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Abstract

If we know the exact consequences of each action, then we can select
an action with the largest value of the objective function. In practice, we
often only know these values with interval uncertainty. If two intervals in-
tersect, then some people may prefer the alternative corresponding to the
first interval, and some prefer the alternative corresponding to the second
interval. How can we describe the portion of people who select the first
alternative? In this paper, we provide a new theoretical justification for
Hurwicz optimism-pessimism approach, and we show how this approach
can be used in group decision making.

1 Formulation of the Problem

Decision making in the absence of uncertainty. Often, in decision mak-
ing, we know what quantity we want to maximize (or minimize) under certain
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constraints. In other words, we know the objective function that we want to
maximize (or minimize). For example, in running a business, we usually maxi-
mize profits – within given social and environmental constraints. When planning
a trip by car, we usually minimize the travel time – within given constraints de-
scribing convenience etc. When planning a trip by plane, many of us minimize
the travel cost, etc.

If we have two alternatives a1 and a2, and we know the exact values v1 and
v2 of the (maximized) objective function for these alternatives, then the decision
is easy:

• if v1 > v2, we should select alternative a1;

• if v1 < v2, we should select alternative a2;

• if v1 = v2, we can select any of the two alternatives, the result will be the
same.

Case of interval uncertainty. In practice, we usually do not know the exact
values vi of the objective function – because we do not know the exact state of
the world. For example, the actual future profit of an insurance company will
depend on whatever natural disasters happen.

Often, because of the imcompeleteness of our knowledge, we only know the
interval [vi, vi] of possible values of vi. How can we then make a decision?

Sometimes, decision is straightforward even under interval uncer-
tainty. If v1 ≤ v2, then it can be guaranteed that the (unknown) actual
values vi ∈ [vi, vi] satisfy the inequality v1 ≤ v2, so a decision maker should
select a2. In general, it may be possible that v1 = v2 and thus, selecting a1 is
also possible; however, if v1 < v2, then we can guarantee that the (unknown)
actual values vi ∈ [vi, vi] satisfy the inequality v1 < v2 and thus, selecting a1

makes no sense.
Similarly, if v2 ≤ v1, then we should select a1. But what if the intervals

[v1, v1] and [v2, v2] have a common non-degenerate subinterval? In this case,
we may have v1 < v2 and we may also have v2 < v1. Which of the alternatives
should we choose?

Our first result: individual decision making. In this paper, we first show
that if we want to be able to always make a selection, a selection that should
not depend on the choice of the measuring unit or on the choice of the starting
point, then we should use a Hurwicz criterion, i.e., fix a value α ∈ [0, 1] and
then select an alternative ai for which the value α · vi +(1−α) · vi is the largest
possible [4, 5]. It is known that different values of α represent different human
behaviors:

• the value α = 1 means that when we make a decision, we only take into
account the best possible outcome vi; this risk-prone behavior corresponds
to optimism;
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• the value α = 0 means that when we make a decision, we only take into ac-
count the worst possible outcome vi; this risk-averse behavior corresponds
to optimism;

• values α ∈ (0, 1) mean that we take into account both the best and the
worst possible outcomes; the corresponding value α describes the weight
of the best possible outcome.

Our second result: group decision making. In group decision making,
we have people with different behaviors. So, if we have two alternatives a1 and
a2, different people will select different alternatives. In such a situation, the
portion of people who selected a1 is a reasonable indication of how better a1 is
for this group. In other words, instead of a single yes-no answer (a1 is better or
a2 is better), we should generate a number p(a1 > a2) characterizing the degree
to which a1 is better than a2. In this paper, we will derive such a formula.

2 Individual Decision Making under Interval Un-
certainty: A New Justification of Hurwicz Cri-
terion

We need to have a linear (= total) (pre-)order ¹ on the set of all intervals
(degenerate or non-degenerate), i.e., an order in which for every two intervals
v1 = [v1, v1] and v2 = [v2, v2], we should have v1 ¹ v2 or v2 ¹ v1. When
v1 ≤ v2, we should have v1 ≤ v2.

Another reasonable requirement is that if vn ¹ v′n for all n, then in the limit
n →∞, when vn → v and v′n → v′, we should also have v ¹ v′. Indeed, from
the practical viewpoint, the fact that vn → v means that whatever accuracy we
choose, when n is large enough, then vn is indistinguishable from v within this
accuracy. In practice, we always estimate consequences of our actions with some
uncertainty. Thus, in practice, when n is large enough, v is indistinguishable
from vn and v′ from v′n. Since vn ¹ v′n, we can thus conclude that v ¹ v′.

It is also reasonable to require that the order should not depend on the
choice of a starting value or a measuring unit for measuring v. For example,
when we compare intervals for profits, the results of this comparison should not
change whether we count profit in dollars or in euros, and whether we compare
profits themselves or differences between the profit and some predicted value v0.
In precise terms, changing a starting point from 0 to v0 means subtracting v0,
and changing a unit to a new one which is λ times smaller means multiplying
all numerical values by λ. Thus, we arrive at the following definitions.

Definition 1

• By an interval order, we mean a transitive symmetric relation ¹ on the
set of all (degenerate or non-degenerate) intervals for which:
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– for every two intervals v1 and v2, either v1 ¹ v2 or v2 ¹ v1 (or
both);

– if v1 ≤ v2, then [v1, v1] ¹ [v2, v2];
– if v1 < v2, then [v2, v2] 6¹ [v1, v1].

• We say that an interval order is closed if vn ¹ v′n, vn → v, and v′n → v′

imply that v ¹ v′.

• We say that an interval order is shift- and scale-invariant if for every v0

and λ > 0, [v1, v1] ¹ [v2, v2] implies

[λ · v1 + v0, λ · v1 + v0] ¹ [λ · v2 + v0, λ · v2 + v0].

Proposition 1 For every closed shift- and scale-invariant interval order, there
exists a constant α ∈ [0, 1] such that [v1, v1] ¹ [v2, v2] if and only if

α · v1 + (1− α) · v1 ≤ α · v2 + (1− α) · v2.

Discussion. In other words, every closed and invariant interval order can be
described by some Hurwicz criterion. Vice versa, for every α, the corresponding
interval order is closed and invariant. Thus, for individual decision making, we
should use Hurwicz criterion.

Comment. It is worth mentioning that there exist alternative justifications of
Hurwicz criterion; see, e.g., [6, 8].

Mathematical comment. Strictly speaking, for every α ∈ [0, 1], the correspond-
ing relation

α · v1 + (1− α) · v1 ≤ α · v2 + (1− α) · v2

between intervals [v1, v1] and [v2, v2] is a pre-order, not an order. Indeed, for
an order, a ¹ b and b ¹ a imply that a = b. Let us show that for the above
relation, this is not true for the intervals [v1, v1] = [0, 1] and [v2, v2] = [α, α].
Indeed, for these intervals, we have

α · v1 + (1− α) · v1 = α · 1 + (1− α) · 0 = α

and
α · v2 + (1− α) · v2 = α · α + (1− α) · α = α.

Thus, for these two intervals, we have

α · v1 + (1− α) · v1 ≤ α · v2 + (1− α) · v2,

i.e., [v1, v1] = [0, 1] ¹ [α, α] = [v2, v2].
Similarly, we have

α · v2 + (1− α) · v2 ≤ α · v1 + (1− α) · v1,

i.e., [v2, v2] = [α, α] ¹ [0, 1] = [v1, v1]. Thus, we have [0, 1] ¹ [α, α] and
[α, α] ¹ [0, 1], but [0, 1] 6= [α, α].
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Proof. Let ¹ be a closed invariant interval order.

1◦. Let us first consider degenerate intervals. For degenerate intervals [x, x]
(i.e., real numbers x) the definition of an interval order implies that if x ≤ x′

then [x, x] ¹ [x′, x′]. So, if x ≤ x′ in the sense of the normal ordering between
real numbers, then we also have x ¹ x′ in the sense of the interval order.

Similarly, if x 6≤ x′ in the sense of the normal order between real numbers,
i.e., if x > x′, then, according to the definition of an interval order, we should
have [x, x] 6¹ [x′, x′]. So, if x 6≤ x′ in the sense of the normal ordering between
real numbers, then we also have x 6¹ x′ in the sense of the interval order.

Thus, on real numbers, the interval order coincides with the usual one.

2◦. Let us now start extending this order to non-degenerate intervals by con-
sidering the simplest non-degenerate interval, e.g., the interval [0, 1].

What can we say about the relation between this interval and real numbers?
Let S denote the set of all the values x ≥ 0 for which [x, x] ¹ [0, 1]. By definition
of an interval order, [0, 0] ¹ [0, 1] (i.e., 0 ∈ S) and [x, x] 6¹ [0, 1] when x > 1 –
i.e., S ⊆ [0, 1]. Let us denote the supremum of the set S by α.

By definition of the supremum, every element of S is ≤ α, and for every
ε > 0, there exists a value xn > α− ε for which xn ∈ S, i.e., for which xn

preceq[0, 1]. In the limit ε → 0, from α−ε ≤ xn ≤ α, we conclude that xn → α.
Thus, from the fact that ≤ is closed, we conclude that α ¹ [0, 1].

Since α is the supremum, for every ε > 0, we have α+ε 6∈ S, i.e., α+ε 6¹ [0, 1].
By definition, an interval pre-order, if a 6¹ b, then b ¹ a. So, we conclude that
[0, 1] ¹ α + ε. In the limit ε → 0, we get [0, 1] ¹ α.

So, we have both α ¹ [0, 1] and [0, 1] ¹ α, hence [0, 1] ∼ α (where the
equivalence relation a ∼ b means a ¹ b and b ¹ a).

3◦. Now, we are ready to handle arbitrary non-degenerate intervals.
For every non-degenerate interval [v, v], we have [v, v] = [λ ·0+v0, λ ·1+v0],

for λ = v − v and v0 = v. Thus, using the invariance of ¹, we conclude that

[v, v] ∼ λ · α + v0 = λ · (v − v) + v.

This expression is exactly equal to Hurwicz’s expression α ·v +(1−α) ·v. Thus,
each interval is equivalent to its Hurwicz value.

Since for real numbers, the interval order coincides with the standard order
between real numbers, we conclude that an interval v2 is “preferable” (in the
sense of the interval order) than v1 if and only if the Hurwicz value correspond-
ing to v2 is larger than the Hurwicz value corresponding to v1.

The proposition is proven.

3 Towards Group Decision Making under Inter-
val Uncertainty

Formulation of the problem. In the previous section, we have shown that
rational individual decision making under interval uncertainty should be follow-
ing Hurwicz criterion for some α. In a group, we can have individuals with
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different values α. For given two intervals, some may select v1, some may select
v2, and some may select both (if for them the corresponding Hurwicz values
coincide). What is the portion of people selecting v2?

Cases when answer is clear. In some situations, the answer is clear. For
example, if v1 ≤ v2 and v1 ≤ v2, then we have α·v1+(1−α)·v1 ≤ α·v2+(1−α)·v2

for every α ∈ [0, 1]. So, in this case, all individuals will select [v2, v2], i.e., the
portion is 1.

Cases when answer is not straightforward. In other cases, e.g., when
v2 < v1 < v1 < v2, the selection depends on α: for an optimist α = 1, v2 is
better, but for a pessimist, v1 is better. In such situations, the desired portion
depends on the distribution of values α.

Setting. It is reasonable to describe this distribution by using a (cumulative)
distribution function. Specifically, for every α0, let F (α) denote the portion of
individuals for whom α ≤ α0, and let F−(α) denote the portion of individuals
for whom α < α0. In these terms, the portion of individuals for whom α ≥ α0

is equal to 1− F−(α0).

Proposition 2 Let F (α) be a cumulative distribution function on the interval
[0, 1], and let v1 = [v1, v1] and v2 = [v2, v2] be two intervals of widths wi

def=
vi − vi. Then, the probability P2 that

α · v1 + (1− α) · v1 ≤ α · v2 + (1− α) · v2

is equal to the following:

• When w1 < w2, we have P2 = 1 if v1 ≤ v2, P2 = 0 if v2 < v1, and
otherwise P2 = 1− F−(t), where

t
def=

v1 − v2

w2 − w1
.

• When w1 > w2, we have P2 = 1 if v2 ≥ v1, P2 = 0 if v2 < v1, and
otherwise P2 = F (t).

• When w1 = w2, we have P2 = 1 if v1 ≤ v2 and P2 = 0 if v1 ≤ v2.

Proof. If we open parentheses in the inequality α · v1 + (1−α) · v1 ≤ α · v2 +
(1 − α) · v2 and move all the terms proportional to α to one side, we get an
equivalent inequality

α · ((v2 − v2)− (v2 − v1)) ≥ v1 − v2,

or, equivalently,
α · (w2 − w1) ≥ v1 − v2.
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Let us consider all three cases from the formulation of the Proposition: w2 >
w1, w)1 < w2, and w1 = w2.

Let us first consider the case w2 > w1. In this case, the inequality for α is
equivalent to

α ≥ t
def=

v1 − v2

w2 − w1
.

We will consider three subcases: t ≤ 0, t > 1, and 0 < t ≤ 1.
The first subcase is t ≤ 0. By definition of t, taking into account that we

are in the case w2 > w1, we conclude that the inequality t ≤ 0 is equivalent to
v1 ≤ v2. When t ≤ 0, then then the inequality α ≥ t holds for all α. Thus, the
probability P2 that this inequality is satisfied is equal to 1.

The second subcase if t > 1. Multiplying both sides of the inequality t > 1
by the positive value w2−w1, we conclude that t > 1 is equivalent to v1− v2 >
w2−w1 = (v2−v2)−(v1−v1). Opening the parentheses and canceling terms vi

in both sides, we get an equivalent form 0 > v2−v1, i.e., if v2 < v1. When t > 1,
then the inequality α ≥ t cannot hold for any α ∈ [0, 1]. So, the probability P2

that this inequality holds is equal to 0.
The only remaining subcase is 0 < t ≤ 1. In this subcase, the desired

probability P2 is the probability that α ≥ t, so P2 = 1− F−(t).
Similar formulas can be described for the case when w1 < w2.
When w1 = w2, then for v1 ≤ v2 we have P2 = 1, and for v1 > v2 we have

P2 = 0. The proposition is proven.

Comment. One can see that the desired portion monotonically depends on the
quantity t. In [2, 3], the “degree of selection” d is defined as (in our notations)

d
def=

v2 − v1

2(w2 − w1)
. One can easily see that t + 2d = 1, hence t = 1 − 2d, d =

(1− t)/2, and monotonic dependence on t means exactly monotonic dependence
on d. Thus, we have justified the use of the empirical expression d.

In particular, for the case when w1 < w2, and the distribution of α is uniform
(i.e., F (α) = F−(α) = α for all α), the portion (when it is not equal to 0 or 1),
is equal to 1− F−(t) = 1− t = 2d.

Comment re selection between equal alternatives. In the above text, we deal
with the portion P1 of those who select v1, and with a portion P2 of those who
select v2. We have mentioned that those to whom v1 and v2 are equivalent are
included in both counts, i.e., P1 + P2 ≥ 1 and it is possible that P1 + P2 > 1:
e.g., if v1 and v2 are identical, we have P1 = P2 = 1 and P1 + P2 = 1.

When we compute the sum P1 + P2, those who selected only v1 or only v2

are counted exactly once, but those who selected both are counted twice. Thus,
P1+P2 equals 1 plus the portion of those who selected both alternatives. Hence,
the difference P1 + P2 − 1 is the portion of those who selected both, and the
remaining portions P1− (P1 +P2− 1) = 1−P2 and P2− (P1 +P2− 1) = 1−P1

described those who selected only v1 or only v2.
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A reasonable alternative description is to assume that if for a person, two
alternatives are equivalent, then this person will select one of them with prob-

ability
1
2
; see, e.g., [2, 3]. In this case, the alternative v1 will be accepted in a

portion

1− P2 +
P1 + P2 − 1

2
=

1 + P1 − P2

2
,

and the alternative v2 will be accepted in a portion

1− P1 +
P1 + P2 − 1

2
=

1− P1 + P2

2
.

4 Auxiliary Result: Reasonable Distributions of
Optimism Degree

Formulation of a problem. In the previous text, we did not make any
assumptions about the distribution function F (α), and we got formulas which
explicitly depend on this distribution. A natural question is: what are possible
distribution functions F (α)?

Idea. Let us consider a situation in which the only information we have about
the value v of the desired objective function at a given alternative is that this
value belongs to the interval [0, 1]. For a decision maker who uses Hurwicz
criterion with the parameter α, this uncertain situation is equivalent to using
a single value v = α · 1 + (1 − α) · 0 = α. Thus, in this uncertain situation,
we have different equivalent values v ranging from 0 to 1, and their distribution
is characterized by the distribution function F (α). Here, the probability that
v ∈ [α, α] is equal to F (α)− F−(α).

Suppose now that we gained some additional information about the alter-
native, and because of this information, we now conclude that v belongs to the
narrower interval [v, v] ⊂ [0, 1]. How can we describe the new distribution of
equivalent values?

There are two possible approaches. First, we can simply equate the proba-
bility that v ∈ [α, α] (where [α, α] ⊆ [v, v]) with the conditional probability –
under the condition that α ∈ [v, v], i.e., with the value

F (α)− F−(α)
F (v)− F−(v)

.

Alternatively, we can argue that now v is the new pessimistic estimate and v
is the new optimistic estimate, so each value v = v + α · (v − v) is distributed
according to the distribution F (α). For each v ∈ [v, v], the corresponding α
can be computed from the condition that v = v + α · (v − v); this α is equal to

α =
v − v

v − v
. Thus, the probability to have v ∈ [α, α] is equal to the probability
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that the optimism-pessimism parameter α is in the interval
[
α− v

v − v
,
α− v

v − v

]
.

This probability is equal to

F

(
α− v

v − v

)
− F−

(
α− v

v − v

)
.

It is reasonable to require that these two ways should lead to exact same formula
for the probability. As a result, we arrive at the following definition:

Definition 2

• By a distribution function for optimism degree (or simply distribution
function, for short), we mean a monotonic function F : [0, 1] → [0, 1] for
which F (1) = 1.

• For each distribution function F (z), we define F−(α) as follows: F−(0) =
0 and for α > 0, F−(α) = sup{F (z) : z < α}.

• We say that a distribution function is consistent if for every three values
v ≤ v ≤ v from the interval [0, 1], we have

F (α)− F−(α)
F (v)− F−(v)

= F

(
α− v

v − v

)
− F−

(
α− v

v − v

)
.

Comment. This idea is similar to the one used in [7] in a similar situation.

Proposition 3 The only consistent distribution function for optimism degree is
the function F (α) = α corresponding to the uniform distribution of the interval
[0, 1].

Comment. As we have mentioned, for this function F , the portions become
proportional to formulas from [2, 3].

Proof. Let us first consider the case when v = α = 0, v = x, and α = x · y for
some x, y ∈ [0, 1]. In this case, the consistency condition takes the form

F (x · y)− 0
F (x)

= F
(x · y

x

)
− 0,

i.e., the form F (x · y) = F (x) · F (y). It is known (see, e.g., [1]), that the only
monotonic solutions of this functional equation are the functions F (x) = xk for
some k > 0.
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So, to complete the proof, it suffices to show that k = 1. Indeed, let us now

consider the case when v = α = 1/2, v = 1, and α =
1 + z

2
for some z ∈ [0, 1].

In this case, the consistency condition takes the form

(
1 + z

2

)k

−
(

1
2

)k

1k −
(

1
2

)k
= zk.

Multiplying both the numerator and the denominator of the left-hand side by
2k, we get

(1 + z)k − 1
2k − 1

= zk.

This equality must be true for all z ∈ [0, 1]. Differentiating by z and taking
z = 0, we conclude that

k

2k − 1
= k · 0k−1.

The left-hand side of this limit equality is finite and positive, the right-hand
side is 0 for k > 1 and infinite for k < 1. Thus, the only possible value is k = 1.
The proposition is proven.
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