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1 Introduction

In geosciences, we often need to combine two (or more) images of the same
area:

e different images bring different information; so, to get a better understand-
ing, we must fuse the corresponding data; e.g., we must combine a satellite
images with a radar image;

e comparison of two images — e.g., images made at different moments of time
— can also give us information about the changes: e.g., by comparing pre-
and post-earthquake images, we can determine the effect of the earthquake.

Compared images are often obtained from slightly different angles, from
slightly different positions. Therefore, in order to compare these images, we
must first reference them, i.e., find the shift, rotation, and scaling after which
these images match the best, and then apply these transformations to the
original images.

There exist efficient algorithms for referencing and for the corresponding
transformations; these techniques are described in Section 2. However, these
algorithms are only effective when we know these images with high accuracy.
In many real-life situation — e.g., when comparing pre- and post-earthquake
image, see Section 3 — the uncertainty with which we determine these images is
of the same order of magnitude as the desired difference between the compared
images. In Section 4 of this paper, we describe how we can generalize the
existing techniques to the case of uncertain images, and how the resulting
algorithms can be efficiently applied in geosciences.
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2 Referencing Images Known With High Accuracy

Motivation

In order to adequately process satellite and radar information, it is necessary
to find the exact correspondence between different types of images and be-
tween these images and the existing maps. In other words, we need to reference
these images. There exist automatic methods of referencing satellite images.
These methods are based on using Fast Fourier Transform (FFT). They work
well because different image of the same area differ mainly by a shift and/or
by a rotation, and so, their Fourier transforms are related in a known way,
from which we can determine the exact rotation and shift.

Automation is necessary

At present, referencing is mostly done semi-automatically: once we find the
matching points on the two images, we can use imaging tools to find the most
appropriate transformation (rotation and/or shift) which maps one image into
another. The problem is that finding such matching points is a difficult and
time-consuming tasks, especially for images of the Southwest.

The most efficient way is to match road intersections. Many nearby road
intersections look similar, so we need several trial-and-error iterations before
we can get a good referencing. Even an experienced imaging specialist must
spend at least an hour or so on referencing an image. Since new satellite
images are produced every few seconds, we cannot afford to spend an hour of
referencing each new image. We need automatic referencing techniques.

The existing FFT-based referencing algorithms

To decrease the referencing time, researchers have proposed methods based
on Fast Fourier Transform (FFT). The best of known FFT-based referencing
algorithms is presented in [3, 4, 10, 11, 12, 20, 23, 24, 29, 30]. The main ideas
behind FFT-based referencing in general and this algorithm in particular are
as follows.

The simplest case: shift detection in the absence of noise
Let us first consider the case when two images differ only by shift. It is known

that if two images I(x) and I’(x) differ only by shift, i.e., if I'(x) = I(x + a)
for some (unknown) shift a, then their Fourier transforms

1 .
Flw)= o //I(x) ce 2T ew) qady,

Fllw)=—" //I’(x) CeT2m (@) qady,

are related by the following formula:



Images with Uncertainty: Referencing, Applications to Geosciences 3
Fl(w) = 2™ (@a) . p(w). (1)

Therefore, if the images are indeed obtained from each other by shift, then
we have
M'(w) = M(w), (2)

where we denoted
M(w) = |F(w)], M (w)=|F'(w)| (3)

The actual value of the shift a can be obtained if we use the formula (1)
to compute the value of the following ratio:

Rw) = 0
Substituting (1) into (4), we get
R(w) = *mi(wa), (5)

Therefore, the inverse Fourier transform P(x) of this ratio is equal to the
delta-function §(x — a).

In other words, in the ideal no-noise situation, this inverse Fourier trans-
form P(x) is equal to 0 everywhere except for the point x = a; so, from P(x),
we can easily determine the desired shift by using the following algorithm:

e first, we apply FFT to the original images I(x) and I'(x) and compute
their Fourier transforms F(w) and F'(w);
on the second step, we compute the ratio (4);
on the third step, we apply the inverse FEF'T to the ratio R(w) and compute
its inverse Fourier transform P(x);

e finally, on the fourth step, we determine the desired shift a as the only
value a for which P(a) # 0.

Shift detection in the presence of noise

In the ideal case, the absolute value of the ratio (4) is equal to 1. In real
life, the measured intensity values have some noise in them. For example, the
conditions may slightly change from one overflight to another, which can be
represented as the fact that a “noise” was added to the actual image.

In the presence of noise, the observed values of the intensities may differ
from the actual values; as a result, their Fourier transforms also differ from the
values and hence, the absolute value of the ratio (4) may be different from 1.

We can somewhat improve the accuracy of this method if, instead of simply
processing the measurement results, we take into consideration the additional
knowledge that the absolute value of the actual ratio (4) is exactly equal to 1.
Let us see how this can be done.
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Let us denote the actual (unknown) value of the value e*™"(«2) by s
Then, in the absence of noise, the equation (1) takes the form

Fl(w)=r-F(w). (5)

In the presence of noise, the computed values F(w) and F'(w) of the Fourier
transforms can be slightly different from the actual values, and therefore, the
equality (5) is only approximately true:

Fl(w)~7r-F(w). (6)

In addition to the equation (6), we know that the absolute value of r is equal
to 1, i.e., that
Ir> =r-r* =1, (7)

where r* denotes a complex conjugate to r.
As a result, we know two things about the unknown value 7:

e that r satisfies the approximate equation (6), and
e that r satisfies the additional constraint (7).

We would like to get the best estimate for r among all estimates which satisfy
the condition (7). To get the optimal estimate, we can use the Least Squares
Method (LSM). According to this method, for each estimate 7, we define the
error

E=F(w)—7r-F(w) (8)

with which the condition (6) is satisfied. Then, we find among all estimates
which satisfy the additional condition (7), a value r for which the square
|E|? = E - E* of this error is the smallest possible.

The square |E|? of the error E can be reformulated as follows:

E-B'=(F(w)~r Fw) (F"(w) -1 F'(w)) =

Fl(w)-F" (W) —r* F*(w)-F'(w) —7-F(w)-F"" (W) +7-7* - F(w)- F*(w). (9)

We need to minimize this expression under the condition (7).

For conditional minimization, there is a known technique of Lagrange mul-
tipliers, according to which the minimum of a function f(z) under the condi-
tion g(z) = 0 is attained when for some real number A, the auxiliary function
f(z) + X - g(x) attains its unconditional minimum; this value X is called a
Lagrange multiplier.

For our problem, the Lagrange multiplier technique leads to the following
unconditional minimization problem:

Fl(w) F'(w) —r* F*(w) - F'(w)—

r-Flw) - F(w)+r-r* Fw) F*(w)+ A (r-r* —1) — min. (10)
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We want to find the value of the complex variable r for which this expression
takes the smallest possible value. A complex variable is, in effect, a pair of two
real variables, so the minimum can be found as a point at which the partial
derivatives with respect to each of these variables are both equal to 0. Alter-
natively, we can represent this equality by computing the partial derivative of
the expression (10) relative to r and r*. If we differentiate (10) relative to r*,
we get the following linear equation:

—F*(w) Fl(w)+7r Fw) F*(w)+X-r=0. (11)
From this equation, we conclude that

_ P (w) F'(w)
"TFw) Frw) A (12)

The coefficient A can be now determined from the condition that the resulting
value r should satisfy the equation (7). The denominator F'(w) - F*(w) + A of
the equation (12) is a real number, so instead of finding A, it is sufficient to
find a value of this denominator for which |r|?> = 1. One can easily see that
to achieve this goal, we should take, as this denominator, the absolute value
of the numerator, i.e., the value

[F*(w) - F'(w)| = [F*(@)] - [F'(w)]. (13)

For this choice of a denominator, the formula (11) takes the following final
form: . o
—— () /(“’) . (14)
[F*(w)] - [F'(w)]
So, in the presence of noise, instead of using the exact ratio (4), we should
compute, for every w, the optimal approximation

_ F*(w) - F'(w)
[F*(w)] - [F" (@)

R(w) (15)

This approximation is known as “cross-correlation power spectrum” (see, e.g.,
5)).

In the ideal non-noise case, the inverse Fourier transform P(x) of this ratio
is equal to the delta-function d(x — a), i.e., equal to 0 everywhere except for
the point x = a. In the presence of noise, we expect the values of P(x) to be
slightly different from the delta-function, but still, the value | P(a)| should be
much larger than all the other values of this function. Thus, the value of the
shift can be determined as the value at which |P(a)| is the largest.

Finding the shift with subpizel accuracy

To get a subpixel accuracy, we can use the interpolation described (and jus-
tified) in [12]. Namely:
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e we find the point x = (z1,y1) for which |P(x)| takes the largest possible
value;
e then, among 4 points (z1 £ 1,y; £ 1), we select a point (z2,ys) for which
the value |P(x2,y2)| is the largest;
e after that, we apply the formulas
Wyl " T1 + Wa2 - T Wyl * Y1 + Wy2 - Y2

T = ;Y= , 16
Wyl + We2 Y Wy1 + Wy2 ( )

where
Wi = [Pz, y1)|* + [Pz, y2)[*; wyi = [P(@1,3:)|" + P22, 3:)|%, (17)
with o = 0.65, to find the coordinates (z,y) of the shift.
Resulting algorithm

So, we arrive at the following algorithm for determining the shift a:

e first, we apply FFT to the original images I(x) and I'(x) and compute
their Fourier transforms F(w) and F'(w);
on the second step, we compute the ratio (15);
on the third step, we apply the inverse FFT to the ratio R(w) and compute
its inverse Fourier transform P(x);
e finally, on the fourth step, we do the following:
e we find the point x = (x1,y1) for which | P(x)| takes the largest possible
value;
e then, among 4 points (z1 £ 1,y1 = 1), we select a point (x3,y2) for
which the value |P(x2,y2)| is the largest;
e after that, we apply the formulas (16) and (17) to find the coordinates
(z,y) of the shift.

Reducing rotation and scaling to shift

If, in addition to shift, we also have rotation and scaling, then the absolute
values M;(w) of the corresponding Fourier transforms are not equal, but differ
from each by the corresponding rotation and scaling.

If we go from Cartesian to polar coordinates (r,0) in the w-plane, then
rotation by an angle 6, is described by a simple shift-like formula 6 — 6 + 6.

In these same coordinates, scaling is also simple, but not shift-like: » — \-r.
If we go to log-polar coordinates (p, ), where p = log(r), then scaling also
becomes shift-like: p — p + b, where b = log()). So, in log-polar coordinates,
both rotation and scaling are described by a shift.
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How to determine rotation and scaling

In view of the above reduction, in order to determine the rotation and scaling
between M and M’, we can do the following:

e transform both images from the original Cartesian coordinates to log-polar
coordinates;

e use the above FFT-based algorithm to determine the corresponding shift
(00, log(A));

e from the corresponding “shift” values, reconstruct the rotation angle 6
and the scaling coefficient .

Comment. The main computational problem with the transformation to log-
polar coordinates is that we need values M (€, n) on a rectangular grid in log-
polar space (log(p), ), but computing (log(p),6) for the original grid points
leads to points outside that grid. So, we need interpolation to find the values
M (&,m) on the desired grid. One possibility is to use bilinear interpolation. Let
(z,y) be a rectangular point corresponding to the desired grid point (log(p), 8),
ie.,
x = e8P cos(h), y =€) . sin(h).

To find the value M (z,y), we look at the intensities My, M; i1k, M; 11, and
M 41 k41 of the four grid points (4, k), ( +1,k), (,k+1), and (j +1,k+1)
surrounding (z,y). Then, we can interpolate M (x,y) as follows:

M(z,y) = (1 =) - (1 —u)- M+

t-(I—w) Mjprp+ (1 —t) u- Mjpir+t-u- My,

where ¢ is a fractional part of  and u is a fractional part of y.
Final algorithm: determining shift, rotation, and scaling

e First, we apply FFT to the original images I(x) and I'(x) and compute
their Fourier transforms F(w) and F'(w).

e Then, we compute the absolute values M(w) = |F(w)| and M'(w) =
|F'(w)| of these Fourier transforms.

e By applying the above rotation and scaling detection algorithm to the
functions M(w) and M’(w), we can determine the rotation angle 6y and
the scaling coefficient \.

e Now, we can apply the corresponding rotation and scaling to one of the
original images, e.g., to the first image I(x). As a result, we get a new
image I(x).

e Since we rotated and re-scaled one of the images, the images I (x) and
I'(x) are already aligned in terms of rotation and scaling, and the only
difference between them is in an (unknown) shift. So, we can again apply
the above described FFT-based algorithm for determining shift: this time,
actually to determine shift.
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As a result, we get the desired values of shift, rotation, and scaling; hence, we
get the desired referencing.

Comment. Similar techniques can be applied to images in other applications
areas; see, e.g., [18]; in particular, applications to pavement engineering are
described in [2, 25].

3 Images Known with Uncertainty: Case Study

Terrain changes

Among the phenomena that can cause terrain changes are:

interseismic and coseismic slip along a fault,
glacier advance and retreat,

soil creep, and

landslide processes,

all of which are relevant either for the hazards they may pose or the landscape
evolution processes they reflect.

Radar techniques can detect vertical terrain changes

In the past decade, interferometric synthetic aperture radar (InSAR) has be-
come a powerful tool for monitoring such deformation and surface changes [6].
Because this tool detects displacements along the line of sight of the radar sys-
tem, it is most sensitive to terrain changes due to vertical deformation, such as
those associated with thrust faulting, and less sensitive to lateral deformation
[28].

While InSAR has been used for studying lateral displacements, such as
those due to strike-slip earthquakes [19], decorrelation problems in the near-
field commonly arise. Moreover, appropriate radar data is not widely available
due to the lack of synthetic aperture radar (SAR) satellites in orbit. Currently,
the two best SAR satellites in operation are Radarsat and ERS-2. The cost
per scene for data from these satellites can range from $950 to $3000, with
Radarsat data being the most expensive.

To detect lateral terrain changes, we need satellite images

Considering the high cost and scarcity of SAR data, the scientific community
has looked to other data sets with wider availability, such as the Satellite Pour
I’Observation de la Terre (SPOT) optical imaging instrument [7, 9, 16, 21, 28].
Terrain changes can be monitored with optical remote sensing data using
image processing algorithms that measure apparent offsets in the geographic
locations of the corresponding pixels in two (or more) images of the same
portion of the Earth’s surface taken at different times. These inter-image
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pixel offsets define vectors whose orientations indicate the direction of terrain
displacement and whose lengths denote the magnitude of that displacement.

Previous work with SPOT images has shown the feasibility of using optical
imagery for lateral displacement change detection using Fourier-based cross-
correlation (15) [7, 28]. For example, Dominguez et al. [8] were able to resolve
coseismic displacement along a major thrust fault associated with the 1999
Chi Chi earthquake in the Central Range of Taiwan from SPOT images using
the Fourier approach. These results have shown optical imagery to optimally
work in the proximal area of lateral terrain changes, which is the regime where
InSAR techniques are weakest [28].

Use of ASTER images

In [22], we have shown that a similar change detection can be obtained
with Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) imagery; see, e.g., [1]. The benefits of using ASTER are:

its dramatically lower cost compared to SPOT,
the capability of generating Digital Elevation Maps (DEMs) from ASTER
imagery [14], and

e the redundancy afforded by ASTERSs stereo capability.

The latter may aid in increasing the precision of terrain change measurements
made using optical image processing techniques.

Test case: the November 14, 2001 Kokoxili earthquake

The left-lateral Kunlun fault, located in northern Tibet, was chosen for this
study because it experienced a large earthquake during a time period for which
ASTER imagery is available. On November 14, 2001, an M, = 8.1 earthquake
occurred causing a 400 km-long surface rupture and as much as 16.3 m of
left-lateral strike-slip [15].

This slip is most evident as offset of, and fault scarps developed on, alluvial
terraces. Three time separation window cases were considered. These three
test cases focus on three different segments of fault.

e Test Case 1 spans a two-year time window from March 2000 to July 2002.
The image pair for this case exhibits extensive erosion due to the long time
span of two years. The image pair for this case also has vastly different
pointing angles.

e Test Case 2 has a time separation of two-months, from November 4, 2001 to
December 22, 2001. The imagery used in this test case has 13% cloud cover,
and one of the images contains snow, both of which caused decorrelation.

e Test Case 3 has a time separation of thirteen months, between October
2000 and December 2001. The image pair for this case has the least amount
of preprocessing problems and the smallest pointing angle difference. Al-
though there is some snow cover and changes in water level along the Kusai
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Hu lake next to the fault, decorrelation problems were minor. This test
case is the only one with a well-defined fault scarp.

For each case, the accuracy of the change detection methods was assessed by
comparing the geodetic image processing results to field measurements ([15],
Table 2; [13, 27]).

Topographic correction

Parallax is defined as the apparent shift in the location of an object due
to changes in the observers position and, as a result, the relative geometry
between the observer and the target. This concept is the same principal on
which human stereoscopic vision is based: our right and left eyes view the same
scene from slightly different angles, resulting in parallax that we perceive as
depth. Thus, topographic parallax is created by the change in the position of
a satellite as it scans the uneven surface of the Earth. It results in an apparent
shift in the position of terrain features between two overlapping images taken
from different angles; see, e.g., [17].

Topography can also impart apparent pixel offsets due to scale changes
within the image. In an area of high relief, those parts of the image within
valleys will be a greater distance from the observer than those parts on ridge
tops. The variable distance between target and observer results in mountain-
tops having a larger map scale than the valley bottoms, an effect that non-
linearly distorts images. If left uncorrected, this distortion can create apparent
pixel shifts when comparing two images.

Another apparent pixel offset due to topography stems from the calculation
of geographic coordinates. The geographic coordinates of a pixel in an image
are calculated from orbital and attitude data and lie on the Earths ellipsoid.
Due to the fact the Earth has topography, however, the true latitude and
longitude coordinates of a point on the Earths surface will be displaced from
its ellipsoidal coordinates. Of the three apparent pixel offsets produced by
topography, this last type can cause the greatest apparent shift [28].

All three topographic apparent pixel offsets can be minimized by ortho-
rectifying the image with a DEM. The ortho-rectification process uses the
DEM to remove topographic distortions and will re-project the ellipsoidal po-
sition of a given pixel to one that better approximates its true coordinates on
the Earths surface. In our work, we have applied ortho-rectification techniques
to pre-process the images before referencing them.

All images used in the Kunlun fault test cases are VNIR band 3n images
from ASTER level 1B scenes, which has already been through pre-process for
sensor artifacts by the ASTER corporation. This band was chosen for two
reasons:

e Dbecause it has the highest resolution, and
e Dbecause a sensor model is available [31], which describes the interior and
exterior orientations of the image ([17]).
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The sensor model is required for the orthorectification process done using the
Leica Photogrammetry Suite in 19 ERDAS IMAGINE 8.7 [31].

ASTER VNIR 3b bands were not considered in the test cases due to reg-
istration problems. Orthorectification of the 3b images in ERDAS IMAGINE
was poor, and there were residual geometric pixel shifts of at least 20 pixels
(210 m). The poor orthorectification can be due to either excessive pointing
angle differences, or excessive variation in the viewing geometry.

The DEM used for orthorectification was the 90-m Shuttle Radar Topog-
raphy Mission (SRTM; www.jpl.nasa.gov/srtm) DEM. ENVT 4.0 software was
used to register the before and after images, and check the orthorectification
process done in ERDAS IMAGINE.

4 How to Generalize the Existing Techniques to Images
Known with Uncertainty

Problem

When we applied the above algorithm to detect the earthquake-caused shift
between the pre- and post-earthquake images, we did not get any meaning-
ful shift value. Specifically, the inverse Fourier transform P(x) of the cross-
correlation power spectrum looks random, and its maximum a was attained
at values which are very different from the actual shift.

Analysis of the problem

In the above algorithm, for every frequency w, we compute the complex-valued
product F(w) - F'(w) and then consider only the phase of this complex value
— i.e., equivalently, the value R(w) — in the further computations.

Due to the uncertainty with which we measure the images, the correspond-
ing Fourier transforms F'(w) and F’'(w) are also only approximately known.
So, for every w, the product F(w) - F'(w) is also only approximately known.
How does this uncertainty translate into the uncertainty with which we know
R(w)?

Let € be the accuracy with which we know the value of the product. In
general, if we multiply a value x known with uncertainty Az = ¢ by a number
A, the resulting new value y = A -z is known with uncertainty Ay = A+ Az =
A-e. Similarly, if we divide the value x by a number A, then the resulting new
value z = /X is known with uncertainty Az = Az/A = ¢e/A.

In our algorithm, the cross-correlation power spectrum R(w) is obtained
by dividing the product F(w) - F'(w) by its absolute value |F(w)| - |F'(w)].
Since we know the product with accuracy e, we thus know the value R(w)
with accuracy e/(|F(w)]| - |F'(w)]).

As a result, for the frequencies w for which the absolute value is high, we
know the corresponding value R(w) with a reasonable accuracy. However, for
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the frequencies w for which the absolute value is low, the the corresponding
value R(w) is really inaccurate — all noise.

In the above algorithm, when we compute P(x) as the Fourier transform
of the function R(w), we take all the values R(w) with the same weight. In
effect, we are taking the average of several values, some known with reasonable
accuracy and some very inaccurate. Not surprisingly, the resulting average is
very inaccurate.

For example, if we have two measurements of the same quantity whose
actual value is 1.0,

e the first measurement is very accurate and results in 1.05, and
e the second measurement is way off and results in 5.61,

then when we take the average, we get (1.05 + 5.61)/2 = 3.33 in which the
noisy values dominated the accurate ones.

How to make resulting estimate more accurate: an idea

In view of the above analysis, to make the measurements more accurate, we
should:

e assign less weight to less accurate values R(w), i.e., values for which the
absolute value |F(w)]| - |F’'(w)]| is small, and

e assign more weight to more accurate values R(w), i.e., values for which
the absolute value |F(w)|- |F'(w)| is large.

The simplest way is to assign weight 0 to less accurate measurements and
weight 1 to more accurate measurements. In other words, the simplest way to
implement this idea is:

e to fix some threshold, and
e for all the frequencies for which the absolute value |F(w)]|-|F’(w)] is below
this threshold, set R(w) to 0.

A natural idea is to select, as a threshold, a certain portion of the largest
(or mean) value of |F(w)| - |F'(w)|. As a result, we arrive at the following
algorithm.

Resulting algorithm: general description

To find the shift a between the two images:

e first, we apply FFT to the original images I(x) and I'(x) and compute
their Fourier transforms F(w) and F'(w);
e on the second step, we do the following:
— we find the mean value m of the product |F(w)| - |F'(w)[;
— we set the threshold to be a certain portion of the mean, i.e., to - m
for some o > 0;
— for those frequencies for which |F(w)| - |F'(w)| > « - m, we compute
the value R(w) by using the formula (15);
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— for other frequencies, we set R(w) = 0;

e on the third step, we apply the inverse FFT to the function R(w) and
compute its inverse Fourier transform P(x);

e finally, on the fourth step, we determine the first approximation to the
desired shift a as the point for which |P(x)| takes the largest possible
value, and then do the interpolation by using formulas (16)—(17).

Empirically, the best value for the parameter a turned out to be 1073,
Resulting algorithm: details

We have mentioned that due to the inaccuracy, it is very difficult to detect the
lateral shift. In general, when measurements are not very accurate, a natural
way to increase the accuracy is to perform repeated measurements and then
average the measurement results. With respect to images, this means that
we have to consider more pixels, i.e., large parts of the compared image,
corresponding to larger sliding window size.

However, the problem is that the lateral shift differs from location to lo-
cation: its value decreases as we get farther away from the fault. So, when we
increase the window size, instead of processing several pixels with the same
shift (which would have helped), we instead bring together pixels correspond-
ing to different values of lateral shift.

Good news is that while the magnitude of the lateral shift is different at
different pixels, the direction of this shift remains largely the same. So, at the
first stage of our analysis, we take a large sliding window (larger that 75 x 75
pixels, where 1 pixel is &~ 15 m), and use the above algorithm to determine
the direction of the lateral shift.

Once the direction at different locations is determined, we can now take
smaller sliding windows (40 x 40 pixels), and determine the magnitudes of the
lateral shift. The directions can also be obtained from these smaller windows,
but these direction are determined from he analysis of fewer pixels and are,
thus, much less accurate than the directions obtained form the analysis of a
larger window. Thus, to get the best results, we combine the direction obtained
form the analysis of a larger window with the magnitude obtained from the
smaller window.

In other words, we need to apply the above algorithm twice:

e first, with a larger sliding window, to find the direction of the lateral shift;
e then, with a smaller sliding window, to find the shift’s magnitude.

Finally, we combine the direction obtained from a larger window with the
magnitude obtained from a smaller window.
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5 Results

All test cases display good results in the near field of the faulted area; the
accuracy with which we can determine the shift decreases as we move to distal
areas.

Test Case 2 gives the best results, with a measured lateral displacement
of 4.5+ 0.4 m with left-lateral slip and an average slip direction of 270°. This
magnitude is similar to the 4.6-4.8 m displacement of a gulley measured by
Lin et al. [15] (site 2 in Table 2), and the sense and slip direction are consistent
with the known trace and kinematics of the Kunlun fault.

Test Case 3 is fairly consistent in direction, with left lateral movement and
an average slip direction of 265°. However, the magnitude obtained from this
analysis, /&~ 8.4 m, is a much cruder approximation to the 5.7 m of displacement
measured by Lin et al. [15] (site 3 in Table 2). This could be attributed to the
long 13-month time separation window during which non-earthquake terrain
change occurred, such as changes in the water level in Kusai Hu lake.

Test Case 1 results in left-lateral slip with an azimuth of 268° in the
nearfield of the fault and a magnitude of ~ 8.3 m. The sense of slip and
azimuth are consistent with field observations, but assessing the accuracy
of the resulting magnitude is less straightforward. The closest of the Lin et
al. [15] field sites is site 7. Several offset features were measured here, with
displacements ranging from 3.3 m on a road to 6.8 m on a stream channel.
The latter is similar, as is the field measurement at another nearby locality,
site 6, where Lin et al. [15] report 7.2 m of displacement on a stream channel.

6 Conclusions and Future Work

Main conclusion

Our results have shown that a new algorithm provide a good reconstruction
of shift from the two images.

Using better DEM

Future work needed includes improving the pre-processing protocol. This im-
provement is needed in order to fully remove any residual apparent pixel
offsets and to optimize the true pixel offsets. This can be accomplished by
using a 30-m DEM instead of a 90-m DEM in the ortho-rectification process.
A higher-resolution DEM can be obtained from aerial photographs or LIDAR,
among other sources, but will require an investment of time and resources.
By using a DEM with a higher resolution, the elevation uncertainty can be
improved, thus lowering the apparent pixel offsets caused by parallax.
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Comparing images of different type

Future work should also include applying the change detection procedures
developed in this thesis to heterogenous input imagery, for instance, a combi-
nation of an ASTER “after” image with a Landsat TM scene or aerial pho-
tographs as “before” images. By using a heterogonous pair of input imagery, a
greater number of possible image candidates can be used to do change detec-
tion. In addition, since Landsat images and aerial photographs are available
for times prior to the beginning of ASTER image acquisition, using hetero-
geneous datasets can also lengthen the time separation windows that can be
considered. This can be especially useful for monitoring terrain change due to
slow processes such as glacier movement. It can also make possible the study
of events that occurred before ASTER was launched.

Comparing images with gridded data sets

The algorithms desscribed in this paper should be able to detect lateral move-
ments in any kind of registered imagery. Thus, the possibility exists to apply
these methods to gridded gravity and other geophysical data.

Use redundancy of ASTER images

As an effort to improve our knowledge of ASTER attitude parameters and
to minimize residual apparent pixel offsets during ortho-rectification, as well
as improve the performance of the change detection techniques with ASTER
data, it may be possible to exploit the redundancy in the ASTER VNIR
imagery [28]. The redundancy provided by the ASTER is possible due to
its stereo capability, a feature which, given two ASTER scenes, essentially
provides four independent sets of images to process for terrain displacement.
Given a single “before” scene and a single “after” scene, there are a total of
four unique permutations of image pairs that can be used as input to a terrain
change detection algorithm. All else being equal, each permutation should
result in identical terrain change measurements. Differences in the estimates,
however, can be reconciled by optimization of poorly-constrained parameters
such as the satellite attitude (e.g., roll, pitch, and yaw).

We can also use the fact that the images are multi-spectra [3, 4] (see also
Appendix).

Towards more accurate shift, rotation, and scaling

It is important to find the lateral shift between pre- and post-earthquake
images. Once this relative shift is determined, it is desirable to shift one of
the images to see what changes occurred.

The difficulty is that the shift is subpixel, so when we shift, we move away
from the original rectangular grid: the brightness values of the first image were
given on a grid, but the values of the shifted image are on the shifted points,
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which are in between the points of the original grid. Thus, to adequately
compare the two images pixel-by-pixel, we must interpolate the brightness
values from the shifted grid points (at which we know the brightnesses of
the shifted first image) to the original grid point (at which we know the
brightnesses of the second image).

In the above text, we used bilinear interpolation to actually perform
the corresponding geometric transformation (shift, rotation, or scaling). This
methods is efficient — it requires only a few computations per pixel — but be-
cause of its localized character, it is not always accurate. It is well known that
the more points we use for interpolation, the better results we can achieve.
Ideally, interpolation should use all the available points. Such methods have
indeed been developed based on efficient FFT-based implementations of so-
called chirp-z transform — a generalization of Fourier transform [26]. It is
desirable to apply these methods to geosciences-related images.

Methods from [26] can perform shifts and scalings in an arbitrary rec-
tangular grid, but efficient rotation techniques are only available for the case
when we have a rectangular grid with exactly the same step sizes in two di-
mensions, i.e., when the grid is actually a square grid. For satellite images, it
is often not the case. To handle such situations, we must thus:

e first, interpolate from the original rectangular grid to the square grid;

e then, perform the rotation in the square grid, and

e finally, interpolate the rotated image back into the original rectangular
grid.

Towards explicit representation of interval and fuzzy uncertainty in images

In the current image processing, an image is represented as follows: for each
pixel x, we describe the approximate value I(x) of the brightness at this
pixel. It is desirable to describe not only this approximate value, but also the
accuracy with which we know this value.

For example, if for each pixel, we know the guaranteed upper bound A(x)
for the inaccuracy of the corresponding brightness value, this means that at
each pixel x, the actual (unknown) value of the brightness I(x) belongs to the
interval

I(x) = [[(x),1(x)] = [I(x) - A(x), I(x) + A(x)].

In a more realistic situation, instead of the guaranteed bound, we may have

different values which bound the difference AI(x) &ty (x)—I(x) with different

degrees of certainty. In other words, for every pixel x, we have nested intervals
corresponding to different degrees of certainty — i.e., in effect, a fuzzy value
I(x). A fuzzy-valued image is thus simply a nested (layered) family of interval-
valued images.

How can we process such interval and fuzzy images? To transform (shift,
rotate, scale) an interval image [I(x), I(x)], it is sufficient to rotate the cor-
responding endpoint images I(x) and I(x). To transform a fuzzy image, it is
sufficient to rotate the corresponding interval images layer-by-layer.
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Appendix: Referencing Multi-Spectral Satellite Images

Formulation of the problem

With the new generation of multi-spectral satellites, for each area, we have
several hundred images which correspond to different wavelengths. At present,
when we reference two images, we only use one of the wavelengths and ignore
the information from the other wavelengths. It is reasonable to decrease the
referencing error by using images corresponding to all possible wavelengths in
referencing.

Similarly, in detecting the known text in colored web images, we would
like to take into consideration all color components.

In this appendix, we present an algorithm for such optimal referencing.

Deriwation of the new algorithm

For multi-spectral imaging, instead of a single image I(w), we get several
images I;(w), 1 <4 < n, which correspond to different wavelengths. So, we
have two groups of images:

e the images I;(w) which correspond to one area, and
e the images I/(w) which correspond to an overlapping area.

Let us first consider the case when two images differ only by some (unknown)
shift a. For every wavelength 4, the corresponding two images I;(x) and I}(x)
differ only by shift, i.e., I/(x) = I;(x 4+ a). Therefore, for every wavelength i,
their Fourier transforms

1 .
Fiw) = 5=+ [ [ 160 e duay,

1 .
Fiw) = o [ [ 1160 e oy,
27
are related by the formula:

Fl(w) = 2™ @a) . (), (18)

(2
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In the ideal no-noise situation, all these equations are true, and we can de-
termine the value r = 2«2 from any of these equations. In the real-life
situations, where noise is present, these equations (18) are only approximately
true, so we have the following problem instead: find r for which, for all 4,

Fl(w) ~r- Fj(w). (19)

?

and which satisfies the condition (7).

We would like to get the best estimate for r among all estimates which
satisfy the condition (7). To get the optimal estimate, we can use the Least
Squares Method, according to which, for each estimate r and for each i, we

define the error
E; = F/(w) —r- Fj(w) (20)

with which the condition (19) is satisfied. Then, we find among all estimates
which satisfy the additional condition (7), a value r for which the sum of the

squares
|E\)*+...+|E.*=F,-Ef +...+E,-E}

of these errors is the smallest possible.
The square |E;|? of each error E; can be reformulated as follows:

Bi- B = (Fj(w) =1 Fi(w)) - (Fj(w) =" F (w)) =

Fi(w) F' (w) =" F} (w) F (w) =r-Fy(w) - F'j (W) +7r" Fy(w) - F (w). (21)

We need to minimize the sum of these expressions under the condition (7).
For this conditional minimization, we will use the Lagrange multipliers
technique, which leads to the following unconditional minimization problem:

Zn: ) Fli(w) =1 Ff (w) - F (w)—
i=1
r-Fi(w) - F'}(w)+7r-r* - Fj(w) Fl*(w)) +
A-(r-r*—1) — min. (22)
Differentiating (22) relative to r*, we get the following linear equation:

fZF* (W) +7- iFi(w)'Fi*(w)Jr)vr:O. (23)

i=1

From this equation, we conclude that

Y Fi(w): Fiw)
S Fiw) - Fi(w) + A
i=1
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The coefficient A can be now determined from the condition that the resulting

n
value r should satisfy the equation (7). The denominator Z Fi(w) -F(w)+A
i=1
of the equation (24) is a real number, so instead of finding A, it is sufficient
to find a value of this denominator for which |r|? = 1. One can easily see that
to achieve this goal, we should take, as this denominator, the absolute value
of the numerator, i.e., the value

n

Y Ff(w)- F(w)|-

=1

(25)

For this choice of a denominator, the formula (23) takes the following final
form:

r = R(w) ¥ =1 . (26)

So, for multi-spectral images, in the presence of noise, instead of using the
exact ratio (4), we should compute, for every w, the optimal approximation
(26). Hence, we arrive at the following algorithm:

A new algorithm for determining the shift between two multi-spectral images

If we have images I;(w) and I/(w) which correspond to different wavelengths,
then, to determine the shift a between these two multi-spectral images, we do
the following:

e first, we apply FF'T to the original images I;(x) and I/(x) and compute
their Fourier transforms F;(w) and F}(w);

e on the second step, we compute the ratio (26) — setting the value to 0 if
the denominator is below the threshold;

e on the third step, we apply the inverse FF'T to the ratio R(w) and compute
its inverse Fourier transform P(x);

e finally, on the fourth step, we determine the first approximation to the
desired shift a as the point for which |P(x)| takes the largest possible
value, and perform the interpolation (16)—(17) to find the actual shift
with subpixel accuracy.

For rotation and scaling, we can use the same reduction to shift as for
mono-spectral images. As a result, we get the desired values of shift, rotation,
and scaling; hence, we get the desired referencing.



