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Abstract

It is well-known that t-norms are widely applicable in certain models, which describe
human reasoning about uncertainty, and that for different applications, different t-norms
fit better. Thus, given a practical problem, it is important to be able to find a t-norm which
is the most suitable for that particular problem. To solve such optimization problems, it
would be desirable to know the structure of the class of all possible t-norms. Toward this —
probably unreachable — goal there are many interesting open problems. If the corresponding
mathematical problems are expressed in terms of quantifiers and logical connectives, then
we get formulas which are very similar to formulas about real numbers. A. Tarski has
proved that there is a deciding algorithm — i.e., an algorithm that, given a formula for real
numbers, decides whether it is true or not — for real numbers. So, the natural question is
whether we can extend Tarski’s algorithm to a class of mathematical statements about t-
norms? The answer is “no”: once we allow quantifiers over t-norms, no deciding algorithm
exists. In this sense, in general, the analysis of the mathematical properties of t-norms is
logically non-trivial.

Formulation of the Problem

describe partial confidence.

The traditional two-valued logic is well suited for
describing statements about which we are 100% sure. Very often, however, we have to supplement
this absolute knowledge with expert knowledge. Experts are rarely 100% confident in their rules
and recommendations; at best, for each statement, they can provide their degree of confidence
in this statement. Usually, this degree is described either by a linguistic term or by a number
from the interval [0,1]: 1 means full confidence, 0 means no confidence, and values in between



One of the main reasons for gathering expert knowledge is that we want to make logical
deductions based on this knowledge. The simplest case of logical deduction is when we deduce a
new statement S based on two expert statements S; and S;. The natural question is: we know
the expert’s degrees of confidence s; and s, in the statements S; and Sy; what is the resulting
degree of confidence of the statement S7

For the new statement S to be true, both original statements S; and S, must be true. The
degree of confidence in S is determined as the degree of confidence that the conjunction S; & Ss
is true.

This degree of confidence depends not only on the expert’s degrees s; and so! but also on
the extent to which the statements S; and Sy are related.

So, in the ideal world, we should ask the same expert not only about the individual degrees
s; of different statements S;, but also about the degree of confidence in all possible combinations
S; &S, S; & S; & Sk, etc. However, there are exponentially many possible combination, so it is
practically impossible to elicit the degrees in all of them.

As a result, we face the following problem: given degrees of confidence s; and sy in two
statements S; and S (and no other information about S; and S3), we must use these two
numbers to provide an estimate s = T'(s1, s9) of the expert’s degree of confidence in S} & S,.
Which function T should we use to compute this degree? The following conditions are natural
to be posed.

e If S; is absolutely false, i.e., if s = 0, then S; & S5 should also be absolutely false, i.e., we
must have T'(a,0) = 0 for all a.

e If S; is absolutely true, i.e., if s; = 1, then S; & S, should be equivalent to Sy, i.e., we
must have T'(a, 1) = a for all a.

e Statements S; & Sy and S; & S7 have the same meaning, so we must have T'(a,b) = T'(b, a)
for all a and b.

e Similarly, statements S; & (S2 & S3) and (S; & S3) & S5 also have the same meaning, so we
must have T'(a,T'(b,c)) = T(T(a,b), c) for all a, b, and c.

e Finally, if we increase the degree of confidence of one or both of the statements .5;, then
our degree of confidence in S; & Sy must also increase (or at least remain the same, but not
decrease). In other words, if s; < s} and s, < 5, then we should have T'(s1, s2) < T'(s], s5).

Definition 1 A function 7" : [0,1] x [0,1] — [0, 1] which satisfies these conditions, i.e., for
which T'(a,0) = 0, T(a,1) = a, T(a,b) = T(b,a), T(a,T(b,c)) = T(T(a,b),c), and which is

monotonic in each of the two variables, is called a t-norm.

T-norms are used in many practical applications; see, e.g., [14, 24].

In different situations, different t-norms are most adequate. It is well known that there
are infinitely many (in fact, continuum many) different t-norms. A natural question is: Which
t-norm fits better to a certain problem?

It is known that in different areas of human expertise (and even in different problems within
the same area of expertise), different t-norms work better: e.g., in medical diagnostic, where
caution is important, the t-norm which most adequately describes human reasoning is different
from, e.g., geophysics where we need to make bold conclusions fast; see, e.g., surveys [17, 22]
and references therein.

'In mathematical fuzzy logic this phenomena is usually referred to as “truth-functionality”.



It is important to analyze the class of t-norms. Since in different practical applications,
different t-norms are better, it is important to be able to find, for each practical situation,
the most appropriate t-norm. To solve the corresponding optimization problems, it would be
desirable to know the structure of the class of t-norms.

For example, it is known that optimization problems are much easier to solve if we are
optimizing a convex function over a convex domain D, i.e., a domain for which for every x and y
and for every a € [0, 1], the convex combination « -z + (1 — «) -y also belongs to D. As a result,
even if the domain is not convex but has some convex subset, we may still be able to enhance
the solution of our optimization problem.

Thus, it is reasonable to ask: is the set of all t-norms convex? That is, if we have two t-norms

T(a,b) and T"(a,b), is their convex combination « - T'(a,b) + (1 — a) - T'(a,b) also a t-norm?
It is conjectured in [3] that the answer to this question is “never”: the resulting convex combina-
tion is never a t-norm (except for trivial cases, e.g. when o = 0, or T'=T") because the convex
combination is not associative.? Contrary to the conjecture, there are many examples where the
convex combination is a t-norm if the underlying t-norms are not left-continuous. Unfortunately,
such t-norms are absolutely uninteresting from the viewpoint of logical applications. A partial
solution for the class of left-continuous t-norms is in [12]. The general question is open even for
the class of continuous Archimedean t-norms [3]. Moreover, it is not even known whether the
product t-norm T'(a,b) = a - b — one of the simplest and most widely used t-norms — can be
represented as the convex combination of two different t-norms.

Is there a general algorithm for solving such problems? The above open problem about
the product t-norm, when described formally, has the following form:

AT3T' 3 (a0 (T(a,b) # T'(a,0))) &0 < a <1&

VeVd (o - T(e,d) + (1 — ) - T'(¢,d) = ¢ - d)).
Here, T and T” run over arbitrary t-norms, while the variables a, b, ¢, d, and « are real-valued.

This statement is similar to the statements from a class for which there is a known algorithm
(first designed by Tarski) for deciding whether a given formula is true or not. Tarksi’s algorithm
[27, 26] (see also [4, 16]) deals with the first order theory of real numbers, i.e., with formulas of
the following type:

e We start with variables x, y, z, ..., that run over real numbers, and with two constants:
0 and 1.

e From these variables and constants, we can form ezpressions (also called terms) by applying
addition and multiplication. For example, z - x + v - y is an expression in this sense.

e From expressions e, €/, ..., we can form elementary formulas of the type e = €/, e # ¢,
e>e,e<e,e<eé, and e > €. For example, z-x+1y-y = z- 2 is an elementary formula
in our language.

e From elementary formulas, we can form formulas by applying logical connectives & (“and”),
V (“or”), = (“implies”), = (“not”), and quantifiers Yz and Jz.

2Tt is worth mentioning that in some practical situations, such non-associative combination functions may
also adequately describe expert reasoning; see, e.g., [28] and references therein.



(Readers who are interested in technical details related to logic in general, and first order logic
in particular, can also consult [5, 10, 25].)

The original Tarski’s algorithm is not always practically useful: it sometimes takes time
~ 2%" for an input of size n [8] (see also [6, 7]). However, for this class of formulas, there exist
more efficient algorithms that enable us to solve many practical problems by reducing them to
the first order theory of real numbers. In particular, there are applications to transportation
problems [19], to control system design [1], etc. (see also [2]).

Tarksi’s algorithm has also been applied to t-norms: namely, for a fixed algebraic t-norm
such as t1(a,b) = a - b or ty(a,b) = min(a,b), we can add the expression ¢;(a,b) to the formulas
and still get a decidable theory, i.e., a theory in which we have an algorithm that decides whether
a given formula holds or not [23].

Can we extend Tarski’s algorithm to the above formula? The only difference between the
above formula (describing an open problem) and Tarski’s formulas is that we also allow quan-
tifiers over t-norms. It is known that if we allow quantifiers over arbitrary functions, then the
problem stops being decidable; see, e.g., [15]. What if we allow quantifiers over t-norms instead?

What we do in this paper. We prove that the theory remains undecidable if we allow
quantifiers over classes of t-norms. Moreover, our results reveal that even the theory of certain
single t-norms is undecidable.

Preliminaries: A t-norm is called continuous if it is continuous as a two-place function. A
usual condition on continuous t-norms is that if we have two different statements S; and Sy with
the same degree of confidence s (0 < s < 1), then our degree of confidence that both of these
statements are true should be smaller than our degree of confidence in each of these statements.
More formally, this condition means that T'(s,s) < s for all such s €]0,1[< 1. Such continuous
t-norms are called Archimedean; see, e.g., [14, 24]. A continuous Archimedean t-norm is called
nilpotent if it has zero divisors (that is, if there exists x €]0, 1] such that there exists y €]0, 1]
with T'(z,y) = 0). A prototype of nilpotent t-norms is the so-called Lukasiewicz t-norm, given
by

Ti(z,y) = max(0,x +y — 1).
A continuous Archimedean t-norm is called strict if it has no zero divisors. An example is the
product t-norm, given by

Tp(z,y) =x-y.

In fact, these are the unique examples for nilpotent and for strict t-norms up to ¢-transformation,
as shown by the following theorem.

Theorem 1 [18] Any nilpotent t-norm T is isomorphic to Ty, that is, there exists @, which
is an increasing bijection of [0, 1], such that T, the @-transform of T', is the Lukasiewicz t-norm.
That 1is,

Ty(x,y) == ¢ (T(p(x), o(y))) = Tu(z,y).

Any strict t-norm T is isomorphic to Tp, that is, there exists o, which is an increasing bijection
of [0, 1], such that T, the p-transform of T, is the product t-norm. That is,

Ty(x,y) = (T(p(x), () = Te(z,y).

In some situations, one may want to consider discontinuous t-norms. In this case, at each
discontinuity point, since the function 7" is monotonic, we can select either the left limit or the



right limit as the value for this point. It is customary to consider left-continuous t-norms; see,
e.g., [3, 12]. Left-continuous t-norms are widely used in non-classical logics. The important role
of left-continuity is that this condition is equivalent to that ([0, 1],7") can be equipped with the
structure of a residuated lattice.

2 Main Result

Definition 2 Let T be a class of t-norms. We define a first order theory of t-norms from
the class T as follows:

e Let V, and V; be two sets. Elements of V, will be called variables which run over real
numbers and elements of V; will be called variables that run over t-norms.

e A term is defined inductively:

— constants 0, 1, and variables v € V, are terms;

— if e; and ey are terms and t € V;, then (e1), e; + es, €1 - €5, and T'(eq, e5) are also
terms.

e An elementary formula is an expression of the type e; = ey, €1 < €9, €1 > €3, 1 < eg,
e1 > eq, and €1 # es.

e A formula is defined inductively:

— every elementary formula is a formula;
— if F' and F” are formulas, then —=F, F'V F’, and F & F' are also formulas;

— if F'is a formula with a variable z € V, UV,, then dz I’ and Vx F' are also formulas.

Definition 3 Let T be a class of t-norms.

e We say that a theory of t-norms from this class is decidable if there exists an algorithm
that, given a formula (without free variables), tells whether this formula is true (when all
the quantifiers V¢ and 3t are interpreted as going over t-norms from the class 7).

e We say that a theory of t-norms from this class is undecidable if no such algorithm exists.

Theorem 2 We have the following undecidability results.

1. The theory of strict t-norms is undecidable.

The theory of nilpotent t-norms is undecidable.

The theory of continuous Archimedean t-norms is undecidable.
The theory of continuous t-norms is undecidable.

The theory of left-continuous t-norms is undecidable.

S v

The theory of t-norms is undecidable.

Proof.



1°. It is known that while the first order theory of real numbers is decidable, the first order
theory of natural numbers is not decidable. In our proof, we refer to the result of Matiya-
sevich et al. [9, 20, 21] saying that no algorithm exists which solves Diophantine equations
with 13 variables, i.e., no algorithm can decide whether a formula

31‘1...31‘13[(1’1 GN)& &(1713 €N>&Q($1,...,ZL‘13) :O]

is true, where N denotes the set of all natural numbers and @ is a polynomial with integer
coeflicients. (This result solved Hilbert’s tenth problem [11].)

So, if we can express the property x € N in terms of t-norms, then we will be able to
describe the formulas from the above undecidable class in terms of t-norms — and thus,
prove that the corresponding theory is undecidable.

2°. We propose the following formula to describe x € N:

1 1 1
= T ( P(T T(1— 1— =1— 1
= 0VY ( () = ( — I+3) x+2), (1)

where P(T) is the following formula:

1 1 1
T<L— 11— ):1—&
0+3 0+3 0+2

1 1 1 1 1 1
v<T@— - >:L— ¢T@— - ):1— &
“ a+3"  a+3 0+ 2 e+3"  a+3 0+ 2

1 1 |
b (a<b 1=7(1- - P
v(a< seri= < b+3 b+3)% b+i»

3°. If there exists a t-norm T which satisfies property P(T'), then for this t-norm, by the
definition of this property, we have:

1 1 1
T(1-— 1— =1- f =0;
* ( 213 x+3) zr2 T Y
1 1
3,1—$+3) = 1—$+2 does not hold for any =
does hold for z = 1;

—|—>—t

e hence, the property T (1 —
between 0 and 0+ 1 =1, bu

+8
=

1

1 1
1— ):1—holdsfor:vzl,itdoesnot
T +3 +2

e since the property T <1 — ,
+ 1 = 2, but it does hold for x = 2;

Q~+>—l

3
hold for any = between 1 an 1

By induction, one can easily prove that

T<L— LRSI ):1— ! 2)

T+ 3 r+3 T+ 2

holds if and only if z € N. Thus, the formula in (1) is true if and only if x is a natural
number.



4°. That is, if there exists a t-norm 7" which satisfies property P(7), then for this t-norm,
by the definition of this property, we have (2) if and only if x € N. Thus, by defining
f(y) = T(y,y) to be the diagonal of T' (y € [0, 1]) first we need to construct a function

f:[0,1] — [0,1] such that
fli-—)=1-— 3

r+3 T+ 2

1 2
holds if and only if z € N. If  runs in [0, c0[ then y = 1 — runs in {3, 1 [, and (3)
T

+ 2
has the following equivalent form, as easily verified:

1
fly)=2-1 (4)

2 3 1
holds if and only if y € H := {3,4,...,1—x+3,...}.
5°. First we shall prove Part 1 of the Theorem. We shall use that any strictly increasing
continuous [0, 1] — [0, 1] function with f(0) = 0, f(1) = 1, can be a diagonal of a strict
t-norm (see e.g. [13] and the references therein).
Consider any strictly increasing continuous function f : [0,1] — [0,1] with f(0) = 0,
f(1) = 1, which, for x € [0, 1], satisfies (4) if and only if y € H. That is, which satisfies
2 1 3 2 4 3 1
f (3) =5 f (4) =3 f <5> =7 but which is at y € [0, 1[\H different from 2 — —.
Such a function clearly exists. Therefore, for the f, which is constructed above there exists
a strict t-norm 7', such that f is its diagonal. This proves 1.

Next we prove statement 2 of the Theorem. We shall use that any increasing continuous
[0,1] — [0, 1] function with f(0) =0, f(1) = 1, which is not strictly increasing, but which
is strictly increasing on the preimage of |0, 1], can be a diagonal of a nilpotent t-norm (see
e.g. [13] and the references therein).

Consider any such function f : [0, 1] — [0, 1] which, for y € [0, 1], satisfies (4) if and only

1 1
if y € H, and which, in addition, satisfies f <3) = 0 (observe that 2 — —— # 0). That is,

1/3
) 2 1 3 2 4 3 o
f satisfies f (3) =3 f (4) =3 f <5> =1 but at y € [0, 1[\H it is different from
2 — —. Such a function clearly exists. Therefore, for the f, which is constructed above

Y
there exists a nilpotent t-norm 7', such that f is its diagonal. This proves 2.

To conclude the proof of 3.—6. observe that e.g. the nilpotent t-norm, which is constructed
above is continuous Archimedean, continuous, left-continuous, respectively.

Remark 1 Observe that in Theorem 2 we have proven even more. Namely, consider a single
t-norm, which has property (2) if and only if 2 € N. There are many such t-norms, it follows
from 5° (indeed, there exists at least one for each suitable diagonal). Then it follows from the
proof of Theorem 2 that even the theory of this single t-norm is undecidable. Moreover, one may
choose another logical formula instead of (1), which captures € N. Then it may yield another
property instead of (2), and the theory of any single t-norm, which satisfies that property is
undecidable.



3 Auxiliary Results

As we have mentioned, t-norms describe the degree of confidence in statements of the type
S1 & S5. To describe degree of confidence in a statement of the type Sy V Ss, t-conorms are used,
which are functions S : [0, 1] x [0, 1] — [0, 1] for which S(a,0) = a, S(a,1) =1, S(a,b) = S(b,a),
S(a,S(b,c)) = S(S(a,b),c), and which is monotonic in each of the two variables. T-conorms
are dual to t-norms, since for any t-norm 7', the function S(z,y) =1 —-T(1 —z,1 —y) is a
t-conorm, and vice versa. Of course, the properties that are defined for t-norms can be carried
over to t-conorms as well. Note that for continuous t-conorms, the Archimedean property takes
the form T'(s,s) > s for all s €0, 1].

Similar to the case of t-norms, we can define theories for different classes of t-conorms by allowing
quantifiers VS and 35 that run over all t-conorms from the corresponding class. These theories
are also undecidable:

Theorem 3 We have the following undecidability results.

1. The theory of strict t-conorms is undecidable.

The theory of nilpotent t-conorms is undecidable.

The theory of continuous Archimedean t-conorms is undecidable.
The theory of continuous t-conorms is undecidable.

The theory of right-continuous t-norms is undecidable.

S v o

The theory of t-conorms is undecidable.

Proof. 1t follows from the duality between t-norms and t-conorms. From the logical view-
point, every formula related to t-norms can be described in terms of t-conorms, and vice versa.
Hence, Theorem 2 implies Theorem 3. |

A similar result holds for strong negations, which are strictly increasing continuous functions

N :[0,1] — [0, 1] for which N(0) =1, N(1) =0, and N(N(z)) =z (x € [0,1]) holds.

Theorem 4 The theory of strong negations is undecidable.

Proof. We propose the following formula to describe x € N:

szV(Vn(P(N):>N<x_1i_2>:1—xi2>>, (5)

where P(N) is the following formula:
1 1
N(—)=1-——
<O—|—2) 0+2&
1 1 1 1
T (TS T B S S
a<a— @+ 2 a+2 (at1)+2 (at1)+2
1

1
1o N(— V21— —)).
Vb<a<b<a+ = <b+2>7é b+2>>




If there exists a strong negation N which satisfies property P(NN), then for this strong negation,
just like in the proof of Theorem 2, it holds true that the property

1 1
> — _
I_O&N(x+2> ! x+2 (6)

holds if and only if x € N. Thus, the formula in (5) is true if and only if x is a natural number.

To complete the proof, we need to show that there exists a strong negation which satisfies P(N),

i.e., a strong negation for which (6) holds if and only if € N. If z runs in [0, co[ then y = P
x

1 1
runs in }0, 2}, and (6) has the following equivalent form, as easily verified: for y < 5

flyy=1-y (7)
111 1

if i B

if and only if y € H {2,3,4, ' }
Let f [01] [11}10 I function, that is, which satisfi f(l) 1f<1) 2
: —| = |= n nction i 1 i —) == —) ==
el ,32 5 e any suc uci, at is, which satisfies 5 5’ 3 3’
f() = —, ..., but which is atyE]O,J\Hdifferent from 1 — y. In addition, we may

4 4
safely assume that f is strictly decreasing and continuous. Such a function clearly exists. Define

f : 0,1 — [0,1] by '
0.3

1
71]
2

It is a straightforward exercise to check that f is well-defined, and is a strong negation, such
111 1
that (7) holds if and only if y € H := { : }

_ f(zx) if x €
f(z) =

fHx) ifze

e = ]
2°'3 4 n
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