
Generating Linear Temporal Logic Formulas for Pattern-Based Speci�cations

Salamah Salamah, Vladik Kreinovich, and Ann Q. Gates
Dept. of Computer Science, University of Texas at El Paso

El Paso, TX 79968, USA
isalamah, vladik, and agates@utep.edu

Abstract

Software property classi�cations and patterns, i.e., high-
level abstractions that describe program behavior, have
been used to assist practitioners in specifying properties.
The Speci�cation Pattern System (SPS) provides descrip-
tions of a collection of patterns. Each pattern is associ-
ated with a scope that de�nes the extent of program exe-
cution over which a property pattern is considered. Based
on a selected pattern, SPS provides a speci�cation for each
type of scope in multiple formal languages including Lin-
ear Temporal Logic (LTL). The Property Speci�cation tool
(Prospec) extends SPS by introducing the notion of Com-
posite Propositions (CP), that classify sequential and con-
current behavior over pattern and scope parameters.

In this work, we present an approach to support the au-
tomated generation of Linear Temporal Logic (LTL) formu-
las for complex pattern-based software speci�cations that
use CPs. We de�ne general LTL formulas for the Response
pattern, and provide formal descriptions of the different CP
classes. In addition, we formally describe the Response pat-
tern and the different scopes that use CPs.

1 Introduction and Motivation

Although formal veri�cation methods such as model
checking [6], theorem proving [12], and runtime monitor-
ing [14] have been shown to improve the dependability of
programs, software development professionals have yet to
adopt them. The reasons for this hesitance include the high
level of mathematical sophistication required for reading
and writing formal speci�cations needed for the use of these
approaches [5].

Linear Temporal Logic (LTL) is a prominent formal
speci�cation language. LTL's popularity stems from the
fact that it is highly expressive and that it is widely used
in formal veri�cation tools. Such tools include, the popu-
lar model checker SPIN [6] that has been used in the ver-
i�cation of a variety of systems such as security protocols

[1] and �ight software [8]. In addition, LTL is used by the
Model checkers NuSMV [2] and Java Path-Finder [7]. LTL
is also used in the runtime veri�cation of Java programs
[14].

1.1 Specification Pattern System (SPS)

The problem of generating formal speci�cation is dif�-
cult, and the temporal nature of LTL makes it even harder
to write speci�cations. The Speci�cation Pattern System
[3] de�nes patterns and scopes to assist the practitioner in
formally specifying software properties.

Patterns capture the expertise of developers by describ-
ing solutions to recurrent problems. Each pattern describes
the structure of speci�c behavior, de�nes the pattern's re-
lationship with other patterns, and de�nes the scope over
which the property holds.

The main patterns de�ned by SPS are: Universality
(P ), Absence(P ), Existence(P ), Precedence(P, Q),
and Response(P, Q). Universality(P ) states that P is
true in every point of the execution; Absence(P ) states
that P is never true during the execution; Existence(P )
states that P is true at some point in the execution;
Precedence(P, Q) states that if P holds, then Q must hold
before P ; and Response(P, Q) states that if P holds, then
Q must hold at a future state. Response properties rep-
resent a temporal relation called cause-effect between two
propositions. SPS restricts the speci�cation of sequences to
precedence and response patterns.

In SPS, each pattern is associated with a Scope that de-
�nes the extent of program execution over which a property
pattern is considered. There are �ve types of scopes de�ned
in SPS: Global, Before R, After L, Between L And R,
and After L Until R. Global denotes the entire program
execution; Before R denotes the execution before the �rst
time R occurs, i.e., R holds; After L denotes execution af-
ter the �rst time L occurs; Between L And R denotes the
execution between intervals de�ned by L and R; and After
L Until denotes the execution between intervals de�ned by
L and R and, in the case when R does not occur, until the



end of execution.
The SPS website[4] provides a formal description of

patterns and scopes in several speci�cation languages in-
cluding Linear Temporal Logic (LTL), Computational Tree
Logic (CTL), and Graphical Interval Logic (GIL). These
formulas are provided for patterns and scopes involving sin-
gle propositions, i.e., patterns and scopes in which P , Q, L,
and R each occur at a single moment of time. SPS also
provides formulas for the cases of multiple cause and single
effect (when P is made of multiple propositions and Q is
single) and of single effect and multiple cause (when P is
single and Q is composed of multiple propositions).

1.2 Composite Propositions (CP)

In practical applications, we often need to describe prop-
erties where one or more of the pattern or scope parameters
are made of multiple propositions, i.e., composite proposi-
tions (CP). For example, the property that every time data
is sent at moment ti the data is read at moment t1 ≥ ti, the
data is processed at moment t2, and data is stored at mo-
ment t3. This property can be described using the Response
pattern where P stands for �Data is sent', and Q is com-
posed of q1, q2, and q3 (data is read, data is processed, and
data is stored, respectively).

To describe such patterns, Mondragon et al. [10] ex-
tended SPS by introducing a classi�cation for de�ning se-
quential and concurrent behavior to describe patterns and
scopes parameters. Speci�cally, the work formally de-
scribed several types of composite propositions (CP) and
showed how these descriptions can be translated into LTL.

Some of the corresponding patterns can be described in
a Future Interval Logic (FIL) language, a language which
is similar to LTL, but less expressive than LTL. For exam-
ple, in FIL, we cannot describe a practically important prop-
erty that an event p must hold at the next moment of time.
The corresponding translations have been implemented in
the Property Speci�cation tool (Prospec) [9] that uses pat-
terns and scopes involving composite propositions to gen-
erate formal speci�cations in FIL. Similarly to LTL spec-
i�cations, FIL speci�cations can also be used to formally
verify software. However, in comparison to LTL, FIL has
two limitations: �rst, due to the limited expressiveness of
FIL, not all patterns and scopes involving composite propo-
sitions can be represented; second, FIL is not as widely
used in formal veri�cation tools, so the use of FIL restricts
the software engineer's ability to use the resulting speci�-
cations.

It is, therefore, important to provide a translation of all
possible patterns and scopes involving composite proposi-
tions into the more expressive (and more widely used) lan-
guage LTL. It is also important to show that these transla-
tions are indeed correct for all patterns and scopes. In this

paper, due to page limitations, we concentrate on the case
of the most widely used Response pattern [3]. The matter
of proving the correctness of these translations is left as a
future work.

The rest of the paper is outlined as follows. We start
with a brief description of LTL. Section 3 provides a formal
description of the different CP classes. Section 4 formally
describes the Response pattern, and Section 5 provides the
description of the LTL formulas for the Response pattern
within the Global scope. Sections 6 and 7 provide formal
de�nition of the other scopes and describe the LTL formulas
for the Response pattern within these scopes.

2 Linear Temporal Logic: A Brief Descrip-
tion

Formulas of LTL are constructed inductively from ele-
mentary propositions p1, p2, . . . by applying Boolean con-
nectives ¬, ∨, and ∧ and temporal operators X (next), U
(until), ¦ (eventually), and 2 (always). These formulas as-
sume discrete time, i.e., moments t = 0, 1, 2, . . . The mean-
ing of the temporal operators is straightforward. The for-
mula XP holds at the moment t means that P holds at the
next moment of time t + 1. To check whether P U Q holds
at the moment t, we must �nd the �rst moment of time s ≥ t
at which Q is true; then, the truth of P U Q means that P
is true at all moments of time t′ for which t ≤ t′ < s (if
Q never happens at moment t or later, then P U Q is false).
The formula ¦P holds at moment t means P is true at some
moment of time t′ ≥ t. Finally, the formula 2P holds at
moment t if P is true at all moments of time t′ ≥ t.

3 Composite Propositions: A Formal De-
scription

We consider the following 8 CP classes: AtLeastOneC ,
AtLeastOneE , ParallelC , ParallelE , ConsecutiveC ,
ConsecutiveE , EventualC , and EventualE . CP classes
of type TC (called condition type) are de�ned as follows:

• AtLeastOneC(p1, . . . , pn) means that at least one of
pi holds at a given moment of time t, i.e., that
p1 ∨ . . . ∨ pn holds;

• ParallelC(p1, . . . , pn) means that all pi hold at time
t, i.e., p1 ∧ . . . ∧ pn;

• ConsecutiveC(p1, . . . , pn) means that p1 holds at
moment t1 = t, p2 holds at moment t2 = t + 1, . . . ,
and pn holds at moment tn = t + (n − 1); the corre-
sponding LTL formula ConsecutiveLTL

C (p1, . . . , pn)
is (p1 ∧X(p2 ∧X(. . . ∧X(pn)) . . .));

2



• EventualC(p1, . . . , pn) means that p1 holds at t1 = t,
p2 holds at some moment t2 > t1, . . . , and pn holds
at some moment tn > tn−1; the corresponding LTL
formula EventualLTL

C (p1, . . . , pn) is

p1∧X(¬p2 U (p2∧X(¬p3 U (. . .∧X(¬pn U pn)) . . .))).

CP classes of the type TE (called event type) can be
de�ned in terms of a new class of auxiliary formulas
TH(p1, . . . , pn). The main motivation for TH is that in TC

we only required each pi to hold at a certain moment of
time ti, and we do not make any assumptions about other
propositions pj (j 6= i) at this moment ti. In some practical
applications, it is important to require that pi become true
in the prescribed order, i.e., that not only pi becomes true
at moment ti, but that it also remains false until then. In
precise terms, we have the following:

De�nition 1

• By a CP class, we mean one of the following four
terms: AtLeastOne, Parallel, Consecutive, and
Eventual.

• By a type of proposition, we will mean C, E, or H;
the type H will be called auxiliary.

• By a composite proposition P , we mean an expression
of the type Ty(p1, . . . , pn), where T is a CP class, y
is a type of proposition, and p1, . . . , pn are (single)
propositions.

De�nition 2

• For T = AtLeastOne and for T = Par-
allel, TH(p1, . . . , pn) means the same as
TC(p1, . . . , pn), and TLTL

H (p1, . . . , pn) is de�ned as
TLTL

C (p1, . . . , pn).

• For T = Consecutive and for T = Eventual,
TH(p1, . . . , pn) means

TC(p1∧¬p2∧. . .∧¬pn, p2∧¬p3∧. . .∧¬pn, . . . , pn),

and TLTL
H (p1, . . . , pn) is de�ned as

TLTL
C (p1∧¬p2∧ . . .∧¬pn, p2∧¬p3∧ . . .∧¬pn, . . . , pn).

For example, ConsecutiveH(p1, . . . , pn) holds at the
moment t if:

• at the moment of time t, the proposition p1 holds and
all the further propositions p2, . . . , pn are false;

• at the next moment of time t + 1, the proposition p2

holds and all the further propositions p3, . . . , pn are
false; . . . , and

• at the moment t + (n− 1), the proposition pn holds.

In other words, ConsecutiveH(p1, . . . , pn) holds at the
moment t if the following formula for TLTL

H holds at mo-
ment t:

(p1 ∧ ¬p2 ∧ ¬p3 ∧ . . . ∧ ¬pn∧
X(p2 ∧ ¬p3 ∧ . . . ∧ ¬pn∧

X(. . . ∧X(pn−1 ∧ ¬pn ∧X(pn)) . . .)))

De�nition 3 We say that a composite proposition
TE(p1, . . . , pn) holds at the moment t if at the mo-
ment t, all propositions pi are false, and they remain false
until some moment t′ when the composite proposition
TH(p1, . . . , pn) becomes true.

For example, a composite proposition
AtLeastOneE(p1, . . . , pn) holds at moment t if all
the propositions p1, . . . , pn are false at the moment t, and
at least one of these propositions p1, . . . , pn is true at some
future moment of time t′ > t.

De�nition 4 By an LTL formula TLTL
E (p1, . . . , pn) for

TE(p1, . . . , pn), we mean the formula

(¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)∧
((¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)U TLTL

H (p1, p2, . . . , pn)).

Theorem 1 For every composite proposition P and for ev-
ery moment of time t, P holds at the moment t if and only
if the corresponding LTL formula PLTL holds at this mo-
ment t.

Comment. Due to page limitations, detailed proofs are given
in [13].

4 Response Pattern within Global Scope:
Case of Composite Propositions

Patterns such as Response were introduced in [3] for
single propositions. In particular, �q responds to p within
global scope� means that every time the property p holds,
the property q must hold either after it or at this same
moment of time. To extend this description to composite
propositions, we therefore need to extend the notion �after�
to such propositions.

Single propositions describe a single moment of time.
In general, composite propositions deal with a time interval
(although, of course, this time interval may be degenerate,
i.e., it may consist of a single moment of time). Speci�cally,
for every composite proposition P = T (p1, . . . , pn), there
is a starting moment sP � the �rst moment of time when one
of the propositions pi becomes true, and the ending moment
eP � the �rst moment of time when the condition T is ful-
�lled. These moments can be de�ned as follows.

3



De�nition 5
• For a composite proposition P of the type

AtLeastOneC(p1, . . . , pn) that holds at the mo-
ment t, we take sP (t) = eP (t) = t.

• For a composite proposition P of the type
AtLeastOneE(p1, . . . , pn) that holds at the mo-
ment t, we take, as sP (t) = eP (t), the �rst moment
of time t′ > t at which one of the propositions pi

becomes true.

• For a composite statement P of the type
ParallelC(p1, . . . , pn) that holds at the moment
t, we take sP (t) = eP (t) = t.

• For a composite proposition P of the type
ParallelE(p1, . . . , pn) that holds at the moment
t, we take, as sP (t) = eP (t), the �rst moment of time
t′ > t at which all the propositions pi become true.

• For a composite proposition P of the type
ConsecutiveC(p1, . . . , pn) that holds at the mo-
ment t, we take sP (t) = t and eP (t) = t + (n− 1).

• For a composite proposition P of the type
ConsecutiveE(p1, . . . , pn) that holds at the mo-
ment t, we take, as sP (t), the �rst moment of time
t′ > t at which the proposition p1 becomes true, and
we take eP (t) = t′ + (n− 1).

• For a composite proposition P of the type
EventualC(p1, . . . , pn) that holds at the moment t,
we take sP (t) = t, and as eP (t), we take the �rst
moment of time tn > t at which the last proposition
pn is true and the previous propositions p2, . . . , pn−1

were true at the corresponding moments of time
t2, . . . , tn−1 for which t < t2 < . . . < pn−1 < tn.

• For a composite proposition P of the type
EventualE(p1, . . . , pn) that holds at the mo-
ment t, we take as sP (t), the �rst moment of time t1
at which the �rst proposition p1 becomes true, and as
eP (t), the �rst moment of time tn at which the last
proposition pn becomes true.

De�nition 6 Let P and Q be composite propositions. We
say that Q responds to P within global scope if once P
holds at some moment t, then Q also holds at some moment
t′ for which sQ(t′) ≥ eP (t).

5 LTL Formulas For Response Pattern
Within Global Scope: Case of Composite
Propositions

To describe LTL formulas PLTL corresponding to pat-
terns P with composite propositions, we need to describe

new �and� operations. The need for these new operations
comes from the temporal character of the logic. In non-
temporal logic, the formula A∧B simply means that both A
and B are true. In particular, if we consider a non-temporal
formula A as a particular case of LTL formulas, then A
means simply that the statement A holds at the given mo-
ment of time, and the formula A∧B means that both A and
B hold at this same moment of time.

For a general LTL formula A, the fact that A holds at a
moment of time t means that some �subformulas� of A hold
at this same moment of time, while some other subformu-
las may hold at different moments of time. For example,
the formula p1 ∧Xp2 means that p1 holds at the moment t
while p2 holds at the moment t+1; the formula p1∧X ¦p2

means that p1 holds at the moment t and p2 holds at some
future moment t2 > t, etc. If we simply write A ∧ B that
would mean that different subformulas of A hold at the cor-
responding different moments of time but B only holds at
the original moment t. It is therefore desirable to come up
with a different �and� operation that would ensure that B
holds at all the moments of time at which different �subfor-
mulas� of A hold. For example, for this new �and� opera-
tion, (p1 ∧ Xp2) and B would mean that B holds both at
the moment t and at the moment t + 1.

Similarly, (p1∧X ¦p2) and B should mean that B holds
both at the moment t and at the moment t2 > t when p2

holds. In other words, we want to state that at the original
moment of time t, we must have p1 ∧ B, and that at some
moment of time t2 > t, we must have p2 ∧ B. This can be
described as (p1 ∧B) ∧X ¦ (p2 ∧B).

To distinguish this new �and� operation from the origi-
nal LTL operation ∧, we will use a different �and� symbol
& to describe this new operation. However, this symbol by
itself is not suf�cient since people use & in LTL as well; so,
to emphasize that our �and� operation means �and� applied
at several different moments of time, we will use a combi-
nation &r of several & symbols.

In addition to the original �and� A ∧ B which means
that B holds at the original moment of time t and to the
new �repeated and� A &r, B meaning that B holds at all
moments of time that are relevant for the LTL formula A,
we will also need the operation A &l B, which will indicate
that B holds at the last of A-relevant moments of time. Let
us give formal de�nitions of these operations. We only give
the de�nition for the particular cases needed in our patterns.

De�nition 7
• When P is of the type TC(p1, . . . , pn) or

TH(p1, . . . , pn), with T = Parallel or T = AtLea-
stOne, then P &r A is de�ned as P ∧A.

• When P is of the type TC(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &r A is de-
�ned as TC(p1 ∧A, . . . , pn−1 ∧A, pn ∧A).

4



• When P is of the type TH(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &r A is de-
�ned as

TC(p1∧¬p2∧. . .∧¬pn∧A, . . . , pn−1∧¬pn∧A, pn∧A).

• When P is of the type TE(p1, . . . , pn, then P &r A is
de�ned as

(¬p1 ∧ . . . ∧ ¬pn ∧A)∧

((¬p1 ∧ . . . ∧ ¬pn ∧A) U (TH(p1, . . . , pn ∧A)))).

De�nition 8

• When P is of the type TC(p1, . . . , pn) or
TH(p1, . . . , pn), with T = Parallel or T = AtLea-
stOne, then P &l A is de�ned as P ∧A.

• When P is of the type TC(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &l A is de-
�ned as TC(p1, . . . , pn−1, pn ∧A).

• When P is of the type TH(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &l A is de-
�ned as

TC(p1 ∧ ¬p2 ∧ . . . ∧ ¬pn, . . . , pn−1 ∧ ¬pn, pn ∧A).

• When P is of the type TE(p1, . . . , pn), then P &l A is
de�ned as

(¬p1 ∧ . . . ∧ ¬pn)∧
((¬p1 ∧ . . . ∧ ¬pn) U (TH(p1, . . . , pn)&lA)).

De�nition 9 An LTL formula corresponding to Response
(P, Q) is

2(PLTL → (PLTL &l ¦QLTL)).

For example, if P is of type ConsecutiveC(p1, p2) and Q
is of type ParallelE(q1, q2), then PLTL

1 is:

2((p1 ∧Xp2) → (p1 ∧X(p2 ∧ ¦

((¬q1 ∧ ¬q2) ∧ ((¬q1 ∧ ¬q2)U (q1 ∧ q2))))))

Theorem 2 For the formula �Q responds to P within a
global scope�, this formula holds at the moment t if and
only if the corresponding LTL formula holds at this mo-
ment t.

Comment. Similar results hold for all other patterns from
Section 1.1.

6 Other Scopes: Motivations and De�nitions

In the previous text, we considered all the propositions
in the �global scope�, when, e.g., the existence of P means
that P holds for some moment of time t. In practice, we are
often only interested in moments of time that occur before
or after a certain event. For single propositions, the follow-
ing scopes were proposed in [3]:

• �before R� means that we only consider the moments
of time which strictly precede the �rst occurrence of
R; if R never occurs then we do not consider any mo-
ments of time at all;

• �after L� means that we only consider the moments of
time which are equal to or follow the �rst occurrence of
L; if L never occurs then, of course, we do not consider
any moments of time at all;

• �between L and R� means that we only consider mo-
ments of time between each occurrence of L (including
the moment of this occurrence) and the corresponding
next occurrence of R (not including that moment);

• �after L until R� means that we only consider mo-
ments of time after each occurrence of L and until the
next occurrence of R.

In the scope �after L until R�, if R never happens after a cer-
tain occurrence of L, we consider all moments of time after
this occurrence of L. In contrast, in the scope �between L
and R�, if R never happens after a certain occurrence of L,
we do not consider any moments of time at all.

We want to extend the above de�nitions of patterns to
the case of scopes. For example, we want to de�ne �Q pre-
cedes P within a scope s�, meaning that every time P holds
within the scope s, Q should hold at a preceding moment of
time within the same scope.

In general, a composite proposition P holds at a moment
t if several single propositions hold at different moments of
time. It is therefore reasonable to say that P occurs within
a scope if all these single propositions occur within this
scope, i.e., if the whole time interval [t, eP (t)] is within the
scope s. Let us formally describe what this means.

Since we consider composite propositions P , it is natu-
ral to allow L and R to be composite propositions as well.
A composite proposition P , in general, does not occur at
a single moment of time, it usually has a starting moment
sP and the ending moment eP . So, for composite propo-
sitions, �before R� can be naturally interpreted as �before
the starting moment of R�, and �after L� can be naturally
interpreted as �after the ending moment of L�. To describe
this formally, we will use the above de�nitions (of section
4) of the starting and ending moments.

5



De�nition 10 By a scope statement, we mean a statement
of the type �before R�, �after L�, �between L and R�, and
�after L until R�, where L and R are composite proposi-
tions.

De�nition 11 By a scope corresponding to the scope state-
ment, we mean the following time interval:

• For a scope statement �before R�, there is exactly one
scope � the interval [0, sR(tf )), where tf is the �rst
moment of time when R becomes true.

• For a scope statement �after L�, there is exactly one
scope � the interval [eL(tf ),∞), where tf is the �rst
moment of time when L becomes true.

• For a scope statement �between L and R�, a scope
is an interval [eL(tL), sR(tR)), where tL is a moment
of time at which L holds and tR is the �rst moment of
time > eL(tL) when R becomes true.

• For a scope statement �after L until R�, in addition to
scopes corresponding to �between L and R�, we also
allow a scope [eL(tL),∞), where tL is a moment of
time at which L holds and for which R does not hold
at any moment t > eL(tL).

De�nition 12 Let P and Q be composite propositions, and
let s be a scope.

• We say that P s-holds at a moment tP ∈ s if P holds at
the moment tp and the ending moment of time eP (tp)
belongs to the same scope s.

• We say that Q responds to P within the scope s if once
P s-holds at some moment t, then Q also s-holds at
some moment t′ for which sQ(t′) ≥ eP (t).

De�nition 13 We say that a pattern holds within a scope
statement if it holds within each scope corresponding to this
scope statement.

Now that we have de�ned what it means for a pattern
to hold within the different types of scopes, we are ready
to provide the LTL description of the �ve patterns within
the scopes (�before R�, �after L�, �between L and R�, and
�after L until R�).

7 Response Pattern For Scopes Other Than
Global: Case of Composite Propositions

De�nition 14 Let P be a response pattern, i.e., �Q re-
sponds to P�, and let P<R denote this pattern in the scope
�before R�, i.e., a pattern �Q Responds to P Before R�.
Then, the corresponding LTL-formula PLTL

<R has the fol-
lowing form:

• when R is of the type TC(r1, . . . , rn), then PLTL
<R is

¬((¬RLTL) U ((PLTL&r¬RLTL)

&l((¬(QLTL&r¬RLTL))U RLTL)));

• when R is of the type TE(r1, . . . , rn), then PLTL
<R is

¬((¬((¬r1 ∧ ¬r2 ∧ . . . ∧ ¬rn) ∧X(RLTL
H )))U

((PLTL&r¬RLTL
H )&l

((¬(QLTL&r¬RLTL
H ))URLTL

H ))).

For example, the formula PLTL
2 for Q responds to

P Before R where R is AtLeastOneC(r1, r2), P is
ConsecutiveC(p1, p2), and Q is ParallelC(q1, q2) is:

¬((¬(r1∧Xr2))U (((p1∧(¬(r1∨r2))∧X((p2∧¬(r1∨r2))

∧(((¬((q1 ∧ q2 ∧ ¬(r1 ∨ r2))))U (r1 ∨ r2))))))))

Pattern formulas for the scopes �After L�, �Between L
and R�, and �After L until R� can be generated using the
formula PLTL for the Global scope and the formula PLTL

<R

for the scope �before R�:

De�nition 15 For a pattern P in the �After L� scope, the
corresponding LTL formula is:

¬((¬LLTL) U (LLTL&l¬PLTL)).

For example the formula for Q responds to P , After
L, where P is ConsecutiveC (p1, p2), Q is ParallelE
(q1, q2), and L is EventualC (l1, l2) is:

¬((¬(l1 ∧X(¬l2 U l2)))

U (l1 ∧X(¬l2 U (l2 ∧ ¬(PLTL
1 )))))

where PLTL
1 is the formula de�ned in De�nition 9 in Sec-

tion 5.

De�nition 16 For a pattern P in the �Between L And R�
scope, the corresponding LTL formula is as follows:

• 2((LLTL&l¬RLTL) → (LLTL&lPLTL
<R ) if R is of

type C;

• 2(LLTL → (LLTL&lPLTL
<R ))) if R is of type E.

For example, if L is of type ParallelC (l1, l2), P is
of type ConsecutiveC (p1, p2), Q is of type ParallelC
(q1, q2), and R is of type AtLeastOneC (r1, r2), then the
formula P3 for Q responds to P , Between L And R is:

2((l1 ∧ l2 ∧ ¬(r1 ∨ r2)) → ((l1 ∧ l2 ∧ (PLTL
2 ))))

6



De�nition 17 For a pattern P in the �After L until R�
scope, the corresponding LTL formula is:

• if R is of type C, then

2((LLTL&l¬RLTL) →

(LLTL&l((PLTL
<R ∧ ((¬ ¦RLTL) → PLTL)))));

• if R is of type E, then

2(LLTL →

(LLTL&l((PLTL
<R ∧ ((¬ ¦RLTL) → PLTL))))).

the LTL formula for Q responds to P After L Until
R where P is ConsecutiveC (p1, p2), Q is ParallelC
(q1, q2), L is ParallelC (l1, l2), and R is AtLeastOneC

(r1, r2) is as follows:

2((l1 ∧ l2 ∧ ¬(r1 ∨ r2)) →
((l1 ∧ l2) ∧ ((PLTL

2 ) ∧ ((¬ ¦ (r1 ∨ r2)) → (PLTL
1 )))))

Theorem 3 For every response formula P and for every
scope s, the formula P holds within the scope s at the mo-
ment t if and only if the corresponding LTL formula holds
at this moment t.

Comment. Similar results hold for all other patterns from
Section 1.1.

Acknowledgments. This work is funded in part by the
National Science Foundation (NSF) through grant NSF
EAR-0225670, by Texas Department of Transportation
grant No. 0-5453, and by the Japan Advanced Institute
of Science and Technology (JAIST) International Joint Re-
search Grant 2006-08.

References

[1] Audun, J.,�Security Protocol Veri�cation using
SPIN�, Proceedings of the First SPIN Workshop, Oc-
tober 1995.

[2] Cimatti, A., E. Clarke, F. Giunchiglia, and M. Roveri,
�NUSMV: a new Symbolic Model Veri�er�, Inter-
national Conference on Computer Aided Veri�cation
CAV, July 1999.

[3] Dwyer, M. B., G. S. Avrunin, and J. C. Corbett, �Pat-
terns in Property Speci�cation for Finite State Veri-
�cation,� Proceedings of the 21st international con-
ference on Software engineering, Los Angeles, CA,
1999, 411�420.

[4] http://patterns.projects.cis.ksu.edu/

[5] Hall, A., �Seven Myths of Formal Methods,� IEEE
Software, September 1990, 11(8)

[6] Holzmann G. J. The SPIN Model Checker: Primer
and Reference Manual, Addison-Wesley Professional,
2004.

[7] Havelund, K., and T. Pressburger, �Model Checking
Java Programs using Java PathFinder�, International
Journal on Software Tools for Technology Transfer,
2(4), April 2000.

[8] Glck, P, R., and G, J. Holzmann, �Using SPIN Model
Checking for Flight Software Veri�cation� Aerospace
Conference, IEEE, March 2002

[9] Mondragon, O., A. Q. Gates, and S. Roach, �Prospec:
Support for Elicitation and Formal Speci�cation
of Software Properties,� in O. Sokolsky and M.
Viswanathan (Eds.), Proceedings of Runtime Veri�ca-
tion Workshop, ENTCS, 89(2), 2004.

[10] Mondragon, O. and A. Q. Gates, �Supporting Elicita-
tion and Speci�cation of Software Properties through
Patterns and Composite Propositions,� Intl. Journal
Software Engineering and Knowledge Engineering,
14(1), Feb. 2004.

[11] Manna, Z. and A. Pnueli, �Completing the Temporal
Picture,� Theoretical Computer Science, 83(1), 1991,
97�130.

[12] Rushby, J., �Theorem Proving for Veri�cation,� Mod-
elling and Veri�cation of Parallel Processes, June
2000.

[13] Salamah, I. S., De�ning LTL formulas for com-
plex pattern-based software properties, University of
Texas at El Paso, Department of Computer Science,
PhD Dissertation, July 2007.

[14] Stolz, V. and E. Bodden, �Temporal Assertions us-
ing AspectJ�, Fifth Workshop on Runtime Veri�cation,
July 2005.

7


