
 1

USE OF DETERMINISTIC TRAFFIC ASSIGNMENT ALGORITHMS IN 

STOCHASTIC NETWORKS: ANALYSIS OF E QUIVALENT LINK DISUTILITY 

FUNCTIONS 

 

Ruey L. Cheua and Vladik Kreinovichb,* 

 
aDepartment of Civil Engineering, University of Texas, 500 W University Ave, El Paso, TX 79968, United States 

 
bDepartment of Computer Science, University of Texas, 500 W University Ave, El Paso, TX 79968, United States 

 
Submitted to Transportmetrica for Review and Publication 

 
Date: February 2007 

 
 

ABSTRACT 

 

At present, in practice, most traffic assignment tasks are performed by using deterministic 

network (DN) models, which assume that the link travel time is uniquely determined by the link 

volume and link capacity.  In reality, for the same link volume and link capacity, a link may have 

different travel times.  However, the corresponding stochastic network (SN) models are not 

widely used because they are much more computationally complex than the DN models.  In the 

past research, it was shown that in the important particular case, when the link travel time 

follows Gamma distribution, the traffic assignment problem for SN can be reformulated in terms 

of deterministic equivalent link disutility function.  Thus in this case the traffic assignment can 

be solved by the standard Frank-Wolfe algorithm.  In this paper, we show that a similar 

equivalent link disutility function exists in the general case of an arbitrary distribution of link 

travel time.  Therefore, we can use the Frank-Wolfe algorithm in the general SN case, both for 
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the risk averse and risk prone driver route choice behavior.  We also provide an explicit 

expression for this equivalent link disutility function in terms of the link volume and link 

capacity.   

 

Keywords: traffic assignment, route choice, utility function, stochastic network, user equilibrium
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1.  Introduction 

 

In traffic assignment, a road network is usually modeled as a set of nodes connected by 

unidirectional links.  A set of vehicles, also known as users, travelers, or drivers, are to be loaded 

into the network and travel from their origin nodes to the destination nodes.  A modeler is always 

interested in seeking the traffic flow distribution in a network, i.e., the volume of traffic in the 

links, such that no user can improve his/her travel time by unilaterally changing his/her route.  

This state of flow distribution is called the User Equilibrium (UE) condition.  In assigning traffic 

flow to a network, among the assumptions made are the characteristics of link travel times and of 

drivers’ knowledge of the link travel times.     

 

At present, a large number of transportation network models are based on the assumption 

that travel time in a link is a deterministic function of the link’s characteristics (such as free-flow 

travel time and link capacity) and link volume. A network with such a deterministic link travel 

time function is called a Deterministic Network (DN). In reality, empirical data shows that for 

the same traffic flow in a link, we have variations in travel time. These variations are due to the 

difference in vehicle mix, difference in driver reactions, weather, incident conditions, etc.  These 

variations are small when the traffic flow is light but they become much larger as the link 

becomes more congested. A natural way to model such variation is to consider travel time in a 

link as a probability distribution, with mean and variance expressed as functions of the link 

characteristics and link volume. A network with such probabilistic link travel times is called a 

Stochastic Network (SN).   
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Most transportation network models assume that the drivers have perfect knowledge of 

the link travel times (in the deterministic case) or of the probabilities of different values of link 

travel times (in the stochastic case). The resulting state of the transportation network is called 

Deterministic User Equilibrium (DUE). In reality, a driver’s knowledge is usually somewhat 

imperfect. The driver’s perception of a (deterministic or stochastic) link travel time may be 

slightly different from the actual travel time. Some transportation network models take this 

perception error into account by modeling it as a normal distribution with zero mean.  Due to 

these perception errors the selected routes of the drivers vary stochastically.  The resulting state 

of the transportation network is called Stochastic User Equilibrium (SUE). 

 

Based on the assumptions in link travel times and drivers’ perception on the link travel 

times, traffic assignment models may therefore be classified into four types: Deterministic 

Network-Deterministic User Equilibrium (DN-DUE), Deterministic Network-Stochastic User 

Equilibrium (DN-SUE), Stochastic Network-Deterministic User Equilibrium (SN-DUE), 

Stochastic Network-Stochastic User Equilibrium (SN-SUE) (Chen and Recker 2000). 

 

The DN-DUE is the simplest, the easiest to understand, and the most widely accepted 

traffic assignment model.  It assumes that drivers have perfect knowledge of the deterministic 

link travel times (with a given flow distribution) in the network, and they always select the paths 

that have the shortest travel times between their origins and destinations.  This model was 

originally formulated by Beckman et al. (1956) and can be solved by the Frank-Wolfe algorithm 

(Sheffi, 1985).  In DN-SUE, the network’s link travel times are deterministic (with a given flow 

distribution), but they may be perceived differently by different drivers.  Due to the error in 
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travel time perception, drivers will always select what they perceive as the shortest paths but 

these may not be the actual shortest paths.  The DN-SUE model was originally formulated by 

Daganzo and Sheffi (1977).  A popular solution algorithm for the DN-SUE model is the Method 

of Successive Averages proposed by Sheffi and Powell (1982).   

 

In DN, the travel time is uniquely determined by the path; a driver selects the path 

connecting an origin and a destination with the shortest travel time.  As we have mentioned, in 

reality, the travel time is not uniquely determined by the path; each driver selects the path with 

the lowest expected value of the disutility.  Such SN models were first studied by Mirchandani 

and Soroush (1987).  In particular, the SN-DUE assumes that drivers have perfect knowledge of 

the degree of variation in link travel times, and they factor this variation in their route choice 

decisions.  While DN-DUE and DN-SUE models are used by many transportation modelers, 

only few papers (Mirchandani and Soroush, 1987; Tatineni, et al., 1997; Chen and Recker, 2000; 

Chen et al. 2000) used SN models because these models are much more computationally 

complex than the DN models.  It is known that, under certain conditions, the SN-DUE model can 

be solved by the Frank-Wolf algorithm simply by replacing the link travel time function with a 

suitable equivalent link disutility function (see for examples Mirchandani and Soroush, 1987; 

and Tatineni, 1996).  The main objective of this paper is to extend this possibility to a more 

realistic set of conditions.  

 

In principle, it is possible to consider an even more realistic SN-SUE model which adds 

drivers’ perception errors into the link travel time variations. However, according to Chen and 
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Recker (2000), the SN-DUE model is quite suitable for modeling of peak hour traffic because 

regular commuters have a good knowledge of the mean and variance of peak hour travel times.   

 

 The outline of this paper is as follows.  In section 2, we describe the previous related 

work.  In section 3, we emphasize the limitations of the previous work: that the possibility to use 

equivalent link disutility function is limited to a specific case of a Gamma distribution and that 

there is no ready to use expression for this equivalent link disutility function in terms of link 

volume and link capacity.  The need to overcome these limitations is the motivation for our 

current research.  In section 4, we prove the possibility to use the equivalent link disutility 

function in the general stochastic case, and we provide the expression for these functions in 

terms of mean and variance of link travel time.  In section 5, we describe the desired properties 

of the equivalent link disutility function; in section 6, we illustrate these desired properties on the 

example of the DN, and in section 7 we use these properties to derive the expression for the 

equivalent link disutility function in terms of link volume and link capacity.  In section 8, we 

analyze the resulting route choice behavior for risk averse and risk prone drivers.  Finally, in an 

auxiliary section 9, we provide an alternative derivation of the expression for the variance of link 

travel time in terms of link volume and link capacity.  Section 10 summarizes this paper. 

 

2.  Previous Related Work 

 

 In the deterministic case, drivers select a route r with the smallest value of the route 

travel time ∑
∈

=
ri

ir tt . To describe the deterministic link travel time it , the most popular function 

used by transportation modelers is the Bureau of Public Road (BPR) function: 
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where it  is the travel time in link i, f
it  is the free-flow travel time in link i, iv  is the volume in 

link i, ic  is the capacity of link i, and α  and β  are constants.  The f
it  is computed by dividing  

il , the length of link i, by f
iu , the free-flow speed of link i.  Typical values of α  and β  are 0.15 

and 4 respectively.  

 

In the stochastic case, it is reasonable to assume that formula (1) describes the average 

link travel time it . To describe the difference between the actual link travel time it  and its mean 

value it , the authors of Mirchandani and Soroush, 1987; Tatineni, 1996; Tatineni, et al., 1997; 

Chen and Recker, 2000; Chen et al. 2000 used empirical evidence according to which the actual 

distribution of it  can be described (with reasonable accuracy) by the Gamma distribution with a 

lower bound equal to f
it .  To describe SN-SUE models, they also made an empirical based 

assumption that the perception errors have normal distribution with mean equal to 0. 

 

The drivers route selection depends on how the drivers react to the travel time uncertainty.  

This is particularly important if drivers have constraints in the time of arrival (e.g., scheduled 

events, work starting times) with heavy penalties for late arrivals.  Mirchandani and Soroush 

(1987), Tatineni et al. (1997) and Chen and Recker (2000) describe three types of such behavior: 

risk averse, risk prone and risk neutral.  The term risk here refers to the risk of a late arrival at the 
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destination.  A risk averse driver prefers a route with longer expected travel time but smaller 

variation to a route with faster expected travel time but higher variation.  That is, he/she would 

rather use the route with longer travel time (and depart early) to lower the risk of arriving late.  

On the contrary, a risk prone driver would select the route with a faster travel time but higher 

variation.  A driver with risk neutral behavior does not consider travel time variation in his/her 

route choice decision.   

 

According to decision theory (see for example Watson and Buede, 1994), in the 

stochastic case, a rational decision maker maximizes the expected value of his/her utility 

function, or equivalently minimizes the expected value of the disutility function.  In particular, 

for the stochastic traffic assignment problem, given a choice of routes Rr ∈  connecting an 

origin-destination pair, a driver will select the route r ′  which has the smallest expected disutility 

[ ]rDUE   

 

[ ] [ ]{ }rRrr DUEDUE
∈

′ = min  (2) 

 

For the drivers with risk neutral behavior, the route disutility function rDU  is equal to 

the route travel time rt .  Therefore the expected route disutility [ ]rDUE  is equal to the average 

route travel time rt .  The route travel time rt , for a route r which is made up of L links, is equal 

to the sum of the link travel times: Lr t...tt ++= 1 .  So, the average route travel time is equal to 

the sum of the average link travel times: Lr t...tt ++= 1 .  Thus selecting a route with the smallest 
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[ ]rDUE  is equivalent to selecting a route with the smallest value of the sum of it .  Hence, a risk 

neutral driver can be described by an equivalent link disutility function ii tDU =  . 

 

For describing risk averse and risk prone behavior, the most commonly used disutility 

functions are the exponential functions (Watson and Buede, 1994). Such functions have been 

used by Tatineni et al. (1997) and Chen and Recker (2000) to represent the risk averse and risk 

prone behaviors in a SN: 
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where rt  is the route travel time, and ϕω,,, 21 bb  are positive constants.  Given a choice of routes 

Rr ∈  connecting an origin-destination pair, a driver will select the route r ′  which has the 

smallest expected disutility [ ]rDUE . 

 

Under these assumptions, it was shown that selecting a route with the smallest value of 

[ ]rDUE  is equivalent to selecting a route with the smallest value of the sum ∑
∈

=
ri

ir DUdu  for 

some values iDU .  This minimized expression is similar to the minimized expression ∑
∈

=
ri

ir tt  

in the deterministic case.  Thus, it is reasonable to call iDU  an equivalent link disutility function.  
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In particular, in the SN-DUE case, when there is no perception error, for risk averse 

drivers the equivalent link disutility function takes the following form (Tatineni, 1996; Tatineni, 

et al., 1997) 
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where 2
it

σ  is the variance of the link travel time and c is a constant determined by the parameters 

of the exponential disutility function.  In the derivation of this formula, the authors assume that 

the difference between the actual link travel time it  and that average travel time it  is reasonably 

small, so we can ignore higher order terms in ( )ii tt − . 

 

 The fact that the users preferences can be expressed in the form of minimizing the 

expression ∑
∈

=
ri

ir DUdu   allows us to use Frank-Wolf algorithm to solve the traffic assignment 

problem in the stochastic case as well (Tatineni et al., 1997; Chen and Recker, 2000). 

 

3.  Motivation for the Current Research 

 

The above solution to the stochastic traffic assignment problem requires first that we 

assume that the distribution of link travel time is Gamma, and that for every link, we know the 

variance of the link travel time.  In practice, the actual link travel time distribution can be 

somewhat different from Gamma, and very frequently we do not know the variances of the travel 

time of all the links.  
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Our first motivation for this paper is to show that the equivalent link disutility function 

iDU   (incorporating average link travel time and travel time variation) can be used to describe 

drivers’ route choice preference in the general SN-DUE case, without the need to assume 

Gamma distribution.  Our second motivation is to provide formulas which estimate the variances 

of the link travel times and the expression for the equivalent link disutility iDU , so that we will 

be able to apply the Frank-Wolfe algorithm even if we do not have the empirical information 

about the variance.   

 

4.  Possibility to Use Equivalent Link Disutility Functions in a General Stochastic Network 

 

In this section, we show that the equivalent link disutility function iDU   can be used to 

describe drivers’ route choice preference in the general SN-DUE case, without the need to 

assume Gamma distribution.  
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4.1  Risk Averse Behavior: Possibility to Use Equivalent Link Disutility Functions 

 

According to the SN-DUE model, a driver selects a route with the minimum value of the 

expected disutility [ ]rDUE .  If we “rescale” the disutility function, i.e., consider an auxiliary 

function [ ]( )rr DUEgA =  for some monotonically increasing function ( )xg , then minimizing 

[ ]rDUE  is equivalent to minimizing rA . We will use this property to simplify the decision 

making in the SN-DUE model.  

 

In particular, for risk averse drivers, following Equation (3), we have [ ] ( )11 −= rr AbDUE , 

where  

 

( )[ ]rr texpEA ω=  (5) 

 

Therefore, [ ]( )rr DUEgA =  for ( ) ( ) 11 += bxxg .  Since 1b >0, the function ( )xg  is 

monotonically increasing and therefore, minimizing [ ]rDUE  is equivalent to minimizing rA .  

 

The route travel time rt  is composed of link travel times it : ∑
=

=
L

i
ir tt

1
.  In a SN, link 

travel times ( )it  are considered to be independent random variables.  Thus, the auxiliary 

expression ( )[ ]rr texpEA ω=  can be expressed as 

 

rA  = ( )[ ]rtexpE ω  = ( )( )[ ]Lt...ttexpE +++ 21ω  = ( ) ( ) ( )[ ]Ltexp...texptexpE ωωω 21  
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 = ( )[ ] ( )[ ] ( )[ ]LtexpE...texpEtexpE ωωω ⋅⋅⋅ 21  (6) 

 

Drivers will select the route that minimizes [ ]rDUE ; this is equivalent to minimizing rA .  Since 

( )xln  is a monotonically increasing function, this choice is, in its turn, equivalent to selecting the 

route that minimizes ( )rAln .  Here 

 

( )rAln  = ( )[ ]{ } ( )[ ]{ } ( )[ ]{ }LtexpEln...texpElntexpEln ωωω +++ 21     (7) 

 

Let us perform one more rescaling, to make this expression similar to that of the DN.  A DN can 

be viewed as a particular case of a SN, in which all travel times it  and rt  are deterministic.  In a 

DN, the above expression reduces to  

 

( )rAln  = ( )[ ] ( )[ ] ( )[ ]Ltexpln...texplntexpln ωωω +++ 21  = ( )Lt...tt +++ 21ω  = rtω  (8) 

 

In a DN, we select a route with the smallest route travel time rt .  For convenience, let us rescale 

the objective function ( )rAln  one more time so that for DN, the rescaled objective function will 

coincide with rt .  Specifically, we consider ( )rr Alndu ω
1=  instead of ( )rAln , both for the DN 

and for the SN.  In this case, for the DN we have rr tdu = . 

 

In the general SN case, since ( ) ω
xxg =  is a monotonically increasing function, selecting a 

route based on rdu  is equivalent to selecting a route based on ( )rAln , and thus equivalent to 

selecting a route based on [ ]rDUE .  From Equation (7), we conclude that the new objective 
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function rdu  can be expressed as Lr DU...DUdu ++= 1 ,  where ( )[ ]{ }ii texpElnDU ωω
1= .  Thus, 

the drivers preference in SN-DUE is equivalent to selecting a route with the smallest value of the 

sum ∑
∈

=
ri

ir DUdu .  So we get the desired equivalence with the equivalent link disutility 

function ( )[ ]{ }ii texpElnDU ωω
1= .  Therefore, selecting a route in a SN is very similar to selecting 

a route in a DN, but with link disutility ( )[ ]{ }ii texpElnDU ωω
1=  instead of link travel time. 

 

4.2  Risk Averse Behavior: Expression for the Equivalent Link Disutility Functions in 

Terms of Mean and Variance of Link Travel Time 

 

Let us reformulate this expression for iDU  in terms of mean and variance of it .  In a SN 

the actual travel time it  in link i can be expressed as the sum of the mean travel time it  and the 

deviation from its mean: 

 

( )iiii tttt −+=  (9) 

 

It follows that 

 

( ) ( ) ( )( )iiii ttexptexptexp −= ωωω  (10) 

 

Hence 

 

( )[ ]itexpE ω  = ( ) ( )( )[ ]iii ttexpEtexp −ωω  (11) 
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Usually ( )ii tt −ω  is small, so we can expand the exponential function into the Taylor series and 

only keep the first three terms in this expansion 

 

( )( )ii ttexp −ω  = ( ) ( ) ...tttt ii
ii +

−
+−+

2
1

22ωω  (12) 

 

Therefore 

 

( )( )[ ] [ ] ( )[ ]2
2

2
1 iiiiii ttEttEttexpE −+−+≈−

ωωω  (13) 

 

By definition, [ ]ii ttE − =0 and ( )[ ] 22
itii ttE σ=−  which is the variance of it .  Substituting 

Equation (13) into Equation (11), we obtain  

 

( )[ ]itexpE ω  = ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+ 2

2

2
1

ititexp σωω  (14) 

 

The link disutility function thus becomes 

 

( )[ ]{ }ii texpElnDU ω
ω
1

=  = ( )
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⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+ 2

2

2
11

ititexpln σωω
ω

 

 = ⎥
⎦

⎤
⎢
⎣

⎡
++ 2

2

2
11

iti lnt σω
ω

 (15) 



 16

 

Using the Taylor series expansion of ( ) ...zzln +=+1  we obtain 

 

2

2 itii tDU σω
+≈  (16) 

 

We have shown that, if the all drivers in a network follow the same risk averse behavior, 

solving for DUE in a SN is similar to solving for DUE in a DN, except that we replace it  in a 

DN with iDU  in a SN.  Note that the first term it  in iDU  is the same as Equation (1), the BPR 

function.  Thus, it can be said that, in a SN with risk averse behavior, the additional term in the 

route choice decision for drivers is the link travel time variance, scaled by a factor ω /2.  The 

magnitude of ω  reflects the sensitivity of the drivers in avoiding the risk.  Risk averse drivers 

will avoid links that have high 2
it

σ .  Note that, if 
it

σ =0, the SN-DUE model is reduced to a DN-

DUE model.   

 

4.3  Risk Prone Behavior: Possibility to Use Equivalent Link Disutility Functions 

 

 According to the SN-DUE model, a driver selects a route with the smallest possible value 

of the expected disutility [ ]rDUE  

 

[ ] [ ]{ }rRrr DUEDUE
∈

′ = min   (17) 

 

For risk prone drivers, according to Equation (3), [ ] ( )rr BbDUE −= 12  where  
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( )[ ]rr texpEB ϕ−=  (18) 

 

Thus, minimizing [ ]rDUE  is equivalent to maximizing rB .  Since the link travel times it  are 

independent random variables, we conclude that for a route consisting of L links, we have  

 

rB  = ( )[ ]rtexpE ϕ−  = ( )[ ] ( )[ ] ( )[ ]LtexpE...texpEtexpE ϕϕϕ −⋅⋅−⋅− 21     (19) 

 

Selecting a route according to Equation (17) is equivalent to selecting a route that maximizes rB . 

This choice, in its turn, is equivalent to selecting the route that minimizes ( )rr Blndu ϕ
1−= .  Here  

 

rdu  = ( )[ ]{ } ( )[ ]{ } ( )[ ]{ }LtexpEln...texpElntexpEln ϕ
φ

ϕ
ϕ

ϕ
ϕ

−−−−−−−
111

21  (20) 

 

Thus, for risk prone behavior, the drivers preference in SN-DUE is equivalent to selecting a 

route with the smallest value of the sum ∑
∈

=
ri

ir DUdu .  So we get the desired equivalence with 

the equivalent link disutility function ( )[ ]{ }ii texpElnDU ϕϕ −−= 1 .  Therefore, selecting a route in 

a SN is very similar to selecting a route in a DN, but with link disutility 

( )[ ]{ }ii texpElnDU ϕϕ −−= 1  instead of link travel time.   

 

4.4  Risk Prone Behavior: Expression for the Equivalent Link Disutility Functions in 

Terms of Mean and Variance of Link Travel Time 
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Let us reformulate this expression for iDU  in terms of mean and variance of it .  By 

following the same procedure as in the risk averse case, we can show that  

 

( )[ ]{ }itexpEln ϕ
ϕ

−−
1   = ( )

⎭
⎬
⎫

⎩
⎨
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⎥
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⎤
⎢
⎣

⎡
+−− 2
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⎤
⎢
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2
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  (21) 

 

Therefore, we can write 

 

iDU = ⎥
⎦

⎤
⎢
⎣

⎡
+− 2

2

2
11

iti lnt σϕ
ϕ

 (22) 

 

Using the Taylor series expansion for ( )xln +1 , we obtain 

 

2

2 itii tDU σϕ−≈  (23) 

 

Equation (23) may be interpreted as follows.  A risk prone driver will consider the average link 

travel times ( )it  as well as the variance of link travel times ( )2
it

σ  in his/her route choice decision.  

If there are choices of two links with the same average travel time, a risk prone driver prefers the 

link with the higher variance.  The higher the variance, the more favorable the link is to the risk 

prone driver.  Therefore, the link disutility function has the link variance term, weighted by  

( )2ϕ− .   
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5.  Desired Properties of Equivalent Link Disutility Functions 

 

Note that a route r is made up of a series of L connected links i=1,…,L.  We have already 

shown that we can assign, to every link i, a value iDU  in such a way that the drivers preference 

is equivalent to selecting a route with the smallest value of the sum ∑
=

=
L

i
ir DUdu

1
.  In other 

words, the equivalent link disutility function satisfies the property  

(P1) It must be mathematically consistent with the route disutility function, in the sense that it 

leads to the same routing decision (it may however have a different form than the route 

disutility function). 

Property P1 ensures that the equivalent link disutility function describes the same route choice 

behavior as the original route disutility function.   

 

It is also desirable that the equivalent link disutility function satisfies the following 

properties: 

(P2) If we sub-divide a link into a series of shorter links, the equivalent disutility of the original 

link must be equal to the sum of the equivalent disutilities of the shorter links. 

(P3) The equivalent link disutility function must be a monotonically increasing and continuously 

differentiable function of link volume.   

Property P2 ensures that drivers’ route choice and network flow remain the same irrespective of 

the resolution of network representation.  Property P3 ensures that the equivalent link disutility 

function is consistent with common sense: the higher the link volume, the less preferable it is to 

the drivers, and small changes in the link volume lead to small changes in the driver’s preference. 
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The consistency in UE flow pattern irrespective of the resolution in network 

representation is important in many practical applications.  Many transportation planning models 

divide the geographical area to be analyzed into zones, depending on the land-use patterns.  The 

zones in the geographical border (or buffer zones) are usually larger than the zones in the center 

business district.  Naturally, the modeling details are often sized according to the zone dimension.  

Zones covering larger areas are likely to have longer links.  On the other hand, smaller zones are 

likely to have shorter links and higher node density.  Many traffic assignment algorithms use the 

geographical and topological information of the nodes and links converted from a Geographical 

Information Systems (GIS) database.  To be geographically correct in representing a curve road 

segment which has a uniform geometry, intermediate nodes are inserted between the two ends of 

the segment so that it can be represented by a series of piecewise linear links.  If the additive 

property of the link disutility is not preserved, such division of a link into a series of smaller 

links may produce different UE flow patterns after traffic assignment.   

 

A consistent equivalent link disutility function can be placed instead of the deterministic 

link travel time function in the existing traffic assignment models (such as TransCAD (Caliper, 

2005)) and thus enable us to use these models for SN-DUE applications. 

 

6.   Illustrating the Desired Properties on the Example of Deterministic Link Travel Time 

Function 
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We first use a commonly used deterministic link travel time function to illustrate the 

concepts of P2 and P3.  As we have mentioned, the most popular deterministic link travel time 

function used by transportation modelers is the BPR function in Equation (1).  The f
it  is 

computed by dividing il , the length of link i, by f
iu , the free-flow speed of link i.  For a route r 

which is made up a series of L links ( )L,...,i 1= , the route travel time is ∑
=

=
L

i
ir tt

1
.  In short, the 

route travel time is the arithmetic sum of the link travel times, with the latter represented by the 

BPR function.   

 

 Since α >0 and β >0, it  is a monotonically increasing and continuously differentiable 

function of iv , i.e., the BPR function satisfies P3.   

 

We now illustrate the concept of P2.  Suppose that we now divide link i into n 

consecutive sub-links { }niii ,...,, 21 , with lengths { }
ni iii lll ,, ,...2

.  Then, the volume, capacity, and free-

flow speed of the sub-links are same as that of link i, i.e., iiii vv...vv
n
====

21
, 

iiii cc...cc
n
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21
, and  f

i
fff uu...uu
niii
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.  The free-flow travel times of the sub-links 

are thus { }f
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Therefore, if we divide an original link into shorter links and compute the travel times of the 

shorter links, then the sum of the travel times on the shorter links is the same as the original link 

travel time.  Thus, by using the BPR function, the additive property of the link travel time is 

preserved, and the BPR function satisfies property P3. 

 

7.  Expression for the Equivalent Link Disutility Functions in Terms of Link Volume and 

Link Capacity 

 

 Let us use the property P2 to derive expression for the equivalent link disutility functions 

in terms of link volume and link capacity.  In a SN, it , the travel time in link i, is a random 

variable.  For this random variable it , the average travel time it  can be estimated by the BPR 

function: 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

β

α
i

if
ii c

vtt 1  (25) 

 

Note that, according to this formula, when iv =0, we have f
ii tt = .  Moreover, in the absence of 

traffic flow, i.e., when iv =0, the link travel time it  should be equal to f
it  (with probability=1.0). 

Other than these restriction on the average and on the free-flow travel time, we are not making 
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any other explicit assumption about the distribution of it ; in this sense, the conclusions of this 

section are distribution-free.   

 

It is natural to assume that, iDU , the equivalent disutility of link i should depend on the 

free-flow travel time f
it  and the relative average delay ( ) f

i
f

ii tttd −= , i.e.,  

 

( )d,tFDU f
ii =  (26) 

 

where  
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for some function ( )d,tF f
i .  So, to describe an equivalent link disutility function, we must find 

the appropriate function ( )d,tF f
i .   

 

One would expect a link which has a longer uncongested travel time to have a higher 

equivalent disutility; so, ( )d,tF f
i  must be an increasing function of f

it . One would also expect 

that as the link becomes more congested, the equivalent disutility would increase; so, ( )d,tF f
i  

must also be an increasing function of d.  In addition, the function ( )d,tF f
i  must satisfies the 

following conditions:  
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(i) In the deterministic case, we want our equivalent link disutility function to reduce to the 

standard link travel time function.  We have already mentioned that when 0=iv , then the travel 

time is deterministically determined f
iii ttt == , therefore  

 

( )0,tF f
i = f

it  (28) 

 

(ii) We would like the equivalent link disutility function to satisfy the property P2: If we sub-

divide a link into a series of shorter links, the equivalent disutility of the original link must be 

equal to the sum of the equivalent disutilities of the shorter links.  If we sub-divide a link into 

two sub-links with free-flow travel times f
it 1

 and f
it 2

 respectively, then iii vvv ==
21

, and 

iii ccc ==
21

; so by Equation (27), the relative average delay d for both sub-links is the same as 

for the original link.  Thus the desired property P2 takes the following form 

 

( ) ( ) ( )d,tFd,tFd,ttF f
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f
i

f
i

f
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+=+  (29) 

 

Let us describe all the functions ( )d,tF f
i  which satisfy these conditions.  First we analyze 

Equation (29).  We fix a value d and introduce an auxiliary function ( ) ( )d,aFaG = .  In terms of 

this new function, the Equation (29) takes the form  

 

( ) ( ) ( )bGaGbaG +=+  (30) 
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We also know that ( )d,tF f
i  is an increasing function of f

it  and therefore, ( )aG  is an increasing 

function of a.  It is known (Aczel, 2006) that every monotonically increasing function ( )aG  

which satisfies Equation (30) has the form ( ) akaG ⋅=  for some k>0.  For different d, the 

coefficient k may in general be different: ( )dkk = .  Thus we conclude that  

 

( ) ( )dktd,tFDU f
i

f
ii ==  (31) 

 

From Equation (28), we know that for d=0 we have ( ) f
i

f
i td,tF = .  Therefore ( )0k =1.   

 

For typical values of α  and β  (see Equation (27)), we have 1<<d .  Thus we can use the 

Taylor series expansion 

 

( ) ...dadadk +++= 2
211  (32) 

 

and ignore the higher order terms, i.e., use an expression ( ) 2
211 dadark ++= .  Substituting the 

formula for r (Equation (27)) into this expression, we conclude that 
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 Equation (33) can also be expressed as 
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Hence, we may view iDU  as consisting of two components: the deterministic component it  and 

stochastic component [ ]...t f
i .  The stochastic component is due to the uncertainty in the link 

travel time in drivers’ route choice process.   

 

 Our derivation (Equations (29) and (30)) has already ensured that the iDU  has property 

P2.  Namely using the same logic as in Equation (24), it can also be shown that Equation (34) 

satisfies property P2.   

 

8.  Route Choice Behavior in Stochastic Networks 

 

We have already shown that the property P1 is satisfied.  In terms of our function iDU , 

this property means that the driver preferences should be equivalent to selecting a route with the 

smallest value of the sum rdu  = ∑
=

L

i
iDU

1

. 

 

Thus, the Equation (34) provides a convenient way of solving the SN-DUE model using 

the Frank-Wolf algorithm, provided that iDU  is a convex function of iv .  This property of iDU  
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holds e.g. when ≥1a 0 and ≥2a 0; in the following text we will show that this is the case e.g. for 

risk averse drivers, drivers typical for the morning rush hours.  The coefficients 1a  and 2a  can be 

estimated from user surveys, which will reflect the user behavior in response to uncertain link 

travel times. 

 

Therefore, we can treat the SN-DUE model like a DN-DUE model simply by replacing 

the it  and rt  in the DN-DUE model by iDU  and rdu  respectively.  In fact, we only need to 

replace it  by iDU  in the solution algorithm! 

 

8.1  Risk Averse Behavior 

 

In section 4.2, we have shown that for risk averse behavior, the equivalent link disutility 

function has the form in Equation (16).  By comparing this expression with Equation (34), we 

conclude that  
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Therefore, if we assume that the equivalent link disutility function satisfies P2 then the variance 

2
it

σ  must have the form of Equation (35).  The variance is always non-negative, ≥2
it

σ 0, so the 

coefficients 1a  and 2a  must be such that 
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Note that the final expression for the equivalent link disutility function iDU  in Equation (33) 

contains only two new parameters 1a  and 2a .  These parameters take into account both the 

dependence of the variance 2
it

σ  and the parameter ω  that describes the drivers’ behavior.    

 

8.2  Risk Prone Behavior  

 

In this case, to ensure that Equation (23) from section 4.4 satisfies P2 and P3, we 

compare Equations (23) and (34) and deduce that 
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To ensure that ≥2
it

σ 0, we must have  
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Note that, even if the combination of 1a  and 2a  values satisfies Equation (38), it does not 

guarantee that Equation (37) is monotonically increasing function of iv .  To satisfy P3, the rate 
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of increase in ( ) 2
2 it
σϕ  term Equation (37) with respect to iv  must be relatively small compared to 

the rate of increase of  it  with respect to iv .   

 

 When the expression for iDU  is convex, we can use the Frank-Wolf algorithm to solve 

the corresponding traffic assignment problem.  For strongly risk prone behavior with large ϕ , 

the function iDU  is no longer convex.  However, in this paper, following Tatineni et al. (1997) 

and Chen and Recker (2000), we assume that all drivers in a network follow the same route 

choice behavior.  Under this assumption, the coefficients in Equation (23) represent the average 

behavior in the network.  Therefore the extremely risk prone behavior is highly unlikely and thus 

the actual expression for iDU  should be convex.     

 

9.  Expression for the Variance of Link Travel Time: Alternative Derivation 

 

In the previous text, we have first derived the formulas for equivalent link disutility 

functions, and then used these formulas to derive the expressions of the variance of link travel 

time.  Let us show that we can derive this expression for the variance directly.   

 

It is natural to assume that the variance 2
it

σ  of the travel time on link i should depend on 

the free-flow travel time f
it  and the relative average delay ( ) f

i
f

ii tttd −= , i.e.,  

 

( )d,tf f
iti

=2σ  (39) 
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(where d is as defined in Equation (27)) for some function ( )d,tf f
i .  So, to describe an 

expression for the variance, we must find the appropriate function ( )d,tf f
i .  As we have 

mentioned, in SN, it is usually assumed that link travel times are independent random variables.  

If we sub-divide a link into two sub-links with free-flow travel times f
it 1

 and f
it 2

 respectively, 

then iii vvv ==
21

, iii ccc ==
21

, and the relative average delay d for both sub-links is the same as 

for the original link.  It is known that the variance of the sum f
i

f
i

f
i ttt

21
+=  of two independent 

random variables is equal to the sum of the corresponding variances 222
21 iii ttt σσσ += .  Thus  

 

( ) ( ) ( )d,tfd,tfd,ttf f
i
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i

f
i

f
ii 212

+=+  (40) 

 

Similarly to section 4, we thus conclude that 

 

( )dgt f
iti

=2σ   (41) 

 

for some function ( )dg .  Since 1<<d , by expanding ( )dg  into a Taylor series, and ignoring the 

terms with 3d  and higher order, we get 

 

2
it

σ  = [ ]...dadaat f
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210  ≈ [ ]2
210 dadaat f
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In the absence of traffic flow, when f
ii tt =  and d=0, we have 2

it
σ =0; therefore we get 0a′ =0.  

Thus 
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2
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Substituting this expression into Equation (4), and ignoring the terms of 3d  and higher order, we 

get 
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This expression can be rewritten as  
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We can see that Equation (45) is indeed equivalent to Equation (34) (if one uses the 

appropriate matching coefficients).  So, for risk averse drivers, our derivation of the expression 

for the equivalent link disutility function (Equation (34)) indeed applies to the empirical (Gamma) 

link travel time distribution.  For risk prone drivers, similar derivation leads to the same 

conclusion.   
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10.  Summary 

 

At present, in practice, most traffic assignment tasks are performed by using deterministic 

network (DN) models, which assume that the link travel time is uniquely determined by the link 

volume and link capacity.  In reality, for the same link volume and link capacity, a link may have 

different travel times.  Stochastic network (SN) models, which take this difference into account, 

provide a more accurate description of driver behavior than the DN models.  However, these 

models are not widely used because they are much more computationally complex than the DN 

models. 

 

In the past research, it was shown that in the important particular case, when the link 

travel time follows Gamma distribution, the traffic assignment problem for SN can be 

reformulated in terms of deterministic equivalent link disutility function.  Thus in this case the 

traffic assignment can be solved by the standard Frank-Wolfe algorithm. 

 

In this paper, we show that a similar equivalent link disutility function exists in the 

general case of an arbitrary distribution of link travel time.  Therefore, we can use the Frank-

Wolfe algorithm in the general SN case.  We also provide an explicit expression for this 

equivalent link disutility function in terms of the link volume and link capacity.  This expression 

has two components: a deterministic component that accounts for the average link travel time 

(based on the well-known BPR function), and a stochastic component which is proportional to 

the variance of link travel time. This expression is independent of the resolution of the network 

representation.   
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The general expression for the equivalent link disutility function covers different risk 

taking behavior of the drivers.  For risk averse drivers, the stochastic component in the link 

disutility function is linearly proportional to the link travel time variance.  For risk prone drivers, 

the stochastic component in the link disutility function is linearly proportional to the negative 

value of the link travel time variance.  For these two types of route choice behaviors, we have 

specified the constraints of the coefficients in the stochastic component of the link disutility 

function under which the traffic assignment problem can be solved by the Frank-Wolfe 

algorithm.  We present arguments that these constraints are satisfied in real life. 

 

Our work in this paper provides the justification for the use of a general equivalent link 

disutility function (which can be seen as an extension of the BPR function) so that we can solve 

the SN problem using the same approach as in the DN model. 
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