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Abstract

Most techniques for solving global optimization problems have para-
meters that need to be adjusted to the problem or to the class of problems:
for example, in gradient methods, we can select different step sizes. When
we have a single parameter (or few parameters) to choose, it is possible
to empirically try many values and come up with an (almost) optimal
value. Thus, in such situations, we can come up with optimal version of
the corresponding technique.

In other approaches, e.g., in methods like convex underestimators, in-
stead of selecting the value of single number-valued parameter, we have
select the auxiliary function. It is not practically possible to test all pos-
sible functions, so it is not easy to come up with an optimal version of the
corresponding technique.

In this paper, we show that in many such situations, natural symmetry
requirements enable us either to analytically solve the problem of finding
the optimal auxiliary function, or at least reduce this problem to the
easier-to-solve problem of finding a few parameters.



1 Introduction

Most techniques for solving global optimization problems have parameters that
need to be adjusted to the problem or to the class of problems. For example, in
gradient methods, we can select different step sizes.

When we have a single parameter (or few parameters) to choose, it is pos-
sible to empirically try many values and come up with an (almost) optimal
value. Thus, in such situations, we can come up with optimal version of the
corresponding technique.

In other approaches, e.g., in methods like convex underestimators, instead
of selecting the value of single number-valued parameter, we have select the
auxiliary function. It is not practically possible to test all possible functions, so
it is not easy to come up with an optimal version of the corresponding technique.

In this paper, we show that in many such situations, natural symmetry
requirements enable us either to analytically solve the problem of finding the
optimal auxiliary function, or at least reduce this problem to the easier-to-solve
problem of finding a few parameters.

In particular, we show that we can thus explain both the BB methods and
its modifications recently proposed by Floudas et al.

2 Case study: selecting convex underestimators

Why convex underestimators? It is well known that convex functions are
computationally easier to minimize than non-convex ones; see, e.g., [7]. This rel-
ative easiness is not only an empirical fact, it also has a theoretical justification;
see, e.g., [10, 21].

Because of this relative easiness, one of the approaches to minimization of

a non-convex function f(x) = f(x1,...,2,) (under certain constraints) over a
box [zl 2Y] = [zf,2Y] x ... x [#£, 2U] is to first minimize its convex “underes-

timator”, i.e., a convex function L(z) < f(x).
e Since the new function L(x) is convex, it is easy to minimize;

e since L(x) is an underestimator, i.e., L(z) < f(x), the minimum of L(z)
is a lower bound for the minimum of f(z).

By selecting L(x) as close to f(x) as possible, we can get estimates for min f(x)
which are as close to the actual minimum as possible.

The quality of approximation improves when the boxes become smaller. So,
to get more accurate bounds on min f(x), we can:

e bisect the box [z%, 2Y] into sub-boxes,

e use the above technique to estimate min f over each sub-box, and



e return the smallest of these estimates as the lower bound for min f over

the entire box [z%, zY].

Example: aBB techniques. A known efficient approach to designing a con-
vex underestimator is the BB global optimization algorithm [1, 2, 7, 14], in
which we select an underestimator L(z) = f(x) + ®(z), where

B(x) ==Y ai- (@ —2b) (o — ) (1)
i=1

Here, the parameters «; are selected in such a way that the resulting function
L(z) is convex and still not too far away from the original objective function

f(@).

Natural generalization of aBB techniques. In many optimization prob-
lems, aBB techniques are very efficient, but in some non-convex optimization
problems, it is desirable to improve their performance. One way to do that is
to provide a more general class of methods, with more parameters to tune.

In the aBB techniques, for each coordinate z;, we have a single parameter «;
affecting this coordinate. Changing «; is equivalent to a linear re-scaling of x;.
Indeed, if we change the unit for measuring x; to a new unit which is A; times
smaller, then all the numerical values become A; times larger: x; — y; = g;(x;),
where g;(x;) = A\; - ;. In principle, we can have two different re-scalings:

o z; —vy; = gi(z;) = \; - 7; on the interval [zF, z;], and
o 1, — z; = hi(x;) = p; - ; on the interval [z;, zV].

If we substitute the new values y; = g;(z;) and z; = h;(x;) into the formula (1),
then we get the following expression

O(x) ==Y a;- (gi(x:) — gi(x])) - (hi(al) = hi(z:)). (2)
i=1
For the above linear re-scalings, we get
®(z) = & (i —af) @ — ),
i=1

where &i = Q- >\z Ry

From this viewpoint, a natural generalization is to replace linear re-scalings
gi(z;) and h;(x;) with non-linear ones, i.e., to consider convex underestimators
of the type L(z) = f(z) + ®(z), where ®(x) is described by the formula (2)
with non-linear functions g;(x;) and h;(x;). Now, instead of selecting a number
a; for each coordinate i, we have an additional freedom of choosing arbitrary
non-linear functions g;(x;) and h;(z;). Which are the best choices?



Empirical fact: exponential functions g;(z;) and h;(x;) are the best.
In [3, 4], several different non-linear functions have been tried, and it turned
out that among the tested functions, the best results were achieved for the
exponential functions g;(x;) = exp(y; - z;) and h;(z;) = —exp(—y; - z;). For
these functions, the expression (2) can be somewhat simplified: indeed,

041"(gi(xi)—gi(mf))-(hi(x?)—hi(xi)) = ai-(e'yi'mi—e'“‘mf).(_e*%“x? e =
a; - (1— e%"(zrﬂﬁf)) (11— e%'(z?ﬂ“))?

~ def (2 —gL
where ; = a; - e¥ (@0~

Questions. Two related questions naturally arise:

e first, a practical question: an empirical choice is made by using only finitely
many functions; is this choice indeed the best — or there are other, even
better functions g;(x;) and h;(z;), which we did not discover because we
did not try them?

e second, a theoretical question: how can we explain the above empricial
fact?

Natural idea of symmetry: intuitive motivations for shift-invariance.
The starting (0) point for measuring each coordinate x; is often a matter of
arbitrary choice; e.g.:

e Fahrenheit and Celsius scales use different starting points for measuring
temperature,

e different calendars use different starting points as Year 0,

etc.

If a selection of the functions g;(z;) and h;(z;) is “optimal” (in some intuitive
sense), then the results of using these optimal functions should not change if
we simply change the starting point for measuring z; — i.e., replace each value
x; with a new value x; + s, where s is the shift in the starting point. Indeed,
otherwise, if the “quality” of the resulting convex underestimators changes with
shift, we could apply a shift and get better functions g;(z;) and h;(x;) — which
contradicts to our assumption that the selection of g;(z;) and h;(z;) is already
optimal.

So, the “optimal” choices g¢;(z;) and g;(x;) can be determined from the
requirement that each component «; - (g;(z;) — gi(zL)) - (hi(z¥) — hi(x;)) in
the sum (2) be invariant under the corresponding shift. Let us describe this
requirement in precise terms.



Definition 1. A pair of smooth functions (g(x),h(z))) from real numbers to
real numbers is shift-invariant if for every s and «, there exists a(«, s) such that
for every x¥, x, and xY, we have

Comment. Smoothness is needed because smooth functions are easier to opti-
mize, and we therefore want our techniques to preserve smoothness.

Consequences of shift-invariance. At first glance, shift invariance is a rea-
sonable but weak property. It turns out, however, that this seemingly weak
property actually almost uniquely determines the optimal selection of exponen-
tial functions:

Proposition 1. If a pair of functions (g(x),h(x)) is shift-invariant, then this
pair is either exponential or linear, i.e., each of the functions g(x) and h(x) has
the form g(x) = A4+ C -exp(y-z) org(x) =A+k-x.

Comments.

e For reader’s convenience, all the proofs are placed in a separate (last)
section.

e One can easily see that adding a constant to each of the functions g(z)
and h(z) does not change the expression (2), so we can safely assume that
each of these functions has the form g(z) = exp(y - z) and h(z) = .

Additional symmetry © — —z and the final result. In addition to shift,
another natural symmetry is changing the sign: e.g., for electric charge, the
fact that electrons are negatively charged is just a matter of definition; we can
as well consider them positively charged. If we require that the expression (2)
remain invariant if we change the sign, i.e., replace z by —z, then we get the
relation between g(x) and h(z): h(x) = —g(—z). So, if a pair (g(z), h(x) is
shift-invariant and sign-invariant, then:

e cither g(x) = exp(y - x) and h(z) = —exp(—7 - x),
e or g(x) = h(z) = .

In other words, the optimal generalized a« BB scheme is either the original a BB,
or the scheme with exponential functions described in [3, 4]. Thus, we have
answers to both above questions:

e yes, the exponential functions are indeed optimal, and



e yes, we have a theoretical explanation of why they are optimal — because
they are the only pair of functions which satisfies the condition of symme-
try (shift-invariance and sign-invariance) that optimal pairs should satisfy.

Auxiliary result: scale invariance. In addition to changing the starting
point for x, we can also (as we have mentioned) change a unit for measuring z,
i.e., consider scaling transformations x — A-x. Shall we require scale-invariance
as well? In other words, shall we require that the expression (2) be invariant
not only w.r.t. shifts but w.r.t scalings as well?

We already know that there are only two shift-invariant solutions: exponen-
tial and linear functions. Out of these two solutions, only the linear solution
— corresponding to aBB — is scale-invariant. Thus, if we also require scale-
invariance, we restrict ourselves only to aBB techniques — and miss on (often
better) exponential generalizations.

Since we cannot require both shift- and scale-invariance, a natural next ques-
tion is: what if we only require scale invariance?

Definition 2. A pair of smooth functions (g(x),hs)) from real numbers to real
numbers is shift-invariant if for every A and «, there exists a(a, A) such that
for every z¥, x, and zV, we have

Proposition 2. If a pair of functions (g(x), h(x)) is scale-invariant, then this
pair is either exponential or linear, i.e., each of the functions g(x) and h(z) has
the form g(x) = A-z7 or g(x) = A+ k- In(x).

From the theoretical viewpoint, these functions may look as good as the
exponential functions coming from shift invariance, and in practice, they do not
work so well.

The problem with these solutions is that, as we have mentioned, we want
to preserve smoothness. Both linear and exponential functions which come
from shift-invariance are infinitely differentiable for all  and hence, adding the
corresponding term ®(x) will not decrease the smoothness level of the objective
function.

In contrast, in general, the functions g(z) = z” which come from scale
invariance are not infinitely differentiable at x = 0. They are differentiable
only for integer values 7. So, if we use scale invariance to select a convex
underestimator, we end up with a new parameter v which only attains integer-
valued values and is, thus, less flexible than the continuous-valued parameters
coming from scale-invariance.



Auxiliary shift-invariance results. Instead of an expression (2), we can
consider an even more general expression

D(x) = —Zai~ai(a7xL)~bi(xi,xlU). (5)
i=1

Whet can we conclude from shift-invariance in this more general case?

Definition 3. A pair of smooth functions (a(x,z%), b(x, zY)) from real numbers
to real numbers is shift-invariant if for every s and «, there exists a(a, s) such
that for every x*, x, and 2V, we have

a-a(z,zb) bz, 2Y) =

ala,s)-alx+ s,z +5) bz +s,2Y + 5). (6)

Proposition 3. If a pair of functions (a(z,z"),b(x,2V)) is shift-invariant,
then .
a(z,z?) - b(z,2Y) = A(x — L) - B(zYV —x) - &7®

for some functions A(x) and B(x) and for some real number .

Comment. If we additionally require that the expression a(z,z) - b(z,2V) be
invariant under  — —z, then we conclude that B(x) = A(x).

Another shift-invariance result comes from the following observation. Both
aBB expression —(x — zL) - (z¥ — x) and the generalized expression

—(1— vy L (= @Y

have the form a(z — 2L) - a(zY — z) with a(0) = 0. The differences x — z* and
2V — 2 come from the fact that we want these expressions to be shift-invariant.
The product form makes sense, since we want the product to be 0 on each border
x = a2l and 2 = 2V of the corresponding interval [z¥, zY].

On the other hand, it is well known that optimizing a product is more
difficult than optimizing a sum; since we will be minimizing the expression
f(z)+ ®(x), it is therefore desirable to be able to reformulate it in terms of the
easier-to-minimize sum, e.g., as b(z — 2%) + b(zY — ) + c(zV — %) for some
functions b and ¢ (for minimization purposes, ¢ does not depend on z and is
thus a constant). It is worth mentioning that both the aBB expression and its

exponential generalization allow such representation:

1
e from the known equality a - b= 5((a + )% — a? — b?), we conclude that

(e —a")- (0¥ ~a) =



e for the exponential function, simply multiplying the two sums leads to the
desired expression:
—(1- €7~(x—xL)) (11— e“/'(-t”ﬂ)) = _14er ") Ly —n) _ oy @)
Interestingly, the above two expressions are the only one which have this
easiness-to-compute property:

Definition 4. We say that a smooth function a(x) from real numbers to real
numbers describes an easy-to-compute underestimator if a(0) = 0, a/(0) # 0,
and there exist smooth functions b(z) and c(x) such that for every z, z*, and

zV, we have

a(z —2") a2V —z) = bz — 25) +b(zY — z) + c(2¥ — %), (7)

Comment. The condition a’(0) # 0 comes from the fact that otherwise, for small
Az o2l and 2V — x, each value a(z — 2%) will be quadratic in  — 2%, the
resulting product will be fourth order, and we will not be able to compensate
for quadratic non-convex terms in the original objective function f(x) — which
defeats the purpose of using f(z) + ®(x) as a conver underestimator.

Proposition 4. The only functions which describe easy-to-compute underesti-
mators are a(x) =k -z and a(x) = k- (1 —eV'®).

Comment. This is already a second shift-invariance related results which selects
linear and exponential functions as “the best” in some reasonable sense. In the
following section, we show that this is not an accident: namely, we will prove
that any “natural” shift-invariant optimality cruetrion on the set of all possible
underestimator methods selects either a linear or an exponential function.

3 Selecting convex underestimatiors: from in-
formally “optimal” to formally optimal selec-
tions

In the previous section, we used informal “optimality”. In the above
text, we argued that if a selection is optimal (in some reasonable sense), than it
is natural to expect that this selection should be shift-invariant. We used this
argument to justify the empirical selection of convex underestimators.

In this section, we will go one step further, and explain that the empirical
selection is indeed optimal — in the precise mathematical sense of this word.



What are we selecting? In effect, we are selecting the functions g(z) and
h(z). However, as we have mentioned earlier, what we are really interested in
is the corresponding family of functions

O(z) = —a- (g(z) - g(z")) - (h(a") — h()).

The difference is that (as we have mentioned) we can change one (or both) of
the functions g(x) and h(z) and still end up with the same class of functions.
For example, if we replace the original function g(z) with a new function g(x) =
A - g(z) + B, then we end up with the same class of functions ®(z). With this
in mind, let us introduce the following definition.

Definition 5. By a family, we mean the family of functions

F={~a(g(z) - g(z") - (h(z") = h(z))}, (8)
where g(x) and h(z) are fized, and « goes over all real numbers.

Denotation. We will denote a family generated by functions g(z) and h(z) by
F(g,h).

In these terms, the question is how to select, out of all possible families, the
family which is optimal in some reasonable sense, i.e., which is optimal in the
sense of some optimality criterion.

What is an optimality criterion? When we say that some optimality cri-
terion is given, we mean that, given two different families F' and F’, we can
decide whether the first or the second one is better, or whether these families
are equivalent w.r.t. the given criterion. In mathematical terms, this means
that we have a pre-ordering relation < on the set of all possible families.

We want to solve an ambitious problem: enumerate all families that
are optimal relative to some natural criteria. One way to approach the
problem of choosing the “best” family F' is to select one optimality criterion,
and to find a family that is the best with respect to this criterion. The main
drawback of this approach is that there can be different optimality criteria, and
they can lead to different optimal solutions. It is, therefore, desirable not only
to describe a family that is optimal relative to some criterion, but to describe
all families that can be optimal relative to different natural criteria'. In this
section, we are planning to implement exactly this more ambitious task.

n this phrase, the word “natural” is used informally. We basically want to say that from
the purely mathematical viewpoint, there can be weird (“unnatural”) optimality criteria. In
our text, we will only consider criteria that satisfy some requirements that we would, from
the common sense viewpoint, consider reasonable and natural.



Examples of optimality criteria. Pre-ordering is the general formulation
of optimization problems in general, not only of the problem of choosing a
family F. In general optimization theory, in which we are comparing arbitrary
alternatives a’, a”, ..., from a given set A, the most frequent case of such a pre-
ordering is when a numerical criterion is used, i.e., when a function J : A — R
is given for which o/ < a" iff J(a") < J(a").

Several natural numerical criteria can be proposed for choosing a function J.
For example, we can take, as a criterion, the average number of iterations that
lead to determining all global minima with a given relative accuracy (average
in the sense of some natural probability measure on the set of all problems).

Alternatively, we can fix a class of problems, and take the largest number
of iterations for problems of this class as the desired (numerical) optimality
criterion.

Many other criteria of this type can be (and have actually been) proposed.
For such “worst-case” optimality criteria, it often happens that there are several
different alternatives that perform equally well in the worst case, but whose
performance differ drastically in the average cases. In this case, it makes sense,
among all the alternatives with the optimal worst-case behavior, to choose the
one for which the average behavior is the best possible. This very natural
idea leads to the optimality criterion that is not described by one numerical
optimality criterion J(a): in this case, we need two functions: J;(a) describes
the worst-case behavior, Jz(a) describes the average-case behavior, and a < b
iff either Jy(a) < Jy(b), or Ji(a) = J1(b) and Jz(a) < Jo(b).

We could further specify the described optimality criterion and end up with
one natural criterion. However, as we have already mentioned, the goal of this
paper is not to find one family that is optimal relative to some criterion, but to
describe all families that are optimal relative to some natural optimality criteria.
In view of this goal, in the following text, we will not specify the criterion, but,
vice versa, we will describe a very general class of natural optimality criteria.

So, let us formulate what “natural” means.

What optimality criteria are natural? We have already mentioned that
the value x often represents the value of some measured quantity, and that the
numerical value of a measured quantity changes if we select a new starting point.
It is natural to require that the relative quality of two families does not depend
on the choice of the starting point.

How does replacing a starting point change the family F'? If we replace a
starting point by a new one that is smaller by a constant s, then the quantity
that was initially described by a value = will be described by a new value = + s.
Correspondingly, z” is replaced by ¥ + s, and 2V by 2V + s. Thus, after this
shift T, the original family (8) turns into the new family

T,(F) € {~a- (g(z +s) — g(&¥ + ) - (h(z¥ +5) = h(x + )} (9)

10



In these terms, the above requirement is that if F' is better than F’, then the
“shifted” F' (i.e., the family T5(F')) should be better than the “shifted” F’ (i.e.,
than Ts(F")).

There is one more reasonable requirement for a criterion, that is related with
the following idea: If the criterion does not select a single optimal family, i.e., if
it considers several different families equally good, then we can always use some
other criterion to help select between these “equally good” ones, thus designing
a two-step criterion. If this new criterion still does not select a unique family, we
can continue this process until we arrive at a combination multi-step criterion
for which there is only one optimal family. Therefore, we can always assume
that our criterion is final in this sense.

Definition 6. By an optimality criterion, we mean a pre-ordering (i.e., a
transitive reflexive relation) < on the set A of all possible families. An optimality
criterion =< is called:

o shift-invariant if for all F, F', and s, F' < F' implies Ts(F) < Ts(F").

e final if there exists one and only one family F that is preferable to all the
others, i.e., for which F' < F for all F' # F.

Proposition 5.

o If a family F is optimal w.r.t. some shift-invariant final optimality cri-
terion, then this family F is generated by linear or exponential functions
g(z) and h(z).

o For every two exponential or linear functions g(x) and h(x), there exists a
shift-invariant final optimality criterion for which the only optimal family
is F(g,h).

Comments.

e In other words, if the optimality criterion satisfies the above-described
natural properties, then the optimal conver underestimator is generated
by linear or exponential functions.

e If in addition to shift-invariance, we also require sign-invariance, then we
conclude that either both functions g(x) and h(z) are linear (as in aBB),
or both are exponential (as in the empirically best generalization of aBB).

4 Other cases when a symmetry-based approach
leads to optimal techniques for solving global
optimization problems

Similar symmetry-based ideas have been applied to produce an optimal auxiliary
function in other aspects of global optimization. Let us overview the main results

11



obtained by following this direction.

Optimal bisection. As we have mentioned, applying the optimization tech-
nique to the original function (or its convex underestimator) on the original box
[#L,2U] is not always the best strategy. One way to improve the optimization
algorithm is to subdivide (e.g., bisect) the box into several sub-boxes and apply
optimization techniques to these sub-boxes. Some of these sub-boxes must be

further subdivided, etc. Two natural questions arise:

e which box should we select for bisection?
e which variable shall we use to bisect the selected box?

To answer both questions, several heuristic techniques have been proposed, and
there has been an extensive empirical comparative analysis of these techniques.
It turns out that for both questions, the symmetry-based approach enables us
to theoretically justify the empirical selection:

e Until recently, for subdivision, a box B was selected for which the com-
puted lower bound f(B) was the smallest possible. Recently (see, e.g,
[5, 6]), it was shown that the optimization algorithms converge much faster
if we select, instead, a box B with the largest possible value of the ratio

f—1(B)
f(B) - £(B)’

where f is a current upper bound on the actual global minimum. In
[12], we give a symmetry-based theoretical justification for this em-
pirical criterion. Namely, we condider all possible indictaor functions
I(f(B), f(B), f), and we show that:

0

— first, that the empirically best criterion I is the only one that is in-
variant w.r.t. some reasonable symmetries — namely, shift and scaling;
and

— second, that this criterion is optimal in some (symmetry-related) rea-
sonable sense.

e We can bisect a given box in n different ways, depending on which of n
sides we decided to halve. So, the natural question appears: which side
should we cut? i.e., where to bisect a given box? Historically the first
idea was to cut the longest side (for which ¥ —zf — max). It was shown
(in [16, 17]) that much better results are achieved if we choose a side 4 for

which |d;|(zY — 2F) — max, where d; is the known approximation for the

partial derivative R In [9], we consider arbitrary selection criteria, i.e.,
T
functions

L .U L .U
S(fvdlw"adnaxlvxl ,...7l’n7l’n),

12



which map available information into an index S € {1,2,...,n}, and we
show that the empirically best box-splitting strategy is the only scale-
invariant one — and is, thus, optimal under any scale-invariant final opti-
mality criterion.

Optimal selection of penalty (barrier) functions. A similar approach
can be used for reducing constraint optimization to non-constrained one. A
well-known Lagrange multiplier method minimizes a function f(z) under a con-
straint g(x) = 0 by reducing it to the un-constrained problem of optimizing a
new objective function f(x)+ A- g(x). One of the known approaches to solving
a similar problem with a constraint g(z) > 0 is the penalty (barrier) method
in which we reduce the original problem to the un-constrained problem of opti-
mizing a new objective function f(z)+ X-g(x)+ p- P(g(z)), for an appropriate
(non-linear) penalty function P(y). Traditionally, the most widely used penalty
functions are P(y) =y - In(y) and P(y) = y°.

In [15], we show that the only y-scale-invariant families {\-y+ u- P(y)} are
families corresponding to P(y) =y - In(y) and P(y) = y* for some real number
«. Thus, under any scale-invariant optimality criterion, the optimal penalty
function must indeed take one of these forms.

This example also shows that we can go beyond theoretical justification of
empirically best heuristic, towards finding new optimal heuristics: indeed, for
penalty functions, instead of single-parameter families {\-y+ A+ P(y)}, we can
consider multiple-parameter families

{)"y"",ul'Pl(y)+"'+ﬂm'Pm(y)}

for several functions P;(y), ..., Py (y). In this case, the optimal functions have
also been theoretically found: they are of the type

Pi(y) = L* - (In(y))"

for real (or complex) values «; and non-negative integer values of p;.

Other examples. Similar symmetry-based techniques provide an explanation
of several other empirically optimal techniques:

e sometimes, it is beneficial to (slightly) enlarge the original (non-
degenerate) box [z% 2Y] and thus improve the performance of the al-

gorithm; the empirically efficient “epsilon-inflation” technique [18, 19]
27, 2] = [(L+e)af —e-af ,(L+e)z] —e-a7]

was proven to be the only shift- and scale-invariant technique and thus,
the only one optimal under an arbitrary shift-invariant and scale-invariant
optimality criterion [13] (see also [20]);

13



e by using shift-invariance, we explain why the probability proportional to
exp(—y - f(z)) is optimal in simulated annealing [15],

e by using scale- and shift-invariance, we explain why exponential and power
re-scalings of the objective function are optimal in genetic algorithms [15];

e by using appropriate symmetries, we also explain, in [8], the empiri-
cally optimal selection of probabilities in swarm (“ant”) optimization (see,
e.g., [11]).

5 Proofs

Proof of Proposition 1. For o =1, the condition (3) takes the form

C(s) - (g(z + ) = g(a® +5)) - (M(a" + 5) = h(z + 5)), (10)

where we denoted C(s) ef a(1,s). To simplify this equation, let us separate the

variables:

e let us move all terms containing 2% to the left-hand side — by dividing
both sides by (g(z + s) — g(z* + s)), and

e let us move all terms containing z¥ to the right-hand side — by dividing
both sides by (h(zY) — h(x)).

As a result, we arrive at the following equation:

g(z) — g(z™) O(s) h(zY + s) — h(z + s)
gy g ez Bl M T e Ty 1D

Let us denote the left-hand side of this equation by A. By definition, the value
A depends on z, s, and . Since A is equal to the right-hand side, and the
right-hand side does not depend on x”, the expression A cannot depend on z%,

so A = A(z,s), ie.,

g(z) —gla) e
gz +s) — g(zl + s) = A(z, 5)- (12)

Multiplying both sides by the denominator, we conclude that

g(x) — g(a¥) = A(z,5) - (9(z + ) — g(a" + 5)). (13)
Differentiating both sides by 2%, we conclude that

—g'(a") = —Az,s) - g' (" + 5), (14)

14



i.e., equivalently,
g'(z")
g'(xh + )
In this equation, the left-hand side does not depend on x, so the right-hand
does not depend on z either, i.e., A(z,s) = A(s). Thus, the equation (13) takes
the form

= Az, s). (15)

a(s) - (g(x) — g(z%)) = (g9(z + ) — g(a® +5)), (16)

where we denoted a(s) def 1/A(s).

The function g(x) is smooth, hence the function a(s) is smooth too — as the
ratio of two smooth functions. Differentiating both sides of the equation (16)
with respect to s and taking s = 0, we get

a-(g(z) - g(a")) = (¢ (z) = ¢'(z")), (17)

def
where a = d/(0).
To simplify this equation, let us separate the variables, i.e., let us move all
the term depending on x to the right-hand side and all the terms depending on
z” to the left-hand side. As a result, we arrive at the following:

By—a-g(a") =g'(x) — a-g(x). (18)

The right-hand side is a function of x only, but since it is equal to the left-hand
side — which does not depend on x at all — it is simply a constant. If we denote
this constant by b, we get the following equation:

g'(x

g'(x) —a-g(zx) =b, (19)
ie.,
dg
. 2
1y =0 g+b (20)
and p
g
= dx. 21
agin (21)

1
When a = 0, integrating both sides of this equation, we get 3 glx) =2+ C,

~ ef b
ie, g(x)=b-z+b-C. When a # 0, then for g(x) o g(z) + —, we get

dg
e (22)

1
hence o ‘In(g(x)) = z+ C thence In(g(z)) =a-z+a-C, s0 g(z) = C-exp(a-x)
and g(x) =g(z) — b_ C - exp(a-x)+ C; for some constants C, a, and Cy. The
a

proposition is proven.
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Proof of Proposition 2. By introducing new variables X = In(z), X% =
In(z%), and XY = In(zY) - so that = exp(X), 2 = exp(X¥*), and 2V =
exp(XVY), and by introducing new functions G(X) = g(exp(x)) and H(X) =
h(exp(z)), one can easily check that if the pair (g(z),h(x)) is scale-invariant,
then the new pair (G(X), H(X)) is shift-invariant.

We already know, from Proposition 1, how shift-invariant pairs look like:
we have either G(X) = A+ C -exp(y- X) or G(X) = A+ k- X. From the
definition of G(X), we conclude that g(x) = G(In(x)); thus, we have either
g(x) = A+ C-exp(y-In(z)) = A+ C-27 or g(x) = A+k-In(z). The proposition
is proven.

Proof of Proposition 3. For o = 1, the shift invariance requirement (6)
takes the form

C(s)-a(x + s, 2% +5) - b(x + 5,29 + 5) = a(z,z%) - b(x, 2Y), (23)
where C(s) def a(l,s). Let us separate the variables by dividing both sides of
this equation by a(z,z”) and b(z, 2V ); we then get

a\xr SCL'L S x st S
C(s).(+, +s) _blzts, +). (24)

a(z, zl) b(z,zV)

The left-hand side ¢ of this equality depends only on z, z%, and s. Since it
is equal to the right-hand side, which does not depend on z” at all, we can
conclude that ¢ only depends on x and s:

a(x + s, 2 +5)
C(s) - L Ty 25
e (] (25)
i.e., equivalently,
a(z +s,2l +s) -~
= 26
st ), (26)
~ def £(x,8) . . : .
where £(x,s) = ) For convenience (and without losing generality), we
s
can describe £ as depending on x and x + s:
L
AT HS) N o), (27)

a(z,zl)

where N(x,a) e Uz,a— ).
We can perform the transition from = to = + s in one step, as above, or we
can first go to z + (—x) = 0, and then to 0 + (x 4+ s) = = + s. We then have

a(z + s, 2 + )
N(:v,x—&-s):wz
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a(0+ (z+s), (xl —2) + (z +5)) a(z+ (—x), 2t — )

a(0,zt — z) a(z,zl) - (28)
N(0,z 4+ s) - N(z,0),
ie.,
N(z,z+s)=N(0,z +s)- N(z,0). (29)

For s = 0, the equation (27) leads to N(z,x) = 1, hence from (29), we conclude

that N(0,z) - N(z,0) = 1 thence N(z,0) = W; thus, (29) takes the form

N(z,z+s) = n(z(;—)s)

, (30)
where n(z) def N(0,z). Substituting (30) into the formula (27), we conclude

that
a(r+s,2F +s)  a(x,zb)

= . 1
n(x + s) n(x) (31)
In particular, for s = —2”, we conclude that
L _ XL
a(x,z") _ a(x ,0), (32)
n(x) n(x — zl)
ie.,
a($7xL) = AO(J" - xL) ' n(x), (33)
where Ag(z) def a(? ())) Similarly, b(z,zY) = By(zY — z) - m(z) for some func-
n(z
tions B(z) and m(x). Hence,
a(z,z) bz, 2Y) = Ag(x — 1) - Bo(zV — z) - p(x), (34)

where p(x) def m(z) - n(z).

In this expression, the terms Ag(z — %) and By(zV — z) are shift-invariant,
so shift-invariance (23) of the product (34) means that C(s) - p(x + s) = p(x)
for all z and s, i.e., that

p(x + ) = c(s) - pla), (35)

where c¢(s) 2o 1/C(s). Since the functions a and b are smooth, the functions

p and c¢ are smooth as well. Differentiating both sides of (35) w.r.t. s and

substituting s = 0, we conclude that p’(z) = v - p(x), where ~ Lof c’(0), hence

d d
@ _ v p, ;p = -dz, and In(p(x)) = v -z + Cy; thus, p(x) = Cs - exp(7y - x).

Since exp(7y - z) = exp(y - (z — z%)) - exp(7 - %), the equation (34) takes the
desired form
a(z,zt) - b(z,2Y) = A(x — 2L) - Bo(zV — 2) - ere’ (36)
where A(z) e Ao(z) - Ca - exp(y - z). The proposition is proven.
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Proof of Proposition 4. For convenience, let us introduce new variables

XY 2l and Y & 2V — 2. In terms of these variables, 2V — 2l = X + Y,
and thus, the desired formula (7) takes the form

a(X)-aY)=bX)+bY)+c(X+Y). (37)
Differentiating both sides of this equality w.r.t. Y, we conclude that
a(X) - dY)=b(Y)+(X+Y). (38)
Differentiating once again, this time w.r.t. X, we conclude that
d(X)-d(Y)=(X+Y). (39)
In particular, for Y = 0, we get
a'(X)-d(0)="(X). (40)
Substituting this expression for ¢”’(X) into the formula (39), we conclude that
d(X)-d(Y)=d(X+Y) d(0). (41)
Dividing both sides by a'(0), we get

a(X) d(Y) d(X+Y)

. = 42
a’(0)  a'(0) a(0) (42)
ie.,
AX+Y)=A(X) - A®Y), (43)
def @' (X) . . ) L
where A(X) = 7(0) Differentiating both sides of (43) by Y and substituting

Y =0, we conclude that A'(X) =~ - A(X), where v o A’(0). Similarly to the
proof of Proposition 3, we get A(X) = Cy - exp(y - X) for some constant Cj.
Therefore, a/(X) = a/(0) - A(X) = Cy-exp(y- X), where Cy & a’(0)-Cy. Thus:

o If v =0, we get a’/(X) = Cq, hence a(X) = Cy - X + C5 for some constant
C35. From the condition a(0) = 0, we conclude that C5 = 0.

of C
o If v # 0, then a(X) = C3-exp(y-X)+Cy, where Cs def 72 Here too, from
the condition that a(0) = 0, we conclude that a(X) = Cy- (1 —exp(y- X)).

The proposition is proven.
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Proof of Proposition 5. We have already shown, in the proof of Proposi-
tion 1, that:

e for linear or exponential functions, the corresponding family is shift-
invariant, and

e vice versa, that if a family is shift-invariant, then it has the form F'(g,h)
for some linear or exponential functions g(z) and h(z).

1°. To prove the first part of Proposition 5, we thus need to show that for every
shift-invariant and final optimality criterion, the corresponding optimal family
F,py is shift-invariant, i.e., that Ts(Fypt) = Fopt for all s. Then, the result will
follow from Proposition 1.

Indeed, the transformation T is invertible, its inverse transformation is a
shift by —s: T, 1 = T_,. Now, from the optimality of Fopt, we conclude that
for every F' € A, T;*(IF’) < Fyp. From the invariance of the optimality
criterion, we can now conclude that F’ < Ty(Fopy). This is true for all F' € A
and therefore, the family T'(F,p) is optimal.

But since the criterion is final, there is only one optimal indicator function;
hence, Ts(Fopt) = Fopt- So, the optimal family is indeed invariant and hence,
due to Proposition 1, it coincides with F(g, h) for some linear or exponential
functions g(x) and h(z). The first part is proven.

2°. Let us now prove the second part of Proposition 5. Let g(x) and h(z) be
fixed linear or exponential functions, and let Fy = F'(g, h) be the corresponding
family. We will then define the optimality criterion as follows: F' < F' iff F' is
equal to this Fjy.

Since the family Fj is shift-invariant, thus the defined optimality criterion is
also shift-invariant. It is also clearly final.

The family Fj is clearly optimal w.r.t. this shift-invariant and final optimal-
ity criterion. The proposition is proven.
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