show
that H(F(B)) = H(F(A)) that is the entropy of the probability distribution induced by B is at least as

great asthe entropy of P under the condition b(j) = g = &(j).



In order to provethisit is sufficient to show that if we start with A = (&g, ..., an) and increase

any element in A to obtain A’ then H(F(A)) = H(F(A)). More directly this simply requires us to

prove that (N_I(Faf(A)) >0

By applying the chain rule formulato the expression H(F(A)) = z - pj log pj we get
=
OH(F(A)) _
— lo 1
o8, 2 _E (- log(py) - )
From this we get
n

aH(F(A)) z |Og(p| apl _ z 6pl

n
Since ) p; = 1, wecan conclude that
i=1

oy m
0= i=1 = Z aip
0ay = 03
Thisimplies
oH(F(A)) _ aP.
—— = log (P;
%, .Z og (P) 5!
Dueto the fact that
n
-1 1
p| - *a| = - -
37,2, 60
we obtain
9p; =- 1 fori <k
0ay (k - D(k)
0P _ 1 fori =k
da K
%i_g fori >k
08y
n
Substituting theseinto PH(FA)) _ . z log (pi)g;iweget
i=1
k-1
OH(F(A)) _ 1, 1 loa(b

sincepy 2 p2 2 p32... 2 pp then for i < k we have pj = pk and hence log(p;j) = log(pk)-

From this we get



H(F(A) . 1 1 K
TZ E|Og(pk)+

(K)(k-1),
mg;(f‘)) > - %log(pk) +(k-1) 1 log(pk)

k-1 Kk
o) =~ Hogpi + oo 20

Thus we see that applying the ET transformation on a probability distribution P always

1
log(pk)
1

resultsin a probability distribution with more entropy, it tends to increase the uncertainty.

We observe that for any probability distribution P there always exists an ET transformation
into the probability distribution Q such that g; = % for al i. We seethisasfollows. If from Pwe get
the possibility distribution A with values g; then if we increase each g by Aj such that bj = gj + Aj =
1theninthiscaseqj = % fordli..

Another important property of the ET transformation is the following.

Property: Let Pbeaprobability distribution such that p4, the probability of X1, isthelargest. Then
if ET(P) = Q we aways havethat g4, the probability of x1, isalso alwaysthe largest, q1 = 0| for dl j.

We shall say that an ET transform is order preserving if ordering of pj = py results in
0j = gk. We can guarantee this condition as follows. Assume pj = p for j < k and let g be the
possibility transformation of pj- In thiscasea = a, ..., 2 an. If we modify g to bj, ie bj =g + 4
suchthat by 2 by, ..., 2 by thenqgq 2 gy, ..., 2 . Herewe get order preservation.

It isinteresting to observe the effect of modifying one of the gj. Again assume we start with

Pwherep1 = p2 = ... 2 pp. From this we generate the possibility distributionag 2 ap > ... 2 ap. If

n
we directly use the g to obtain gj we get qj = Z W =pj. Assume we just modify g by

k=j
n

adding A, thus bj = g +Aandbj:ajforallj¢i. Usingthefactthatqj: z b"itk"‘*l First we
k=]
seethat for j > i, the smaller elements, since a = by for k > i we get
n n
_ b-bx+1_ 5 &-&+1_,
g= 3 Kopeizy ARelsy
k=j k=j
Forj =i wehave
n

- i - by = bg-b
qizzbk bk+1 _bi-bivg S Dkobess

K= k : ko1 K

10



Sincefor k>1i, by = g and bj = g + A we

A +A-ai1 . o« Ac-d+1
ql_ + Z k

N k=i+1

z -+

A
i k
Q

di * P

Thustheith largest probability has increased by AT

Consider now any j < i, the eements with larger probabilities. Inthiscase again,
n

g = z by - bk +1

k—] k i
g = :(Z by - Ek+1+(bul}1b|) (i-EJi-l)+ _Z bk'£k+1
|._J k=i+1 ]
qj:z.ak-zk+1+(ai-1-is?.i+A))+((ai+Ai)-ai-1)+k:§+lak-ik+l
n
qj:kzjak-ak”_i-AlJrAi:Pj_(i-Al)i
P- @ity

We see that the amount added to pj, —. has been accounted for by uniformly subtracting
(ﬁ)AT from all probabilities greater than p;.
Thus we see in this case if we just increase g by A the following changes in P have

happened. All probabilities less the p; have been unchanged. pj has been increased by AT All
probabilities greater then pj have been diminished by (A)

(i -1)°

Let us now consider the case in which we modify two of the possibility distribution. For

simplicity we consider changing two contiguous ones. Thus here we let bj = g + A and

n
bi1=g-1+dandbj =g foralj#i,i-1 Hereagaingj= Z bkitlzk*l From thiswe easily
k=]

seethat for j > 1, gj = pj no change. Forj =i, gj = pj +AT' Thisis asin the preceding. Consider

now j =i-1. Herewehave
n n
o bk-bxk+1_bi-1-bi  bi-bi+1 bk - bk +1
QI-l—k_Z K I|-1 e |I * _Z. K
=i-1 nk—|+l
o __g.1td-@+A) g +tA-a,q S bk - by + 1
-1 i-1 i L,k

11



d-A LA, % B - A1
i-1 i RS 1 Kk
o d . A
di -1 p|'1+i_l (l)(l'l)

Qi-1=

We can easily show that for j <i - 1 we have

R A d
VR G-y (-06-2°
Based upon the preceding we can make some general observations about the relationship of

q and Pj for the order preserving case. Let bj =g + 4 forj =2ton. Notewe can't change & asit
. n
already equals 1. In this case we have that qj = pj +Aj‘- Z
k=j-1
smallest probability to increase its value of g, have anon-zero Aj, will always display anincreasein

Ay
K(k-1)

We observe that the
probability. We also note that since A1 must always be zero then if any of the g increases we will
have adecreasein pq, thatisqq < pj.

We not something similar was done in Dubois and Hullermeier [23] where the authors used

the possibility probability transformation proposed by Moral [24].

6. Certainty Qualification of Probabilistic Constraints

We now consider a specia case of ET transformations. Here we let Aj = (1- aj) o where
o O[O0, 1]. Thuswe add an amount proportional to the distance from 1. Here then we havefor k = 1
to n that
by = a + (1 - g)a
by = o +(1-a) ak
We still requirethat b + 1 = an + 1 = 0. In order to guarantee this we can express

bh+1=a+@-a)ap+1-0O

Using thiswe have
C bi-bie1 - S bic-Bie s, bo-bneg
R B + — - + n-von+
= K > kK T n
k:% k=1
o+ (@-o)ac- (@ (L-a)aer) o+ (1-0)an (0 + (1-a)an .- Q)
G kzl K n n

12



n

qj:kzlo( +(1'0()ak'(i+(1'0()ak+1) _,_%

n
g=(-a) y X hrisa
k=1

g=(1-o)p+al
Thus here as a goes from zero to one we move from our given probability distribution to a state of
completeignorance.

This transformation can have an interesting use within the framework of the theory of
Generalized Approximate reasoning. Assume we have apossibilistic constraint V is G with which
we have an associated degree of confidence A. Werecall one approach [25, 26] to representing this
is to discount the basic statement by using a constraint V is H where H(xj) = Max[G(xj), 1 - A].
This processis called certainty qualification.

The preceding ET transformation can provide the basis for an analogous operator of certainty
qualification for a probabilistic constraint. Assumes we have a probabilistic constraint V isp P with
which we associate a of degree of certainty or confidence A. We can transform this to another
probabilistic constraint V isp Q where

Qi) =A pixj) + (1-) 1
Inthisweseea =1-A. Thusasour confidence in the original information decreases, A, goes to

zero we get close to completely discounting the distribution provided.
7. Conclusion

Our main result here is the development of ageneral procedure for transforming someinitia
probability distribution into anew probability distribution in away that the resulting distribution has
entropy at least as great as the origina distribution. An significant aspect of our approach isthat it
makes use of the Zadeh's entailment principle which isitself a general procedure for going from an
initial possibility distribution to a new possibility distribution so that the resulting possibility has an

uncertainty at least as great of the original.
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