Using Patterns and Composite Propositions to
Automate the Generation of Complex LTL
Specifications

Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and Steve Roach
Dept. of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA
isalamah, agates, vladik, and sroach@Qutep.edu

Abstract

Property classifications and patterns, i.e., high-level abstractions that
describe common behavior, have been used to assist practitioners in gen-
erating formal specifications that can be used in formal verification tech-
niques. The Specification Pattern System (SPS) provides descriptions of
a collection of patterns. Each pattern is associated with a scope that
defines the extent of program execution over which a property pattern is
considered. Based on a selected pattern, SPS provides a specification for
each type of scope in multiple formal languages including Linear Tem-
poral Logic (LTL). The (Prospec) tool extends SPS by introducing the
notion of Composite Propositions (CP), which are classifications for defin-
ing sequential and concurrent behavior to represent pattern and scope
parameters.

In this work, we provide definitions of patterns and scopes when de-
fined using CP classes. In addition, we provide general (template) LTL
formulas that can be used to generate LTL specifications for all combina-
tions of pattern, scope, and CP classes.

1 Introduction

Although the use of formal verification techniques such as model checking [4],
theorem proving [8], and runtime monitoring [11] improve the dependability
of programs, they are not widely adapted in standard software development
practices. One reason for the hesitance in using formal verification is the high
level of mathematical sophistication required for reading and writing the formal
specifications required for the use of these techniques [3].

Different approaches and tools such as the Specification Pattern System
(SPS) [2], the Property Elucidation tool (Propel) [10], and the Property Spec-
ification Tool (Prospec) [6] have been designed to provide assistance to practi-
tioners in generating formal specifications. Most of these tools and approaches

support the generation of formal specifications in multiple formalizations. The
notions of patterns, scopes, and composite propositions (CP) have been identi-
fied as ways to assist users in defining formal properties. Patterns capture the
expertise of developers by describing solutions to recurrent problems. Scopes
on the other hand, allow the user to define the portion of execution where a
pattern is to hold.

The aforementioned tools take the user’s specifications and provide formal
specifications that matches the selected pattern and scope in multiple formal-
izations. SPS for example provides specifications in Linear Temporal Logic
(LTL) and computational Tree Logic (CTL) among others, while Propel pro-
vides formal specifications in the form of a finite automaton. Finally, Prospec
provides specifications in Future Interval Logic (FIL) and Meta-Event Defini-
tion Language (MEDL). These tools however, do not support the generation of
specifications that use CP in LTL. The importance of LTL stems from its ex-
pressive power and the fact that it is widely used in multiple formal verification
tools. This work provides a set of template LTL formulas that can be used to
specify a wide range of properties in LTL.

The paper is organized as follows: Section 2 provides the background related
information including description of LTL and the work that has been done
to support the generation of formal specifications. Section 3 highlights the
problems of generating formal specifications in LTL. Sections 4 and 5 provide
the general formal definitions of patterns and scopes that use CP. Section 6
motivates the need for three new LTL operators to simplify the specifications
and provides the formal definition of one of these operators (the other two are
defined in the Appendix). Last, the general LTL template formulas for the
different scopes are described followed by summary and future work.

2 Background

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a prominent formal specification language that
is highly expressive and widely used in formal verification tools such as the
model checkers SPIN [4], NUSMV [1], and Java Path-Finder [5]. LTL is also
used in the runtime verification of Java programs [11].

Formulas in LTL are constructed from elementary propositions and the usual
Boolean operators for not, and, or, imply (neg, A, V, —, respectively). In addi-
tion, LTL allows for the use of the temporal operators next (X), eventually (o),
always (O), until, (U), weak until (W), and release (R). in this work, we only
use the first four of these operators. These formulas assume discrete time, i.e.,
states s = 0,1, 2,... The meaning of the temporal operators is straightforward.
The formula X P holds at state s if P holds at the next state s +1. PUQ is
true at state s, if there is a state s’ > s at which @ is true and, if s’ is such a
state, then P is true at all states s; for which s < s; < s’. The formula ¢P is
true at state s if P is true at some state s’ > s. Finally, the formula 0P holds

at state s if P is true at all moments of time s’ > s. Detailed description of
LTL is provided by Manna et al. [7].

2.2 Specification Pattern System (SPS)

Writing formal specification, particularly those involving time, is difficult. The
Specification Pattern System [2] provides patterns and scopes to assist the prac-
titioner in formally specifying software properties. These patterns and scopes
were defined after analyzing a wide range of properties from multiple industrial
domains (i.e., security protocols, application software, and hardware systems).
Patterns capture the expertise of developers by describing solutions to recurrent
problems. Each pattern describes the structure of specific behavior and defines
the pattern’s relationship with other patterns. Patterns are associated with
scopes that define the portion of program execution over which the property
holds.

The main patterns defined by SPS are: universality, absence, existence,
precedence, and response. The following is a descriptions of these patterns.

e Absence(P): To describe a portion of a system’s execution that is free of
certain event or state (P).

e Universality(P): To describe a portion of a system’s execution which
contains only states that have the desired property (P). Also known as
Henceforth and Always.

e FExistence(P): To describe a portion of a system’s execution that contains
an instance of certain events or states (P). Also known as Eventually.

e Precedence(P,Q): To describe relationships between a pair of
events/states where the occurrence of the first (Q) is a necessary pre-
condition for an occurrence of the second (P). We say that an occurrence
of the second is enabled by an occurrence of the first.

e Response(P,Q): To describe cause-effect relationships between a pair of
events/states. An occurrence of the first (P), the cause, must be followed
by an occurrence of the second (Q), the effect. Also known as Follows and
Leads-to.

In SPS, each pattern is associated with a scope that defines the extent of
program execution over which a property pattern is considered. There are five
types of scopes defined in SPS: Global, Before R, After L, Between L And
R, and After L Until R. Global denotes the entire program execution; Before
R denotes the execution before the first time the condition R holds; After L
denotes execution after the first time L holds; Between L And R denotes the
execution between intervals defined by L and R; and A fter L Until denotes the
execution between intervals defined by L and R and, in the case when R does
not occur, until the end of execution.

For an example of the use of patterns and scopes to specify properties,
consider the following property [12]: “When a connection is made to the SMTP
server, all queued messages in the Outbox mail will be transferred to the server.”
This property can be described using the “FEwistence(P)” pattern within the
“Before R’ scope, where P is “a connection is made to the SMTP server”, and
R is “all queued messages in the Outbox mail are transferred to the server”.
The LTL formula for this pattern and scope as provide by the SPS website [12]
is: “(0-R)V (mRU (P A—R))”

A disadvantage of SPS is that, in most pattern and scopes, it only allows for
the definition of static properties as it does not provide the mechanism to define
patterns and scopes using multiple propositions. In SPS, When a pattern or
scope parameter is associated with multiple propositions, the user is responsible
for defining the relations among these propositions. In addition, SPS does not
provide general formal semantics for patterns and scopes that can be used to
formalize these patterns and scopes in multiple languages of varying expressive
power.

2.3 Composite Propositions (CP)

The idea of CP was introduced by Mondragon et al. [6] to allow for patterns
and scopes to be defined using multiple propositions. In practical applications,
we often need to describe properties where one or more of the pattern or scope
parameters are made of multiple propositions, i.e., composite propositions (CP).
For example, the property that every time data is sent at state s; the data is
read at state s; > s;, the data is processed at state sy, and data is stored at
state s3, can be described using the Existence(P) pattern within the Between
L and R scope. In this example L stands for “data is sent”, R stands for 'date
is stored” and P is composed of p; and py (data is read and data is processed,
respectively).

To describe such patterns, Mondragon et al. [6] extended SPS by introduc-
ing a classification for defining sequential and concurrent behavior to describe
pattern and scope parameters. Specifically, the work formally described several
types of CP classes and provided formal descriptions of these CP classes in LTL.
Table 1. provides the semantics of the CP classes in LTL. The C and E sub-
scripts in Table 1 describe whether the propositions in the CP class are asserted
as conditions or events respectively. A proposition defined as a condition holds
in one or more consecutive states. A proposition defined as event means that
there is an instant at which the proposition changes value in two consecutive
states. This paper adds to the CP classes defined in Table 1 the auxiliary CP
classes of type Hold. These CP classes are described in Table 2 and are used in
the the definitions of the general LTL formulas in Section 7.

Although Mondragon et al. defined these CP classes, the work did not
describe how formal specifications in LTL can be derived using these definitions.
The following section highlights the difficulties in generating LTL specification
using the CP classes.

Table 1: Description of CP Classes in LTL

CP Class LTL Description (PTT)

AtLeastOnec | p1 V...V pn

AtLeastOneg | (-p1 A... A=) A((mp1 A...A=pn)U (p1 V...V pn))

Parallelc PLA ...\ DPn

Parallelp (p1 A ATDR) A((PL A A DR) U (P1 AL A D))

Consecutivec | (p1t AX(p2 A (... (AXpn))...))

Consecutiveg | (=p1A...A=pp)A((=p1 A...A=pp)U (p1 A=p2 A...A=pn A X (p2 A=ps A
AP AX(A X (Pr—1 A D A XDR)) ..))

Eventualgo (Pr ANX(—p2U (p2 AX(...ANX(=pn-1U (pn—1 A X(—prn Upn))))...))))

FEventualg (‘\p1 AR ./\ﬁpn)/\((ﬁpl A. ../\‘!pn) U(p1 A—pa A ../\‘!pn/\((ﬁpg/\. RAY
) U P2 A=p3 Ao A=pn A (A (Pa—1 A =pn A (2P U pn)) -)))))

Table 2: Description of CP Classes of type Hold in LTL

CP Class LTL Description (PLTL)

AtLeastOner | p1 V...V pn

Parallel gy P1LA...\pn

Consecutiveg | (p1t A=p2 Acc. A=pn AX(p2 A=p3 Ao . A=ppn AX(.. AX(pn—1 A =pn A
Xpn))...))

FEventual (i A=p2 Ao o Apr A((Fp2 Ao APR) U (P2 A=p3 Ao A=pn AL A
(Prn—1 A =pn A (=pn Upn)) ...))))

3 Problem With Direct Substitution

Although SPS provides LTL formulas for basic patterns and scopes (ones that
use single, “atomic”, propositions to define L, R, P, and Q) and Mondragon
et al. provided LTL semantics for the CP classes as described in Table 1.,
in most cases it is not adequate to simply substitute the LTL description of
the CP class into the basic LTL formula for the pattern and scope combina-
tion. Consider the following property: “The delete button is enabled in the
main window only if the user is logged in as administrator and the main win-
dow is invoked by selecting it from the Admin menu.”. This property can be
described using the Existence(Eventualc(pi,p2)) Before(r) where p; is “the
user logged in as an admin”, p, is “the main window is invoked”, and r is
“the delete button is enabled”. As mentioned above, the LTL formula for the
Existence(P) Before(R) is “(O0-R)V (-RU (P A—-R))”, and the LTL formula
for the CP class Eventualc, as described in Table 1, is (p1 A X (—p2 U p2)). By
replacing P by (p1 A X(—p2U p2)) in the formula for the pattern and scope,
we get the formula: “(O0-R) V (wRU ((p1 A X(—p2U p2)) A —R))” This for-
mula however, asserts that either R never holds or R holds after the formula
(p1 A X (=p2 U p2)) becomes true. In other words, the formula asserts that it
is an acceptable behavior if R (“the delete button is enabled”) holds after p;
(“the user logged in as an admin”) holds and before ps (“the main window is
invoked”) holds, which should not be an acceptable behavior.

As seen by the above example, the temporal nature of LTL and its operators

means that direct substitution could lead to the description of behaviors that
do not match the actual intent of the specifier. For this reason, it is necessary to
provide abstract LTL formulas that can be used as templates for the generation
of LTL specifications for all patterns, scopes, and CP classes combinations,
which is the goal of this paper.

4 Patterns Defined With Composite Proposi-
tions

As we mentioned in Section 2.2, Dwyer et al. defined the notions of patterns
and scopes to assist in the definition of formal specifications. Patterns provide
common solutions to recurring problems, and scopes define the extent of pro-
gram execution where the pattern is evaluated. In this work we are concerned
with the following patterns: the absence of P, the existence of P, Q precedes
P, Q strictly precedes P, and @ responds to P.

Note that the strict precedence pattern was defined by Mondragon et al.
[6], and it represents a modification of the precedence pattern as defined by
Dwyer et al. The following subsections describe these patterns when defined
using single and composite propositions.

The absence of P means that the (single or composite) property P never
holds, i.e., for every state s, P does not hold at s. In the case of CP classes,
this simply means that PX"T (as defined in Table 1 for each CP class) is never
true. The LTL formula corresponding to the absence of P is:

D_hPLTL

The existence of P means that the (single or composite) property P holds
at some state s in the computation. In the case of CP classes, this simply
means that PETT is true at some state of the computation. The LTL formula
corresponding to the existence of P is:

OPLTL

For single proposition, the meaning of “precedes”, “strictly precedes”, and
“responds” is straightforward:

e ¢ precedes p means that every time the property p holds, the property ¢
must hold either in a previous state or at the same state;

e g strictly precedes p means that every time the property p holds, the
property ¢ must hold in a previous state;

e ¢ responds to p means that every time the property p holds, the property
q must hold either at the same state or at a later state.

)

To extend the above meanings to CP, we need to explain what “after” and
“before” mean for the case of CP. While single propositions are evaluated in a

single state, CP, in general, deal with a sequence of states or a time interval
(this time interval may be degenerate, i.e., it may consist of a single state).
Specifically, for every CP P = T(p1,...,pn), there is a beginning state bp —
the first state in which one of the propositions p; becomes true, and an ending
state ep — the first state in which the condition T is fulfilled. For example, for
Consecutivec, the ending state is the state s+ (n — 1) when the last statement
pr holds; for AtLeastOnec, the ending state is the same as the beginning state
— it is the first state when one of the propositions p; holds for the first time.

For each state s and for each CP P =T(p; ..., p,) that holds at this state
s, we will define the beginning state bp(s) and the ending state ep(s). The
following is a description of bp and ep for the CP classes of types condition
and event defined in Table 1 (to simplify notations, wherever it does not cause
confusion, we will skip the state s and simply write bp and ep):

e For the CP class P = AtLeastOnec(p1,...,pn) that holds at state s, we
take bp(s) =ep(s) =s.

e For the CP class P = AtLeastOneg(p1,...,pn) that holds at state s, we
take, as ep(s), the first state s’ > s at which one of the propositions p;
becomes true and we take bp(s) = (ep(s) —1).

e For the CP class P = Parallelc(ps, ..., pn) that holds at state s, we take
bp(s) =ep(s) =s.
e For the CP class P = Parallelg(p1,...,pn) that holds at state s, we take,

as ep(s), the first state ' > s at which all the propositions p; become true
and we take bp(s) = (ep(s) — 1).

e For the CP class P = Consecutivec(ps,...,pn) that holds at state s, we
take bp(s) = s and ep(s) = s+ (n —1).

e For the CP class P = Consecutiveg(p1,...,pn) that holds at state s, we
take, as bp(s), the last state s’ > s at which all the propositions were
false and in the next state the proposition p; becomes true, and we take
ep(s) =5+ (n).

e For the CP class P = FEventualc(p1,...,pn) that holds at state s, we
take bp(s) = s, and as ep(s), we take the first state s, > s in which the

last proposition p,, is true and the previous propositions ps, ..., p,—1 were
true at the corresponding states so,...,s,—1 for which s < s9 < ... <
Spn—1 < Sp.

e For the CP class P = Eventualg(pi, ..., pn) that holds at state s, we take
as bp(s), the last state state s; at which all the propositions were false
and in the next state the first proposition p; becomes true, and as ep(s),
the first state s, in which the last proposition p,, becomes true.

Using the notions of beginning and ending states, we can give a precise
definitions of the Precedence, Strict Precedence, and Response patterns with
Global scope:

Definition 1 Let P and @ be CP classes. We say that QQ precedes P if once
P holds at some state s, then @ also holds at some state s’ for which eg(s") <
bp(s). This simply indicates that Q precedes P iff the ending state of @ is the
same as the beginning state of P or it is a state that happens before the beginning
state of P.

Definition 2 Let P and @ be CP classes. We say that @) strictly precedes P
if once P holds at some state s, then Q also holds at some state s’ for which
eq(s’) < bp(s). This simply indicates that Q strictly precedes P iff the ending
state of Q is a state that happens before the beginning state of P.

Definition 3 Let P and @ be CP classes. We say that @ responds to P if
once P holds at some state s, then @Q also holds at some state s’ for which
bo(s') > ep(s). This simply indicates that Q responds to P iff the beginning
state of Q is the same as the ending state of P or it is a state that follows the
ending state of P.

5 Non-Global Scopes Defined With Composite
Propositions

So far we have discussed patterns within the “Global” scope. In this Section,
we provide a formal definition of the other scopes described in Section 2.2.

We start by providing formal definitions of scopes that use CP as their
parameters. 1

e For the “Before R” scope, there is exactly one scope — the interval
[0,br(sf)), where sy is the first state when R becomes true. Note that
the scope contains the state where the computation starts, but it does not
contain the state associated with br(sy).

e For the scope “After L7, there is exactly one scope — the interval
ler(sf),00), where sy is the first state in which L becomes true. This
scope, includes the state associated with ey (sy).

e For the scope “Between L and R”, a scope is an interval [er,(sr),br(sRr)),
where sy, is the state in which L holds and sp is the first state > e (sr)
when R becomes true. The interval contains the state associated with
er(sz) but not the state associated with br(sg).

e For the scope “After L Until R”, in addition to scopes corresponding to
“Between L and R”, we also allow a scope [er,(sr),00), where sy, is the
state in which L holds and for which R does not hold at state s > ey (sz).

Using the above definitions of scopes made up of CP, we can now define
what it means for a CP class to hold within a scope.

IThese definitions use the notion of beginning state and ending state as defined in Section
4.

Table 3: Description of Patterns Within Scopes

Pattern Description)

Existence We say that there is an existence of P within a scope S if P s-holds at some
state within this scope.

Absence We say that there is an absence of P within a scope S if P never s-holds at

any state within this scope.

Precedence | We say that Q precedes P within the scope s if once P s-holds at some state
s, then Q also s-holds at some state s’ for which eq(s’) < bp(s).

Strict We say that Q strictly precedes P within the scope s if once P s-holds at
Precedence | some state s, then Q also s-holds at some state s’ for which eg(s’) < bp(s).

Response We say that Q responds to P within the scope s if once P s-holds at some
state s, then Q also s-holds at some state s’ for which bg(s’) > ep(s).

Definition 4 Let P be a CP class, and let S be a scope. We say that P s-holds
(meaning, P holds in the scope S) in S if PLTE holds at state s, € S and
ep(sp) € S (i.e. ending state ep(s,) belongs to the same scope S).

Table 3 provides a formal description of what it means for a pattern to hold
within a scope.

Now that we have defined what it means for a pattern to hold within the
different types of scopes, we are ready to provide the LTL description of the five
patterns within the scopes (“Before R”, “After L”, “Between L And R”, and
“After L Until R”).

6 Need for New Operations

To describe LTL formulas for the patterns and scopes with CP, we need to
define new “and” operations. These operations will be used to simplify the
specification of the LTL formulas in Section 7.

In non-temporal logic, the formula A A B simply means that both A and B
are true. In particular, if we consider a non-temporal formula A as a particular
case of LTL formulas, then A means simply that the statement A holds at the
given state, and the formula A A B means that both A and B hold at this same
state.

In general a LTL formula A holds at state s if some “subformulas” of A
hold in s and other subformulas hold in other states. For example, the formula
p1 A Xpo means that p; holds at the state s while po holds at the state s+ 1; the
formula p; A X © ps means that p; holds at state s and ps holds at some future
state sy > s, etc. The statement A A B means that different subformulas of A
hold at the corresponding different states but B only holds at the original state
s. For patterns involving CP, we define an “and” operation that ensures that
B holds at all states in which different subformulas of A hold. For example, for
this new “and” operation, (p; A Xp2) and B would mean that B holds both at
the state s and at the state s+1 (i.e. the correct formula is (py ABAX (p2AB))).
Similarly, (p1 A X ¢ p3) and B should mean that B holds both at state s and

at state s > s when po holds. In other words, we want to state that at the
original state s, we must have p; A B, and that at some future state so > s, we
must have ps A B. This can be described as (p; A B) A X ¢ (pa A B).

To distinguish this new “and” operation from the original LTL operation A,
we will use a different “and” symbol & to describe this new operation. However,
this symbol by itself is not sufficient since people use & in LTL as well; so, to
emphasize that our “and” operation means “and” applied at several different
moments of time, we will use a combination &, of several & symbols.

In addition to the original “and” A A B which means that B holds at the
original moment of time ¢ and to the new “repeated and” A &,., B meaning that
B holds at all moments of time which are relevant for the LTL formula A, we
will also need two more operation.

e The new operation A&; B will indicate that B holds at the last of A-
relevant moments of time.

e The new operation A & _; B will indicate that B holds at the all A-relevant
moments of time except for the last one.

In the following text, we give a formal definition of the &, operation. The
definitions of the two remaining operations are provided in the Appendix. It is
important to note that the definition of &, is given for general LTL formulas;
for &_; and &;, we only give the definition for the particular cases needed in
our patterns (i.e, in the cases of “anding” two CP classes)

6.1 The New Operator “&,.”

In logic in general, recursive definitions of a formula lead to a definition of a
subformula — as one of the auxiliary formulas in the construction of a given
formula. Specifically, for our definition of LTL formulas, we have the following
definition of an immediate subformula which leads to the recursive definition of
a subformula.

Definition 5 A formula P is an immediate subformula of the formulas —P,
PVQ,QVP,PNQ,QAP,P—Q,Q — P, XP,oP,0OP, PUQ, and QU P.

Definition 6

A formula P is its own subformula.

If a formula P is an immediate subformula of the formula @, then P is a
subformula of Q.

If P is a subformula of @ and @ is a subformula of R, then P is a subfor-
mula of R.

Nothing else is a subformula.

10

Definition 7

e An LTL formula that does not contain any LTL temporal operations X,
o, [, and U, is called a propositional formula.

e A propositional formula P that is a subformula of an LTL formula Q is
called a propositional subformula of Q.

e A formula P is called a mazimal propositional subformula of the LTL
formula @ if it is a propositional subformula of @ and it is not a subformula
of any other propositional subformula of Q.

For example, a formula —p; is a propositional subformula of the LTL
formula (—p; A =p2) A ((=p1 A —p2) U (p1 V p2)) (another particular case of
AtLeastOne%TL) but it is not its maximal propositional subformula — because
it is a subformula of another propositional subformula =p; A —=p2. On the other
hand, —p; A —=ps is a maximal propositional subformula.

Now, we are ready to define the construction P &, Q). Informally, we replace
each maximal propositional subformula P’ of the formula P with P’ A Q.

e If P is a propositional formula, then P &, @ is defined as P A Q.

e If P is not a propositional formula, P is of the type =R, and R&, Q is
already defined, then P &, @ is defined as —(R &, Q).

e If P is not a propositional formula, P is of the type RV R, and formu-
las R&, Q and R’ &, Q are already defined, then P&, Q is defined as
(R&, Q) V (R &, Q).

e If P is not a propositional formula, P is of the type R A R, and formu-
las R&, Q and R'&, Q are already defined, then P&, Q is defined as
(R&, Q) A (R &, Q).

e If P is not a propositional formula, P is of the type R — R’, and for-
mulas R&, Q and R’ &, Q are already defined, then P &, Q is defined as
(R&r Q) — (R & Q).

o If P is of the type XR, and R&, @ is already defined, then P&, @ is
defined as X (R &, Q).

o If P is of the type oR, and R&, @ is already defined, then P&, @ is
defined as o(R &, Q).

o If P is of the type OR, and R&, @ is already defined, then P&, Q is
defined as O(R &, Q).

e If P is of the type RU R’, and formulas R &, Q and R’ &, Q are already
defined, then P &, Q is defined as (R&, Q) U (R’ &, Q).

11

Table 4: Template LTL Formulas for Patterns Within Global Scope

Pattern LTL Formula

Absenceof P O-pPLTL

FExistenceof P opLTL

Q Precedes Pc —((~(QFTL& _;~pPLTLY)) Uy pLTL)

Q Precedes Pg (((QETE&_;=(=p1 A ... A=pn AXPETIYYU (mp1 A ... A =pn A

XPLTLy)
Q Strictly S((~(QETL &, ~pPLTLY)) y pLTL)
Precedes Pc
Q Strictly —\((—\(QLTL&T =(=p1 A ... A =pn A XP]%TL))) U(=p1 A .. A =pn A
Precedes Pg X PLTL
2)

Q Respondsto P | O(PETL — (PLTL &; o QETLY)

For example, when P is a formula

(mp1 A=pa Ao ATPR) A((mpr A—p2 Ao A pR) U (p1 Vpa VooV Dy))
(general case of AtLeastOnek™) then P&, Q is the formula

(mp1 A=pa AL ATPR AQ) A((mpr A—pa A AP AQ) U (1 V2 V.. Vpn)AQ))

7 General LTL Formulas for Patterns and
Scopes With CP

This Section provides the template LTL formulas that can be used to define LTL
specifications for all pattern/scope/CP combinations. We start by defining the
formulas within the Global and Before R scopes. These formulas will be used
to define the formulas for patterns within the remaining scopes as explained in
Section 7.2.

7.1 Formulas for Patterns Within Global and Before R
Scopes

Table 4 and 5 provide the template LTL formulas for patterns within the Global
and Before R scopes respectively. Note that the subscripts C and E attached
to each CP indicates whether the CP class is of type condition or event, respec-
tively. In the case where no subscript is provided, then this indicates that the
type of the CP class is irrelevant and that the formula works for both types of
CP classes. Also, in Tables 4-6, the terms PLTL, LLTL RITL QLTL refer to
the LTL formula representing the CP class as described in Tables 1 and 2.

7.2 Formulas for Patterns Within the Remaining Scopes

Pattern formulas for the scopes “After L”, “Between L And R”, and “After
L Until R” can be generated using the formulas for the Global and Before R

12

Table 5: Template LTL Formulas for Patterns Within Before R Scope

Pattern LTL Formula)

Absenceof P —((=RLTLYU ((PFTL &, ~RETL) & o RETLY)

Before Ro

Absenceof P ((eRETLY — —((=((=ri A . A=) AX (RETL)N) U (PETL & (—(=r1 A
Before Rg A= /\XR%ITL)))))

Existenceof P —((=(PLTL &, -RLTLY) U RLTL)

Before R

Existenceof P ((~(PLTE&G = (=r1 A oo A = A XRETEVYU (r1 A Lo A = A
Before Rg XR%ITL))

Q Precedes (oRETLY — ((=(PITL&~RETL)) U (QETE& -~ PLTL) v RLTLY)
Pc Before Re

Q Precedes (eRLTLY — ((~((=p1 A ... A =pn) A =RETL A X(PETL &, —~RETLY))

Pg, Before R¢

U Q& 1=(=p1 A ... =pn AXPETE)) v RETE))

Q Precedes (oRETL) — (=(PETL & —(=r1 A o A =1 A
Pc Before Rg XRIL{TL))) U ((QLTL&,Z—'PLTL)\/ (=r1 Ao A=rn) A XRIL;(TL))))
Q Precedes (ORETLY — (=((=p1 Ao . A=pp) A=(=r1 Ao A=y A XRETEY g A

Pg Before Rg

X (P &rm(mri A Ao AXRETE))) U ((QFTH &= (mpr A A
—pn A XPETE))V ((=r1 A ... A=rn) A XRETL)))

Q Str.Precedes
Pc Before Ro

(ORLTL) — ((—‘(PLTL&T—'RLTL)) U ((QLTL&T—'PLTL) Vi RLTL))

Q Str.Precedes
Pr Before R

(ORETLY — ((=((—p1 A ... A =pn) A ~RETE A X(PETE& . ~RETLY))
U (QFTE&r=(=p1 A ... =pn A XPETL)) v RLTLY)

Q Str.Precedes
Pc Before Rg

(oRLTL) N (~(PYTL &= (—r1 A oo A = A
XRETL))) U (QETL&,~PLTL)V ((ory A ... A=ra) A XRETD))))

Q Str.Precedes
Pr Before Rp

(eRETLY — ((=((=p1 Ao - A=pp) A=(=r1 Ao A=y A XRETEY g A
X(PET L& =(=r1 Ao . A=t AXRETIN) U (QFTE&r—(=p1 A .. A
—pn A XPETL)) v ((=r1 A ... A=rp) A XRETLY))

Q Responds to —((=RLTLYU ((PETL &, ~RETL) & ((~(QLTE &~ RETL)) U RETLY))
P Before Rc
Q Responds to ((~((=r1 A AR) AX(RETIN) U (PETE& (=i AL AT A
P Before Rg

XRETEN & ((=(QLTL &y =(=r1 Ao . A= AXRETINU(=ri AL A
—rn A XRETLY)))

Table 6: Template LTL Formulas for Patterns Within the Remaining Scopes

Scope LTL Formula)

After L _‘((_‘LLTL)U(LLTL&l—(PéTL))

Between L O((LETL&,~RLTL) — (LETLg, PLIL))

and R¢

Between L O(LLTL — (LLTL&zpéﬂL))

and Rg

After L O((LLATL & —=RETLY — (LLTL&Z((péiFEL A ((mo RETL) — PLTLYYy)))
Until Re

After L O((LETE) — (LETE& (PERE A (-0 RETE) — PETL))))

Until R

13

scopes described in Tables 3 and 4. In this section, we use the symbol PéTL to
refer to formulas for the specific pattern within the Global scope, and we use
the symbol Pﬁ%ﬁ to refer to formulas for the specific pattern within the Before
R scope. Table 6 provides the template LTL formulas for patterns within the
After L, Between L And R, and After L Until R scopes.

The following is an example of how these general LTL formulas can be used.
Let us assume that the desired property can be described by the Response
(P,Q) pattern within the Between L and R scope. In addition, let us assume
that L is of type Parallelc (I1,12), P is of type Consecutivec (p1,p2), @ is
of type Parallelc (q1,q2), and R is of type AtLeastOnec (r1,72). To get the
desired LTL formula for the Response (P,Q) pattern within the Between L and
R scope, we first need to get the formula for this pattern within the Before R
scope (i.e. we need to find P£%%). The general LTL formula corresponding to
this pattern, scope, and CP classes combination is the one next to last in Table
4. The resulting LTL formula (P£%%) for Response (P,Q) Before R is:

((=(r1 V) U (((p1 A (2(r1 V) A X ((p2 A= (1 V r2))
AM((=((qr A gz A=(r1 V) U (11 V 12))))))))

We can then use this formula 73577;5 to generate the LTL formula for the
Response (P,Q) Between L And R. Using the second general LTL formula in

Table 5, the resulting formula is:

O((l Ala A=(ry Vrg)) — (L Ala A (PERS))))

or

Ol Ala A=(r V) —
(L ANl A (=(((r V) U ((p1 A (211 Vr2)) A X ((p2 A =(r1 V)

A((=((qr Aga A=(re V) U (11 V 12))))))))))))

8 Summary and Future Work

The work in this paper provided formal descriptions of the different composite
propositions (CP) classes defined by Mondragon et al. [6]. In addition, we
formally described the patterns and scopes defined by Dweyer et al. [2] when
using CP classes. The main contribution of the paper is defining general LTL
formulas that can be used to generate LTL specifications of properties defined
by patterns, scopes, and CP classes. The general LTL formulas for the Global
scope (formulas in Table 4) have been verified using formal proofs [9]. On the
other hand, formulas for the remaining scopes (formulas in Tables 5 and 6) were
verified using testing and formal reviews [9].

The next step in this work consists of providing formal proofs for formulas
of the remaining scopes. In addition, we aim at enhancing the Prospec tool by
including the generation of LTL formulas that use the translations provided by
this paper.

14

Acknowledgments. This work is funded in part by the National Science
Foundation (NSF) through grant NSF EAR-0225670, by Texas Department
of Transportation grant No. 0-5453, and by the Japan Advanced Institute of
Science and Technology (JAIST) International Joint Research Grant 2006-08.

References

1]

[10]

[11]

[12]

Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri,M., “NUSMV: a new
Symbolic Model Verifier”, International Conference on Computer Aided
Verification CAV, July 1999.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C.,“Patterns in Property
Specification for Finite State Verification,” Proceedings of the 21st interna-
tional conference on Software engineering, Los Angeles, CA, 1999, 411-420.

Hall, A., “Seven Myths of Formal Methods,” IEEE Software, September
1990, 11(8)

Holzmann G. J., The SPIN Model Checker: Primer and Reference Manual,
Addison-Wesley Professional, 2004.

Havelund, K., and Pressburger, T., “Model Checking Java Programs using
Java PathFinder”, International Journal on Software Tools for Technology
Transfer, 2(4), April 2000.

Mondragon, O. and Gates, A. Q., “Supporting Elicitation and Specifica-
tion of Software Properties through Patterns and Composite Propositions,”
Intl. Journal Software Engineering and Knowledge Engineering, 14(1), Feb.
2004.

Manna, Z. and Pnueli, A., “Completing the Temporal Picture,” Theoretical
Computer Science, 83(1), 1991, 97-130.

Rushby, J., “Theorem Proving for Verification,” Modelling and Verification
of Parallel Processes, June 2000.

Salamah, I. S., Defining LTL formulas for complex pattern-based software
properties, University of Texas at El Paso, Department of Computer Sci-
ence, PhD Dissertation, July 2007.

Smith, R, Avrunin, G, Clarke, L, and Osterweil, L, “PROPEL: an ap-
proach supporting property elucidation” Proceedings of the 22rd Inter-
national Conference on Software Engineering, ICSE, May 2002, Orlando,
Florida

Stolz, V. and Bodden, E., “Temporal Assertions using AspectJ”, Fifth
Workshop on Runtime Verification, July 2005.

Spec Patterns, http://patterns.projects.cis.ksu.edu/, May 2007.

15

APPENDIX: Description of the Operators &_;” and “&;

Unlike the operator &,, we do not provide a general definition of the two new
operators the new operators “&_1” and “&;”. We provide a definition for these
operators in term of CP class. In other words, we provide definitions for (A
&_1 B) and (A &;B) in the cases where A and B are both CP classes. This
definition does not extend to any A and B such that A and B are LTL formulas
but not CP classes?.

Definition 8 the operator “&_;” is defined as follows:

e When P is of the type Tc(p1, - -, pn) 07 Tu(p1,-..,0n), withT = Parallel
or T = AtLeastOne, then P& _; A is defined as P N A.

o When P is of the type Tc(p1,-..,pn), with T = Consecutive or T =
Eventual, then P&; A is defined as Tc(pr AN A, ..., pn—1 AN A, pp).

o When P is of the type Ty (p1,...,pn), with T = Consecutive or T =
Eventual, then P& _; A is defined as

TC(pl /_‘p2 ANPIN /_'pn AAv"'apn—l /_‘pn /\A;pn)-

e When P is of the type Tr(p1,-..,pn, then P&_; A is defined as

(o1 A AT AAYA (o1 Ao o Ao AA)YU (T (pry - -+ 5 0n) &—1A)).

Definition 9 the operator “&;” is defined as follows:

e When P is of the type Tc(p1, - -, pn) 0r Tu(p1,- .., 0n), withT = Parallel
or T = AtLeastOne, then P& A is defined as P N A.

e When P is of the type Tc(p1,-..,pn), with T = Consecutive or T =
Eventual, then P&; A is defined as To(p1,- .-, Pn—1,Pn N A).

e When P is of the type Ty (p1,...,pn), with T = Consecutive or T =
Eventual, then P& A is defined as

TC(pl AN=D2 N oo AN Pnye v s Pn—1 A TPns P A A)
o When P is of the type Tr(p1,...,pn, then P& A is defined as

(1 A APR) AL A AR U (T (pas - - - on) &1A)).

2The symbols T¢, Tg, and Ty in the Definitions 8 and 9 indicate the type of the CP class
as condition, event, or hold respectively.

16

