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Abstract

In modeling drivers’ route choice in stochastic networks, several researchers have
successfully used exponential disutility functions. A usual justification for these
functions is that they are consistent with common sense and that they lead to
simpler computations than several other alternative disutility functions. In principle,
such a justification leaves open a possibility that there is some other (yet un-tried)
disutility function which is also consistent with common sense and for which the
computations are even simpler than for the exponential function. In this paper,
we prove that exponential disutility functions are the only ones that are consistent
with the (appropriately formalized) common sense and the only ones for which
computations can be simplified.
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1 Formulation of the Problem

Transportation problem: traditional deterministic approach. As pop-
ulation grows in an area, the existing networks become more and more con-
gested, so an expansion becomes necessary. Usually several alternative plans
are proposed for such an expansion. To select a plan, we need to know to
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what extent the implementation of each plan will help in easing the conges-
tion problem.

At present, such estimates are usually performed within an (approximate)
deterministic traffic assignment model, in which we assume that the travel
time ti along each road link is uniquely determined by the flow on this link
and by the capacity of this link; see e.g., [6]. Thus, once we know the flow and
capacity of each link, then for each path, we can find the travel time t along
this path as the sum of the travel times over all its links: t =

∑
ti. We then

assume that each driver who needs to go from point A to point B – and who
can choose several possible paths – selects the fastest of these paths (i.e., the
path with smallest overall travel time t).

More realistic stochastic approach, and the need to use utility or
disutility functions. In real life, travel times are non-deterministic (stochas-
tic): on each link, for the same capacity and flow, we may have somewhat
different travel times [6].

In other words, for each link, the travel time ti is no longer a uniquely deter-
mined real number, it is a random variable whose characteristics may depend
on the capacity and flow along this link. As a result, the overall travel time t
is also a random variable.

If we take this uncertainty into account, then it is no longer easy to predict
which path will be selected: if we have two alternative paths, then it often
happens that with some probability, the time along the first path is smaller,
but with some other probability, the first path may turn out to be longer. How
can we describe decision making under such uncertainty?

In decision making theory, it is proven that under certain reasonable assump-
tion, a person’s preferences are defined by his or her utility function U(x) which
assigns to each possible outcome x a real number U(x) called utility; see, e.g.,
[3,5]. In many real-life situations, a person’s choice s does not determine the
outcome uniquely, we may have different outcomes x1, . . . , xn with probabili-
ties, correspondingly, p1, . . . , pn. For example, when a driver selects a path s,
the travel time is often not uniquely determined: we may have different travel
times x1, . . . , xn with corresponding probabilities p1, . . . , pn. For such a choice,
we can describe the utility U(s) associated with this choice as the expected
value of the utility of outcomes: U(s) = E[U(x)] = p1 ·U(x1)+ . . .+pn ·U(xn).
Among several possible choices, a user selects the one for which the utility is
the largest: a possible choice s is preferred to a possible choice s′ (denoted
s > s′) if and only if U(s) > U(s′).

For the applications presented in this paper, it is important to emphasize that
the utility function is not uniquely determined by the preference relation.
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Namely, for every two real numbers a > 0 and b, if we replace the original

utility function U(x) with the new one V (x)
def
= a · U(x) + b, then for each

choice s, we will have

V (s) = E[a · U(x) + b] = a · E[U(x)] + b = a · U(s) + b

and thus, V (s) > V (s′) if and only if U(s) > U(s′).

In transportation, the main concern is travel time t, so the utility depends on
time: U = U(t). Of course, all else being equal, the longer it takes to travel,
the less preferable the choice of a path; so, the utility function U(t) must be
strictly increasing: if t < t′, then U(t) > U(t′).

In general, decision making is formulated in terms of maximizing a utility func-
tion U(x). In traditional (deterministic) transportation problems, however, de-
cision making is formulated in terms of minimization: we select a route with
the smallest possible travel time. Thus, when people apply decision making
theory in transportation problems, they reformulate these problems in terms

of a disutility function u(x)
def
= −U(x). Clearly, for every choice s, we have

u(s)
def
= E[u(x)] = E[−U(x)] = −E[U(x)] = −U(s).

So, selecting the route with the largest value of expected utility U(s) is equiv-
alent to selecting the route with the smallest value of expected disutility u(s).
In line with this usage, in this paper, we will talk about disutility functions.

Since a disutility function U(t) is strictly decreasing, the corresponding utility
function u(t) = −U(t) must be strictly increasing: if t < t′ then u(t) < u(t′).

Disutility functions traditionallly used in transportation: descrip-
tion and reasons. In transportation, traditionally, three types of disutility
functions are used; see, e.g., [4,7,8].

First, we can use linear disutility functions u(t) = a · t + b, with a > 0. As
we have mentioned, multiplication by a constant a > 0 and addition of a
constant b does not change the preferences, so we can safely assume that the
utility function simply conincides with the travel time u(t) = t.

Second, we can use risk-prone exponential disutility functions

u(t) = −a · exp(−c · t) + b

for some a > 0 and c > 0. This is equivalent to using u(t) = − exp(−c · t).

Third, we can use risk-averse exponential disutility functions

u(t) = a · exp(c · t) + b

3



for some a > 0 and c > 0. This is equivalent to using u(t) = exp(c · t).
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Several other possible disutility functions have been proposed, e.g., quadratic
functions u(t) = t + c · t2; see, e.g., [4].

In practice, mostly linear and exponential functions are used. Actually, a linear
function can be viewed as a limit of exponential functions:

t = lim
α→0

1

α
· (exp(α · t)− 1),

so we can say that mostly exponential functions are used.

There are two reasons for using exponential disutility functions. First, these
functions are in accordance with common sense [4,8]. Indeed:

• functions− exp(−c·t) indeed lead to risk-prone behavior, i.e., crudely speak-
ing, a behavior in which a person, when choosing between two paths, one
with a deterministic time t1 and another with a stochastic time t2, prefers
the second path if there is a large enough probability that t2 < t1 – even
when the average time of the second path may be larger t̄2 > t1;

• functions exp(c·t) indeed lead to risk-averse behavior, i.e., crudely speaking,
a behavior in which a person, when choosing between two paths, one with
a deterministic time t1 and another with a stochastic time t2, prefers the
first path if there is a reasonable probability that t2 > t1 – even when the
average time of the second path may be smaller: t̄2 > t1.

This accordance, however, does not limit us to only exponential functions:
e.g., quadratic functions are also in reasonably good accordance with common
sense.

However, there is another justification for using linear and exponential disu-
tility functions, a justification that excludes quadratic functions and several
other alternatives. This justification is that linear and exponential disutility
functions simplify computations; see, e.g., [4,7].

Indeed, in the deterministic case, the selection of a route is based on the travel
time t = t1 + . . .+ tn along this route. So, to describe the “quality” of a route,
it is sufficient to know the values ti which characterize the “quality” of all of
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its links.

In the more realistic (stochastic) case, as we have mentioned, the selection of
a route is based on the expected value of the utility along this route, i.e., on
the number E[u(t)] = E[u(t1 + t2 + . . . + tn)].

For a linear disutility function u(t) = t, the disutility of a route is equal to

E[t1 + . . . + tn] = E[t1] + . . . + E[tn].

Thus, to find the disutility E[t] of the route, it is sufficient to know the disu-
tilities E[ti] of all the links. Same argument holds for u(t) = a · t + b: we
have

u(t) = a · t+b = a ·(t1 + . . .+ tn)+b = (a · t1 +b)+ . . .+(a · tn +b)−(n−1) ·b =

u(t1) + . . . + u(tn)− (n− 1) · b,
and therefore,

E[u(t)] = E[u(t1)] + . . . + E[u(tn)]− (n− 1) · b.

Similarly, for an exponential disutility function u(t) = ε · exp(α · t), where
ε = ±1, the disutility of a route is equal to

E[ε · exp(α · t)] = E[ε · exp(α · (t1 + . . . + tn))].

For the exponential function,

exp(α · (t1 + . . . + tn) = exp(α · t1) · . . . · exp(α · tn).

The difference between the actual travel time and the average travel time is
usually caused by factors local for this link; thus, it is reasonable to assume
that the random variables ti corresponding to different links are independent.
Thus, the variables exp(α · ti) are also independent, hence

E[exp(α · t)] = E[exp(α · (t1 + . . . + tn))] = E[exp(α · t1)] · . . . · E[exp(α · tn)].

So, for the exponential disutility function of the type u(t) = exp(α · t), to find
the “quality”

E[u(t)] = E[exp(α · t)]
of a route, it is sufficient to know the qualities E[u(ti)] = E[exp(α · ti)] of
different links along this route.

For the exponential disutility function u(t) = − exp(α · t), we similarly have

u(t) = − exp(α · t) = − exp(α · t1) · . . . · exp(α · tn) =
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(−1)n+1 · (− exp(α · t1)) · . . . · (− exp(α · tn)) = (−1)n+1 · u(t1) · . . . · u(tn),

and thus,
E[u(t)] = (−1)n+1 · E[u(t1)] · . . . · E[u(tn)].

So, for the exponential disutility function of the type u(t) = − exp(α · t), to
find the “quality”

E[u(t)]

of a route, it is also sufficient to know the qualities E[u(ti)] of different links
along this route.

This reduction is no longer true, e.g., for quadratic disutility functions. For
example, for a route consisting of two links t = t1 + t2 and for a disutility
function u(t) = t2, we have u(t) = u(t1 + t2) = (t1 + t2)

2 = t21 + t22 + 2 · t1 · t2.
Thus,

E[u(t)] = E[t21] + E[t22] + 2 ·E[t1] ·E[t2] = E[u(t1)] + E[u(t2)] + 2 ·E[t1] ·E[t2].

In this case, in addition to knowing the quality E[u(ti)] of each link, we also
need to know another characteristic of each link – its average time E[ti]. Thus,
for quadratic disutility functions, it is no longer sufficient to compute one
characteristic of each link, we need at least two – and this makes corresponding
computations more complex.

Remaining open problem. The above justification of linear and exponential
disutility functions is that they are consistent with common sense and that
they lead to simpler computations than several other alternative disutility
functions.

A natural question arises: are these disutility functions really the only ones
with these properties – or there exists some other (yet un-tried) disutility
function which is also consistent with common sense and for which the com-
putations are even simpler than for the exponential function.

What we do in this paper. In this paper, we prove that exponential disu-
tility functions are the only ones that are consistent with the (appropriately
formalized) common sense and the only ones for which computations can be
simplified.

2 Exponential Disutility Functions Are the Only Functions Which
Are Consistent with Common Sense: A Theorem

A common sense assumption about the driver’s preferences. Let us
present an example that, in our opinion, captures some common sense meaning
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of decision making in transportation problems.

Let us assume that we have several routes going from point A to point B, and
a driver selected one of these routes as the best for him/her. For example, A
may be a place at the entrance to the driver’s department, and B is a similar
department at another university located in a nearby town.

Let us now imagine a similar situation, in which the driver is also interested
in reaching the point B, but this time, the driver starts at some prior point
C. At this point C, there is only one possible way, and it leads to the point
A; after A, we still have several possible routes. We can also assume that the
time t0 that it takes to get from C to A is deterministic. For example, C may
be a place in the parking garage from where there is only one exit.

s s s
C A B

It is reasonable to assume that if the road conditions did not change, then,
after getting to the point A, the driver will select the exact same route as last
time, when this driver started at A.

Comment. Similarly, if two routes from A to B were equally preferable to the
driver, then both routes should be equally preferable after we add a determin-
istic link from C to A to both routes.

In the deterministic case, this assumption is automatically satisfied.
In the deterministic case, the travel time along each route is deterministic,
and the driver selects a route with the shortest travel time.

Let us assume when going from A to B, the drive prefers the first route because
its travel time t1 is smaller than the travel time t2 of the second route: t1 < t2.
In this case, next time, when the travel starts from the point C, we have time
t1 + t0 along the first route and t2 + t0 along the second route. Since we had
t1 < t2, we thus have t1 + t0 < t2 + t0 – and therefore, the driver will still select
the first route.

s s s
C A B

t0
t1

t2

In the stochastic case, this assumption is not necessarily automat-
ically satisfied. In the stochastic case, when going from A to B, the driver
selects the first route if E[u(t1)] < E[u(t2)], where u(t) is the corresponding

7



disutility function.

Next time, when the driver goes from C to B, the choice between the two routes
depends on comparing different expected values: E[u(t1+t0)] and E[u(t2+t0)],
where t0 is the (deterministic) time of traveling from C to A. In principle, it
may be possible that E[u(t1)] < E[u(t2)] but

E[u(t1 + t0)] > E[u(t2 + t0)].

Let us describe a simple numerical example when this counter-intuitive phe-
nomenon happens. In this example, we will use a simple non-linear disutility
function: namely, the quadratic function u(t) = t2. Let us assume that the first
route from A to B is deterministic, with t1 = 7, and the second route from A
to B is highly stochastic: with equal probability 0.5, we may have t2 = 1 and
t2 = 10. In this case, E[u(t1)] = t21 = 49 and

E[u(t2)] = E[t22] =
1

2
· 12 +

1

2
· 102 = 0.5 + 50 = 50.5.

Here, E[u(t1)] < E[u(t2)], so the driver will prefer the first route.

However, if we add the same constant time t0 = 1 for going from C to A to
both routes, then in the first route, we will have t1 + t0 = 7 + 1 = 8, while in
the second route, we will have t2 + t0 = 1 + 1 = 2 and t2 + t0 = 10 + 1 = 11
with equal probability 0.5. In this case,

E[u(t1 + t0)] = (t1 + t0)
2 = 82 = 64,

while

E[u(t2 + t0)] =
1

2
· 22 +

1

2
· 112 = 2 + 60.5 = 62.5.

We see that here, E[u(t2 + t0)] < E[u(t1 + t0)], i.e., the drive will select the
second route instead of the first one.

This counter-intuitive phenomenon does not happen for linear or
exponential disutility functions. Indeed, for a linear disutility function
u(t) = t, we have u(t1 + t0) = t1 + t0 = u(t1) + t0; therefore, E[u(t1 + t0)] =
E[u(t1)] + t0 and similarly, E[u(t2 + t0)] = E[u(t2)] + t0. Thus, if the driver
selected the first route, i.e., if E[u(t1)] < E[u(t2)], then by adding t0 to both
sides of this inequality, we can conclude that E[u(t1 + t0)] < E[u(t2 + t0)] –
i.e., that, in accordance with common sense, the same route will be selected
if we start at the point C.

For the exponential disutility function u(t) = exp(α · t), we have u(t1 + t0) =
exp(α · (t1 + t0)) = exp(α · t1) · exp(α · t0) and therefore, u(t1 + t0) = u(t1) ·
exp(α ·t0). Similarly, for the exponential disutility function u(t) = − exp(α ·t),
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we have u(t1 + t0) = − exp(α · (t1 + t0)) = − exp(α · t1) · exp(α · t0) and thus,
u(t1 + t0) = u(t1) · exp(α · t0);

For both types of exponential disutility function, we have E[u(t1 + t0)] =
exp(α·t0)·E[u(t1)] and similarly, E[u(t2+t0)] = exp(α·t0)·E[u(t2)]. Thus, if the
driver selected the first route, i.e., if E[u(t1)] < E[u(t2)], then by multiplying
both sides of this inequality by the same constant exp(α · t0), we can conclude
that E[u(t1 + t0)] < E[u(t2 + t0)] – i.e., that, in accordance with common
sense, the same route will be selected if we start at the point C.

Our first result. Our first result is that linear and exponential disutility func-
tions are the only ones which are consistent with the above common sense re-
quirement – for every other disutility function, a paradoxical counter-intuitive
situation like the one described above is quite possible.

Let us describe this result in precise terms.

Definition 1 By a disutility function, we mean a strictly increasing function
u(t) from non-negative real numbers to real numbers.

Definition 2 We say that two disutility functions u(t) and v(t) are equivalent
if there exist real numbers a > 0 and b such that v(t) = a · u(t) + b for all t.

Definition 3 We say that a disutility function is consistent with common
sense if it has the following property: let t1 and t2 be random variables with
non-negative values, and let t0 be an arbitrary (deterministic) non-negative
real number; then,

• if E[u(t1)] < E[u(t2)], then E[u(t1 + t0)] < E[u(t2 + t0)];
• if E[u(t1)] = E[u(t2)], then E[u(t1 + t0)] = E[u(t2 + t0)].

Theorem 1 A disutility function is consistent with common sense if and only
if it is equivalent to either the linear function u(t) = t, or to an exponential
function u(t) = exp(c · t) or − exp(−c · t).

Comment. For reader’s convenience, all the proofs are placed in a special
mathematical Appendix.

3 Exponential Disutility Functions Are the Only Functions Which
Allow Simplified Computations: A Theorem

As we have mentioned in the first section, the computational advantage of
linear and exponential disutility functions u(t) is that for these functions, the
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expected value E[u(t1 + t2)] characterizing the route is uniquely determined
by the expected values E[u(t1)] and E[u(t2)] characterizing the links. Let us
formulate this property in precise terms.

Definition 4 We say that a disutility function is computationally simple if it
has the following property: let t1, t2, t′1, and t′2 be independent random variables
for which E[u(t1)] = E[u(t′1)] and E[u(t2)] = E[u(t′2)], then E[u(t1 + t2)] =
E[u(t′1 + t′2)].

Comment. We have already mentioned that the linear disutility function
u(t) = t and the exponential disutility functions u(t) = exp(c · t) and
u(t) = − exp(−c · t) are computationally simple in this sense. Indeed, for
the linear disutility function, E[u(t1 + t2)] = E[u(t1)] + E[u(t2)], hence

E[u(t1 + t2)] = E[u(t1)] + E[u(t2)] = E[u(t′1)] + E[u(t′2)] = E[u(t′1 + t′2)].

For an exponential disutility function, E[u(t1 + t2)] = E[u(t1)] · E[u(t2)], so
E[u(t1)] = E[u(t′1)] and E[u(t2)] = E[u(t′2)] imply that

E[u(t1 + t2)] = E[u(t1)] · E[u(t2)] = E[u(t′1)] · E[u(t′2)] = E[u(t′1 + t′2)].

It turns out that these two functions are the only computationally simple ones.

Theorem 2 A disutility function is computationally simple if and only if it is
equivalent to either the linear function u(t) = t, or to an exponential function
u(t) = exp(c · t) or − exp(−c · t).

Comment. The term “computationally simple” should be, of course, under-
stood in the relative sense – transportation networks are huge, and their anal-
ysis often requires a lot of computation time.

4 Conclusion

In modeling drivers’ route choice in stochastic networks, researchers have been
actively using exponential disutility functions. A usual justification for these
functions is that, in contrast to many other possible functions, they lead to
simpler computations.

In this paper, we provide a stronger justification for these functions: namely,
we prove that the linear and exponential disutility functions are the only ones
which are consistent with common sense. We also formally prove that they
are the only ones which allow for simplified computations.
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A Proofs

A.1 Proof of Theorem 1

1◦. We already know that linear and exponential disutility functions are con-
sistent with common sense in the sense of Definition 3. It is therefore sufficient
to prove that every disutility function u(t) which is consistent with common
sense is equivalent either to a linear one or to an exponential one.

2◦. Let u(t) be a disutility function which is consistent with common sense.
By definition of computational simplicity, for every random variables t1, once
we know the values u1 = E[u(t1)] and t0, we can uniquely determine the value
E[u(t1 + t0)]. Let us denote the value E[u(t1 + t0)] corresponding to u1 and t0
by F (u1, t0).
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3◦. Let t′1 be a non-negative number. For the case when t1 = t′1 with probability
1, we have u′1 = E[u(t1)] = u(t′1). In this case, t1 + t0 = t′1 + t0 with probability
1, so E[u(t1 + t0)] = u(t′1 + t0). Thus, in this case, u(t′1 + t0) = F (u′1, t0), where
u′1 = u(t′1).

4◦. Let us now consider the case when t1 is equal to t′1 with some probability
p′1 ∈ [0, 1], and to some smaller value t′′1 < t′1 with the remaining probability
p′′1 = 1− p′1. In this case,

u1 = E[u(t1)] = p′1 · u(t′1) + (1− p′1) · u(t′′1).

We have already denoted u(t′1) by u′1; so, if we denote u′′1
def
= u(t′′1), we can

rewrite the above expression as

u1 = p′1 · u′1 + (1− p′1) · u′′1.

In this situation, t1 + t0 is equal to t′1 + t0 with probability p′1 and to t′′1 + t0
with probability 1− p′1. Thus,

E[u(t1 + t0)] = p′1 · u(t′1 + t0) + (1− p′1) · u(t′′1 + t0).

We already know that u(t′1 + t0) = F (u′1, t0) and u(t′′1 + t0) = F (u′′1, t0). So, we
can conclude that

E[u(t1 + t0)] = p′1 · F (u′1, t0) + (1− p′1) · F (u′′1, t0). (A.1)

On the other hand, by the definition of the function F as F (u1, t0) = E[u(t1 +
t0)], we conclude that

E[u(t1 + t0)] = F (u1, t0),

i.e.,

E[u(t1 + t0)] = F (p′1 · u′1 + (1− p′1) · u′′1, t0). (A.2)

Comparing the expressions (A.1) and (A.2) for E[u(t1 + t0)], we conclude that

F (p′1 · u′1 + (1− p′1) · u′′1, t0) = p′1 · F (u′1, t0) + (1− p′1) · F (u′′1, t0).

Let us analyze this formula. For every value u1 ∈ [u′′1, u
′
1], we can find the

probability p′1 for which u1 = p′1 · u′1 + (1 − p′1) · u′′1: namely, the desired
equation means that u1 = p′1 · u′1 + u′′1 − p′1 · u′′1; rearranging the terms, we get

u1 − u′′1 = p′1 · (u′1 − u′′1) and hence, the value p′1 =
u1 − u′′1
u′1 − u′′1

. Substituting this
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expression into the above formula, we conclude that for a fixed t0, the function
F (u1, t0) is a linear function of u1:

F (u1, t0) = A(t0) · u1 + B(t0)

for some constants A(t0) and B(t0) which, in general, depend on t0.

5◦. We have already shown, in Part 3 of this proof, that u(t′1 + t0) = F (u′1, t0).
Thus, we conclude that for every t′1 ≥ 0 and t0 ≥ 0, we have

u(t′1 + t0) = A(t0) · u(t′1) + B(t0).

6◦. For an arbitrary function u(t), by introducing an appropriate constant
b = −u(0), we can always find an equivalent function v(t) for which v(0) = 0.
So, without losing generality, we can assume that u(0) = 0 for our original
disutility function u(t).

Since the disutility function is strictly increasing, we have u(t) > 0 for all
t > 0.

For t′1 = 0, the above formula takes the form u(t0) = B(t0). Substituting this
expression for B(t0) into the above formula, we conclude that

u(t′1 + t0) = A(t0) · u(t′1) + u(t0).

7◦. The above property has to be true to arbitrary values of t′1 ≥ 0 and t0 ≥ 0.
Swapping these values, we conclude that

u(t0 + t′1) = A(t′1) · u(t0) + u(t′1).

Since t′1 + t0 = t0 + t′1, we have u(t′1 + t0) = u(t0 + t′1), hence

A(t0) · u(t′1) + u(t0) = A(t′1) · u(t0) + u(t′1).

Moving terms proportional to u(t′1) to the left hand side and terms propor-
tional to u(t0) to the right hand side, we conclude that

(A(t0)− 1) · u(t′1) = (A(t′1)− 1) · u(t0). (A.3)

In the following text, we will consider two possible situations:

• the first situation is when A(t0) = 1 for some t0 > 0;
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• the second situation is when A(t0) 6= 1 for all t0 > 0.

In the first situation, A(t0) = 1 for some t0 > 0. For this t0, the equation (A.3)
takes the form (A(t′1) − 1) · u(t0) = 0 for all t′1. Since u(t0) > 0 for t0 > 0,
we conclude that A(t′1) − 1 = 0 for every real number t′1 ≥ 0, i.e., that the
function A(t) is identical to a constant function 1.

So, we have two possible situations:

• the first situation is when A(t0) = 1 for some t0 > 0; we have just shown
that in this case, A(t) = 1 for all t; in the following text, we will show that
in this situation, the disutility function u(t) is linear;

• the second situation is when A(t0) 6= 1 for all t0 > 0; we will show that in
this situation, the disutility function u(t) is exponential.

8◦. Let us first consider the situation in which A(t) is always equal to 1. In
this case, the above equation takes the form

u(t0 + t′1) = u(t0) + u(t′1).

In other words, in this case,

u(t1 + t2) = u(t1) + u(t2)

for all possible values t1 > 0 and t2 > 0.

In particular, for every t0 > 0, we get:

• first, u(2t0) = u(t0) + u(t0) = 2u(t0),
• then u(3t0) = u(2t0) + u(t0) = 2u(t0) + u(t0) = 3u(t0), and,
• in general, u(k · t0) = k · u(t0) for all integers k.

For every integer n and for t0 = 1/n, we have u(n · t0) = u(1) = n · u(1/n),
hence u(1/n) = u(1)/n. Then, for an arbitrary non-negative rational number
k/n, we get

u(k/n) = u(k · (1/n)) = k · u(1/n) = k · (1/n) · u(1) = k/n · u(1).

In other words, for every rational number r = k/n, we have u(r) = r · u(1).

Every real value t can be bounded, with arbitrary accuracy, by rational num-
bers kn/n and (kn + 1)/n: kn/n ≤ t ≤ (kn + 1)/n, where kn/n → t and
(kn +1)/n → t as n →∞. Since the disutility function u(t) is strictly increas-
ing, we conclude that u(kn/n) ≤ u(t) ≤ u((kn + 1)/n). We already know that
for rational values r, we have u(r) = r · u(1), so we have

kn/n · u(1) ≤ u(t) ≤ (kn + 1)/n · u(1).
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In the limit n → ∞, both sides of this inequality converge to t · u(1), hence
u(t) = t · u(1).

So, in this case, we get a linear disutility function.

9◦. Let us now analyze the case when A(t) 6= 1 for all t > 0. Since the values
u(t) are positive for all t > 0, we can divide both sides of the equality

(A(t0)− 1) · u(t′1) = (A(t′1)− 1) · u(t0)

by u(t0) and u(t′1), and conclude that

A(t0)− 1

u(t0)
=

A(t′1)− 1

u(t′1)
.

The ratio
A(t)− 1

u(t)
has the same value for arbitrary two numbers t = t0 and

t = t′1; thus, this ratio is a constant. Let us denote this constant by k; then,
A(t) − 1 = k · u(t) for all t > 0. Since A(t) 6= 1, this constant k is different
from 0.

Substituting the resulting expression A(t) = 1 + k · u(t) into the formula
u(t′1 + t0) = A(t0) · u(t′1) + u(t0), we conclude that

u(t′1 + t0) = u(t0) + u(t′1) + k · u(t0) · u(t′1),

i.e., that

u(t1 + t2) = u(t1) + u(t2) + k · u(t1) · u(t2)

for arbitrary numbers t1 > 0 and t2 > 0.

10◦. Let us now consider a re-scaled function v(t)
def
= 1 + k · u(t).

For this function v(t), from the above formula, we conclude that

v(t1 + t2) = 1 + k · u(t1 + t2) = 1 + k · (u(t1) + u(t2)) + k2 · u(t1) · u(t2).

On the other hand, we have

v(t1) · v(t2) = (1 + k · u(t1)) · (1 + k · u(t2)) =

1 + k · (u(t1) + u(t2)) + k2 · u(t1) · u(t2).

The expression for v(t1 + t2) and for v(t1) · v(t2) coincide, so we conclude that

v(t1 + t2) = v(t1) · v(t2)

for all possible values t1 > 0 and t2 > 0.
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11◦. When k > 0, then the new function v(t) is an equivalent disutility func-
tion. We know that u(0) = 0 hence v(0) = 1+ k · 0 = 1. Since v(t) is a strictly
increasing function, we thus conclude that v(t) ≥ v(0) > 0 for all t ≥ 0.

Thus, we can take a logarithm of all the values, and for the new function

w(t)
def
= ln(v(t)), get an equation

w(t1+t2) = ln(v(t1+t2)) = ln(v(t1)·v(t2)) = ln(v(t1))+ln(v(t2)) = w(t1)+w(t2),

i.e., w(t1 + t2) = w(t1)+w(t2) for all t1 and t2. The function w(t) is increasing
– as the logarithm of an increasing function. Thus, as we have already shown,
w(t) = c · t for some c > 0.

From the logarithm w(t) = ln(v(t)), we can reconstruct the original disutility
function v(t) as v(t) = exp(w(t)). Since w(t) = c · t, we conclude that the
disuility function v(t) has the desired risk-averse exponential form

v(t) = exp(c · t).

12◦. When k < 0, the new function is strictly decreasing (and is thus not a
disutility function; its opposite −v(t) is a disutility function).

For the function v(t), we cannot have v(t0) = 0 for any t0 – because otherwise
we would have

v(t) = v(t0 + (t− t0)) = v(t0) · v(t− t0) = 0

for all t ≥ t0 which contradicts to our conclusion that the function v(t) should
be strictly decreasing.

13◦. For the function v(t), we cannot have v(t0) < 0 for any t0 > 0 – because
otherwise, we would have v(2t0) = v(t0)

2 > 0 hence v(2t0) > v(t0) – which,
since 2t0 > t0, also contradicts to our conclusion that the function v(t) should
be strictly decreasing.

We thus conclude that v(t) > 0 for all t.

14◦. Thus, we can take a logarithm of all the values, and for the new function

w(t)
def
= ln(v(t)), get the equation w(t1 + t2) = w(t1) + w(t2) for all t1 and t2.

The function w(t) is decreasing – as the logarithm of a decreasing function.
Thus, w(t) = −c · t for some c > 0.

From the logarithm w(t) = ln(v(t)), we can reconstruct the original function
v(t) as v(t) = exp(w(t)) = exp(−c · t), and the disutility function u(t) as
−v(t) = − exp(−c · t).
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So, we conclude that the disuility function v(t) has the desired risk-prone
exponential form v(t) = − exp(−c · t).

The theorem is proven.

A.2 Proof of Theorem 2

1◦. We already know that linear and exponential disutility functions are com-
putationally simple in the sense of Definition 4. It is therefore sufficient to
prove that every computationally simple disutility function u(t) is equivalent
either to a linear one or to an exponential one.

2◦. Let u(t) be a computationally simple disutility function. By definition
of computational simplicity, for every two independent random variables t1
and t2, once we know the values u1 = E[u(t1)] and u2 = E[u(t2)], we can
uniquely determine the value E[u(t1+t2)]. Let us denote the value E[u(t1+t2)]
corresponding to u1 and u2 by F (u1, u2).

3◦. Since t1 + t2 = t2 + t1, we should have E[u(t1 + t2)] = E[u(t2 + t1)]. So,
the value of E[u(t1 + t2)] should not depend on the order in which we add
the random variables t1 and t2, and we should have F (u1, u2) = F (u2, u1); in
other words, the function F (u1, u2) is symmetric.

4◦. In the following sections 5◦ and 6◦, we will consider the case when t1 may
be non-deterministic but t2 is deterministic, i.e., when t1 may take different
values t′1, t′′1, . . . , but t2 is equal to the same real number t′2 with probability
1. Since we have different possible values t1, we will have different values of

the disutility function; we will denote these values by u′1
def
= u(t′1), u′′1

def
= u(t′′1).

For t2, there is only one possible value t2 = t′2; we will therefore denote the

corresponding value of disutility simply by u2
def
= u(t′2).

5◦. Let t′1, t′2 be two non-negative numbers. For the case when t1 = t′1 with
probability 1 and t2 = t′2 with probability 1, we have u′1 = E[u(t1)] = u(t′1),
u2 = E[u(t2)] = u(t′2). In this case, t1 + t2 = t′1 + t′2 with probability 1, so
E[u(t1 + t2)] = u(t′1 + t′2). Thus, in this case, u(t′1 + t′2) = F (u′1, u2), where
u′1 = u(t′1) and u2 = u(t′2).

Similarly, for a different value t′′1 < t′1, we conclude that u(t′′1 + t′2) = F (u′′1, u2),

where u′′1
def
= u(t′′1). Since the function u(t) is strictly increasing, we have u′′1 <

u′1.

6◦. Let us now consider the case when t2 is still a constant (i.e., t2 = t′2
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with probability 1), but t1 is already non-deterministic: it is equal to t′1 with
some probability p′1 ∈ [0, 1], and to t′′1 < t′1 with the remaining probability
p′′1 = 1− p′1. In this case,

u1 = E[u(t1)] = p′1 · u(t′1) + (1− p′1) · u(t′′1) = p′1 · u′1 + (1− p′1) · u′′1. (A.4)

In this situation, t1 + t2 is equal to t′1 + t′2 with probability p′1 and to t′′1 + t′2
with probability 1− p′1. Thus,

E[u(t1 + t2)] = p′1 · u(t′1 + t′2) + (1− p′1) · u(t′′1 + t′2). (A.5)

We already know that u(t′1 + t′2) = F (u′1, u2) and u(t′′1 + t′2) = F (u′′1, u2), so we
conclude that

E[u(t1 + t2)] = p′1 · F (u′1, u2) + (1− p′1) · F (u′′1, u2).

On the other hand, by the definition of the function F , we conclude that

E[u(t1 + t2)] = F (u1, u2), (A.6)

i.e.,

E[u(t1 + t2)] = F (p′1 · u′1 + (1− p′1) · u′′1, u2). (A.7)

Comparing the displayed expressions (A.5) and (A.7) for E[u(t1 + t2)], we
conclude that

F (p′1 · u′1 + (1− p′1) · u′′1, u2) = p′1 · F (u′1, u2) + (1− p′1) · F (u′′1, u2). (A.8)

For every value u1 ∈ [u′′1, u
′
1], we can find the probability p′1 for which u1 =

p′1·u′1+(1−p′1)·u′′1: namely, the value p′1 =
u1 − u′′1
u′1 − u′′1

. Substituting this expression

into the above formula, we conclude that for a fixed u2, the function F (u1, u2)
is a linear function of u1.

7◦. Similarly, for fixed u1 = u′1 and u1 = u′′1, the functions F (u′1, u2) and
F (u′′1, u2) are linear functions of u2. Thus, the expression F (u1, u2) is a bilinear
function of u1 and u2.

In general, a bilinear function has the form

F (u1, u2) = a0 + a1 · u1 + a2 · u2 + a12 · u1 · u2.
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Since we know that our function F (u1, u2) is symmetric, we conclude that
a1 = a2, hence

F (u1, u2) = a0 + a1 · (u1 + u2) + a12 · u1 · u2.

8◦. To complete our proof, we will consider three cases:

• the case when a12 = 0 (in which case, we will get a linear disutility function),
• the case when a12 > 0 (in which case, we will get a risk-averse exponential

disutility function), and
• the case when a12 < 0 (in which case, we will get a risk-prone exponential

disutility function).

9◦. Let us first assume that a12 = 0 and F (u1, u2) = a0 + a1 · (u1 + u2). Let us
prove that in this case, the disutility function is linear.

9.1◦. According to Definition 2, two disutility functions u(t) and v(t) are equiv-
alent if there exist real numbers a > 0 and b such that v(t) = a · u(t) + b for
all t. We would like to use this definition to simplify the disutility function.
Namely, we would like to find the values a and b for which the equivalent
disutility function v(t) has the property that v(0) = 0 and v(1) = 1.

For these two properties to hold, we must have a·u(0)+b = 0 and a·u(1)+b = 1.
Subtracting the first equation from the second one, we get a ·(u(1)−u(0)) = 1

hence a =
1

u(1)− u(0)
. Due to Definition 1, a disutility function u(t) is strictly

increasing hence u(0) < u(1). Therefore, the above value a is indeed positive.
To satisfy the first equation, we now take b = −a ·u(0). For these values a > 0
and b, we indeed have v(0) = 0 and v(1) = 1.

So, without losing generality, we can assume that u(0) = 0 and u(1) = 1 for
our original disutility function u(t).

9.2◦. If we add t1 = 0 to an arbitrary value t2, then we get t1 + t2 = t2. Thus,
in this case, u(t1 + t2) = u(t2), and E[u(t1 + t2)] = E[u(t2)], i.e., due to (A.5),
F (u1, u2) = u2 for arbitrary u2.

For t1 = 0, we have u(t1) = u(0) = 0, hence u1 = E[u(t1)] = 0. So, we conclude
that

F (0, u2) = u2

for an arbitrary u2. Substituting the expression F (u1, u2) = a0 + a1 · (u1 + u2)
into the formula F (0, u2) = u2, we conclude that a0 + a1 · u2 = u2 for all real
numbers u2. Thus, a0 = 0, a1 = 1, and we have F (u1, u2) = u1 + u2.
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9.3◦. For deterministic values t1 and t2, in general, we have u1 = u(t1), u2 =
u(t2), and hence, u(t1 + t2) = F (u1, u2) = F (u(t1), u(t2)). So, for our specific
function F (u1, u2) = u1 + u2, we conclude that

u(t1 + t2) = u(t1) + u(t2)

for all possible values t1 and t2. We already know (from the proof of Theorem
1) that this condition leads to the linear disutility function.

So, for a12 = 0, we indeed get a linear disutility function.

10◦. Let us now prove that for a12 > 0, we get an risk-averse exponential
disutility function.

10.1◦. Similarly to Part 9.1 of this proof, let us use the definition of an equiv-
alent disutility function v(t) = a · u(t) + b to simplify the expression for
u(t). Specifically, we want to have an equivalent disutility function for which
v(0) = 1. This can be achieved by taking a = 1 and b = 1− u(0).

Thus, without losing generality, we can assume that u(0) = 1 for our original
disutility function u(t).

10.2◦. Similarly to the previous case, for t1 = 0, we have F (u1, u2) = u2 for
arbitrary u2.

For t1 = 0, we have u(t1) = u(0) = 1, hence u1 = E[u(t1)] = 1. So, we conclude
that

F (1, u2) = u2

for an arbitrary u2. Substituting the expression F (u1, u2) = a0+a1 ·(u1+u2)+
a12 ·u1 ·u2 into this formula, we conclude that a0 +a1 +a1 ·u2 +a12 ·u2 = u2 for
all real numbers u2. Thus, a0 + a1 = 0 and a1 + a12 = 1. If we denote β = a12,
then we have a1 = 1 − β, a0 = −a1 = −(1 − β), and hence, F (u1, u2) =
−(1− β) + (1− β) · (u1 + u2) + β · u1 · u2.

10.3◦. For deterministic values t1 and t2, in general, we have u1 = u(t1),
u2 = u(t2), and hence, u(t1 + t2) = F (u1, u2) = F (u(t1), u(t2)). So, for our
specific function F (u1, u2) = u1 + u2, we conclude that

u(t1 + t2) = −(1− β) + (1− β) · (u(t1) + u(t2)) + β · u(t1) · u(t2) (A.9)

for all possible values t1 and t2.

10.4◦. Let us now consider a re-scaled (equivalent) disutility function

v(t)
def
= (1− β) + β · u(t). (A.10)
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For t = 0, we have v(0) = (1− β) + β · u(0). Since we assumed that u(0) = 1,
we conclude that v(0) = (1− β) + β = 1.

For this function v(t), for t = t1 + t2, we conclude that

v(t1 + t2) = (1− β) + β · u(t1 + t2).

Using the expression (A.9) for u(t1 + t2), we conclude that

v(t1 + t2) = (1−β)−β · (1−β)+β · (1−β) · (u(t1)+u(t2))+β2 ·u(t1) ·u(t2) =

(1− β)2 + β · (1− β) · (u(t1) + u(t2)) + β2 · u(t1) · u(t2). (A.11)

On the other hand, from the definition (A.10) of the function v(t), we have

v(t1) · v(t2) = ((1− β) + β · u(t1)) · ((1− β) + β · u(t2)) =

(1− β)2 + β · (1− β) · (u(t1) + u(t2)) + β2 · u(t1) · u(t2). (A.12)

The expressions (A.11) for v(t1 + t2) and (A.12) for v(t1) · v(t2) coincide, so
we conclude that

v(t1 + t2) = v(t1) · v(t2)

for all possible values t1 and t2.

10.5◦. We know that v(0) = 1. Since v(t) is a strictly increasing function,
we thus conclude that v(t) ≥ v(0) > 0 for all t. Thus, similarly to the proof

of Theorem 1, we can take a logarithm w(t)
def
= ln(v(t)), and conclude that

w(t) = c · t, and that the disuility function v(t) has the desired risk-averse
exponential form

v(t) = exp(c · t).

11◦. Let us now prove that for a12 < 0, we get a risk-prone exponential disu-
tility function.

Indeed, similarly to the previous case, we can assume that u(0) = 1. In this

case, we can describe a similar expression v(t)
def
= (1−β)+β ·u(t), with β = a12,

for which v(t1 · t2) = v(t1) ·v(t2). The only difference is that since β = a12 < 0,
this new function is strictly decreasing (and is thus not a disutility function;
its opposite −v(t) is a disutility function).

Similarly to the proof of Theorem 1, we can now conclude that v(t) =
exp(w(t)) = exp(−c · t), and so, the disutility function u(t) = −v(t) has
the desired risk-prone exponential form u(t) = − exp(−c · t).
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The theorem is proven.

22


