
Automatic Generation of Complex LTL Speci�cations Through Patterns and
Composite Propositions

Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and Steve Roach
Dept. of Computer Science, University of Texas at El Paso

El Paso, TX 79968, USA
isalamah, agates, vladik, and sroach@utep.edu

Abstract

Property classi�cations and patterns, i.e., high-level ab-
stractions that describe common behavior, have been used
to assist practitioners in generating formal speci�cations
that can be used in formal veri�cation techniques. The
Speci�cation Pattern System (SPS) provides descriptions of
a collection of patterns. Each pattern is associated with
a scope that de�nes the extent of program execution over
which a property pattern is considered. Based on a se-
lected pattern, SPS provides a speci�cation for each type of
scope in multiple formal languages including Linear Tem-
poral Logic (LTL). The (Prospec) tool extends SPS by intro-
ducing the notion of Composite Propositions (CP), which
are classi�cations for de�ning sequential and concurrent
behavior to represent pattern and scope parameters.

In this work, we provide de�nitions of patterns and
scopes when de�ned using CP classes. In addition, we pro-
vide general (template) LTL formulas that can be used to
generate LTL speci�cations for all combinations of pattern,
scope, and CP classes.

1 Introduction

Although the use of formal veri�cation techniques such
as model checking [4], theorem proving [8], and runtime
monitoring [11] improve the dependability of programs,
they are not widely adapted in standard software develop-
ment practices. One reason for the hesitance in using formal
veri�cation is the high level of mathematical sophistication
required for reading and writing the formal speci�cations
required for the use of these techniques [3].

Different approaches and tools such as the Speci�ca-
tion Pattern System (SPS) [2], the Property Elucidation tool
(Propel) [10], and the Property Speci�cation Tool (Prospec)
[6] have been designed to provide assistance to practition-
ers in generating formal speci�cations. Most of these tools

and approaches support the generation of formal speci�ca-
tions in multiple formalizations. The notions of patterns,
scopes, and composite propositions (CP) have been iden-
ti�ed as ways to assist users in de�ning formal properties.
Patterns capture the expertise of developers by describing
solutions to recurrent problems. Scopes on the other hand,
allow the user to de�ne the portion of execution where a
pattern is to hold.

The aforementioned tools take the user's speci�cations
and provide formal speci�cations that matches the selected
pattern and scope in multiple formalizations. SPS for exam-
ple provides speci�cations in Linear Temporal Logic (LTL)
and computational Tree Logic (CTL) among others, while
Propel provides formal speci�cations in the form of a �nite
automaton. Finally, Prospec provides speci�cations in Fu-
ture Interval Logic (FIL) and Meta-Event De�nition Lan-
guage (MEDL). These tools however, do not support the
generation of speci�cations that use CP in LTL. The impor-
tance of LTL stems from its expressive power and the fact
that it is widely used in multiple formal veri�cation tools.
This work provides a set of template LTL formulas that can
be used to specify a wide range of properties in LTL.

The paper is organized as follows: Section 2 provides
the background related information including description of
LTL and the work that has been done to support the genera-
tion of formal speci�cations. Section 3 highlights the prob-
lems of generating formal speci�cations in LTL. Sections
4 and 5 provide the general formal de�nitions of patterns
and scopes that use CP. Section 6 motivates the need for
three new LTL operators to simplify the speci�cations and
provides the formal de�nition of one of these operators (the
other two are de�ned in the Appendix). Section 7 describes
the general LTL template formulas for the different patterns
and scopes de�ned using CP. Section 8 provides a descrip-
tion of the veri�cation techniques for the LTL templates fol-
lowed by summary and future work.



2 Background

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a prominent formal
speci�cation language that is highly expressive and widely
used in formal veri�cation tools such as the model checkers
SPIN [4], NUSMV [1], and Java Path-Finder [5]. LTL is
also used in the runtime veri�cation of Java programs [11].

Formulas in LTL are constructed from elementary propo-
sitions and the usual Boolean operators for not, and, or,
imply (neg, ∧, ∨, →, respectively). In addition, LTL
allows for the use of the temporal operators next (X),
eventually (¦), always (2), until, (U), weak until (W ),
and release (R). in this work, we only use the �rst four of
these operators. These formulas assume discrete time, i.e.,
states s = 0, 1, 2, . . . The meaning of the temporal opera-
tors is straightforward. The formula XP holds at state s if
P holds at the next state s + 1. P U Q is true at state s, if
there is a state s′ ≥ s at which Q is true and, if s′ is such a
state, then P is true at all states si for which s ≤ si < s′.
The formula ¦P is true at state s if P is true at some state
s′ ≥ s. Finally, the formula 2P holds at state s if P is true
at all moments of time s′ ≥ s. Detailed description of LTL
is provided by Manna et al. [7].

2.2 Specification Pattern System (SPS)

Writing formal speci�cation, particularly those involv-
ing time, is dif�cult. The Speci�cation Pattern System [2]
provides patterns and scopes to assist the practitioner in for-
mally specifying software properties. These patterns and
scopes were de�ned after analyzing a wide range of prop-
erties from multiple industrial domains (i.e., security pro-
tocols, application software, and hardware systems). Pat-
terns capture the expertise of developers by describing so-
lutions to recurrent problems. Each pattern describes the
structure of speci�c behavior and de�nes the pattern's re-
lationship with other patterns. Patterns are associated with
scopes that de�ne the portion of program execution over
which the property holds.

The main patterns de�ned by SPS are: universality,
absence, existence, precedence, and response. The fol-
lowing is a descriptions of these patterns.

• Absence(P ): To describe a portion of a system's exe-
cution that is free of certain event or state (P).

• Universality(P ): To describe a portion of a system's
execution which contains only states that have the de-
sired property (P). Also known as Henceforth and Al-
ways.

• Existence(P ): To describe a portion of a system's
execution that contains an instance of certain events or
states (P). Also known as Eventually.

• Precedence(P, Q): To describe relationships be-
tween a pair of events/states where the occurrence of
the �rst (Q) is a necessary pre-condition for an occur-
rence of the second (P). We say that an occurrence of
the second is enabled by an occurrence of the �rst.

• Response(P, Q): To describe cause-effect relation-
ships between a pair of events/states. An occurrence
of the �rst (P), the cause, must be followed by an oc-
currence of the second (Q), the effect. Also known as
Follows and Leads-to.

In SPS, each pattern is associated with a scope that de-
�nes the extent of program execution over which a property
pattern is considered. There are �ve types of scopes de�ned
in SPS: Global, Before R, After L, Between L And R,
and After L Until R. Global denotes the entire program
execution; Before R denotes the execution before the �rst
time the condition R holds; After L denotes execution af-
ter the �rst time L holds; Between L And R denotes the
execution between intervals de�ned by L and R; and After
L Until denotes the execution between intervals de�ned by
L and R and, in the case when R does not occur, until the
end of execution.

For an example of the use of patterns and scopes to spec-
ify properties, consider the following property [12]: �When
a connection is made to the SMTP server, all queued mes-
sages in the Outbox mail will be transferred to the server.�
This property can be described using the �Existence(P )�
pattern within the �BeforeR� scope, where P is �a con-
nection is made to the SMTP server�, and R is �all queued
messages in the Outbox mail are transferred to the server�.
The LTL formula for this pattern and scope as provide by
the SPS website [12] is: �(2¬R) ∨ (¬R U (P ∧ ¬R))�

A disadvantage of SPS is that, in most pattern and
scopes, it only allows for the de�nition of static properties
as it does not provide the mechanism to de�ne patterns and
scopes using multiple propositions. In SPS, When a pattern
or scope parameter is associated with multiple propositions,
the user is responsible for de�ning the relations among these
propositions. In addition, SPS does not provide general for-
mal semantics for patterns and scopes that can be used to
formalize these patterns and scopes in multiple languages
of varying expressive power.

2.3 Composite Propositions (CP)

The idea of CP was introduced by Mondragon et al. [6]
to allow for patterns and scopes to be de�ned using multiple
propositions. In practical applications, we often need to de-
scribe properties where one or more of the pattern or scope

2



Table 1. Description of CP Classes in LTL

CP Class LTL Description (P LTL)
AtLeastOneC p1 ∨ . . . ∨ pn

AtLeastOneE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∨
. . . ∨ pn))

ParallelC p1 ∧ . . . ∧ pn

ParallelE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∧
. . . ∧ pn))

ConsecutiveC (p1 ∧X(p2 ∧ (. . . (∧Xpn)) . . .))
ConsecutiveE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∧

¬p2 ∧ . . .∧¬pn ∧X(p2 ∧¬p3 ∧ . . .∧¬pn ∧
X(. . . ∧X(pn−1 ∧ ¬pn ∧Xpn)) . . .))

EventualC (p1 ∧ X(¬p2 U (p2 ∧ X(. . . ∧
X(¬pn−1 U (pn−1 ∧X(¬pn U pn)))) . . .))))

EventualE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∧
¬p2 ∧ . . .∧¬pn ∧ ((¬p2 ∧ . . .∧¬pn) U (p2 ∧
¬p3 ∧ . . . ∧ ¬pn ∧ (. . . ∧ (pn−1 ∧ ¬pn ∧
(¬pn U pn)) . . .)))))

parameters are made of multiple propositions, i.e., compos-
ite propositions (CP). For example, the property that every
time data is sent at state si the data is read at state s1 ≥ si,
the data is processed at state s2, and data is stored at state s3,
can be described using the Existence(P ) pattern within the
Between L and R scope. In this example L stands for �data
is sent�, R stands for 'date is stored' and P is composed of
p1 and p2 (data is read and data is processed, respectively).

To describe such patterns, Mondragon et al. [6] extended
SPS by introducing a classi�cation for de�ning sequential
and concurrent behavior to describe pattern and scope pa-
rameters. Speci�cally, the work formally described sev-
eral types of CP classes and provided formal descriptions of
these CP classes in LTL. Table 1. provides the semantics of
the CP classes in LTL. The C and E subscripts in Table 1 de-
scribe whether the propositions in the CP class are asserted
as conditions or events respectively. A proposition de�ned
as a condition holds in one or more consecutive states. A
proposition de�ned as event means that there is an instant
at which the proposition changes value in two consecutive
states. This paper adds to the CP classes de�ned in Table
1 the auxiliary CP classes of type Hold. These CP classes
are described in Table 2 and are used in the the de�nitions
of the general LTL formulas in Section 7.

Although Mondragon et al. de�ned these CP classes, the
work did not describe how formal speci�cations in LTL can
be derived using these de�nitions. The following section
highlights the dif�culties in generating LTL speci�cation
using the CP classes.

3 Problem With Direct Substitution

Although SPS provides LTL formulas for basic patterns
and scopes (ones that use single, �atomic�, propositions
to de�ne L, R, P, and Q) and Mondragon et al. pro-

Table 2. Description of CP Classes of type
Hold in LTL

CP Class LTL Description (P LTL)
AtLeastOneH p1 ∨ . . . ∨ pn

ParallelH p1 ∧ . . . ∧ pn

ConsecutiveH (p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧X(p2 ∧ ¬p3 ∧ . . . ∧
¬pn ∧X(. . . ∧X(pn−1 ∧ ¬pn ∧Xpn)) . . .))

EventualH (p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧ ((¬p2 ∧ . . . ∧
¬pn) U (p2∧¬p3∧ . . .∧¬pn∧ (. . .∧ (pn−1∧
¬pn ∧ (¬pn U pn)) . . .))))

vided LTL semantics for the CP classes as described in
Table 1., in most cases it is not adequate to simply sub-
stitute the LTL description of the CP class into the ba-
sic LTL formula for the pattern and scope combination.
Consider the following property: �The delete button is
enabled in the main window only if the user is logged
in as administrator and the main window is invoked by
selecting it from the Admin menu.�. This property can
be described using the Existence(EventualC(p1, p2))
Before(r) where p1 is �the user logged in as an admin�, p2

is �the main window is invoked�, and r is �the delete but-
ton is enabled�. As mentioned above, the LTL formula for
the Existence(P )Before(R) is �(2¬R) ∨ (¬R U (P ∧
¬R))�, and the LTL formula for the CP class EventualC ,
as described in Table 1, is (p1 ∧X(¬p2 U p2)). By replac-
ing P by (p1 ∧X(¬p2 U p2)) in the formula for the pattern
and scope, we get the formula: �(2¬R) ∨ (¬R U ((p1 ∧
X(¬p2 U p2)) ∧ ¬R))� This formula however, asserts that
either R never holds or R holds after the formula (p1 ∧
X(¬p2 U p2)) becomes true. In other words, the formula
asserts that it is an acceptable behavior if R (�the delete
button is enabled�) holds after p1 (�the user logged in as
an admin�) holds and before p2 (�the main window is in-
voked�) holds, which should not be an acceptable behavior.

As seen by the above example, the temporal nature of
LTL and its operators means that direct substitution could
lead to the description of behaviors that do not match the
actual intent of the speci�er. For this reason, it is neces-
sary to provide abstract LTL formulas that can be used as
templates for the generation of LTL speci�cations for all
patterns, scopes, and CP classes combinations, which is the
goal of this paper.

4 Patterns De�ned With Composite Proposi-
tions

As we mentioned in Section 2.2, Dwyer et al. de�ned the
notions of patterns and scopes to assist in the de�nition of
formal speci�cations. Patterns provide common solutions
to recurring problems, and scopes de�ne the extent of pro-

3



gram execution where the pattern is evaluated. In this work
we are concerned with the following patterns: the absence
of P , the existence of P , Q precedes P , Q strictly precedes
P , and Q responds to P .

Note that the strict precedence pattern was de�ned by
Mondragon et al. [6], and it represents a modi�cation of the
precedence pattern as de�ned by Dwyer et al. The follow-
ing subsections describe these patterns when de�ned using
single and composite propositions.

The absence of P means that the (single or composite)
property P never holds, i.e., for every state s, P does not
hold at s. In the case of CP classes, this simply means that
PLTL (as de�ned in Table 1 for each CP class) is never true.
The LTL formula corresponding to the absence of P is:

2¬PLTL

The existence of P means that the (single or composite)
property P holds at some state s in the computation. In
the case of CP classes, this simply means that PLTL is true
at some state of the computation. The LTL formula corre-
sponding to the existence of P is:

¦PLTL

For single proposition, the meaning of �precedes�,
�strictly precedes�, and �responds� is straightforward:

• q precedes p means that every time the property p
holds, the property q must hold either in a previous
state or at the same state;

• q strictly precedes p means that every time the property
p holds, the property q must hold in a previous state;

• q responds to p means that every time the property p
holds, the property q must hold either at the same state
or at a later state.

To extend the above meanings to CP, we need to ex-
plain what �after� and �before� mean for the case of CP.
While single propositions are evaluated in a single state,
CP, in general, deal with a sequence of states or a time
interval (this time interval may be degenerate, i.e., it may
consist of a single state). Speci�cally, for every CP P =
T (p1, . . . , pn), there is a beginning state bP � the �rst state
in which one of the propositions pi becomes true, and an
ending state eP � the �rst state in which the condition T is
ful�lled. For example, for ConsecutiveC , the ending state
is the state s+(n−1) when the last statement pn holds; for
AtLeastOneC , the ending state is the same as the begin-
ning state � it is the �rst state when one of the propositions
pi holds for the �rst time.

For each state s and for each CP P = T (p1 . . . , pn) that
holds at this state s, we will de�ne the beginning state bP (s)
and the ending state eP (s). The following is a description

of bP and eP for the CP classes of types condition and event
de�ned in Table 1 (to simplify notations, wherever it does
not cause confusion, we will skip the state s and simply
write bP and eP ):

• For the CP class P = AtLeastOneC(p1, . . . , pn) that
holds at state s, we take bP (s) = eP (s) = s.

• For the CP class P = AtLeastOneE(p1, . . . , pn) that
holds at state s, we take, as eP (s), the �rst state s′ > s
at which one of the propositions pi becomes true and
we take bP (s) = (eP (s)− 1).

• For the CP class P = ParallelC(p1, . . . , pn) that
holds at state s, we take bP (s) = eP (s) = s.

• For the CP class P = ParallelE(p1, . . . , pn) that
holds at state s, we take, as eP (s), the �rst state s′ > s
at which all the propositions pi become true and we
take bP (s) = (eP (s)− 1).

• For the CP class P = ConsecutiveC(p1, . . . , pn) that
holds at state s, we take bP (s) = s and eP (s) = s +
(n− 1).

• For the CP class P = ConsecutiveE(p1, . . . , pn) that
holds at state s, we take, as bP (s), the last state s′ >
s at which all the propositions were false and in the
next state the proposition p1 becomes true, and we take
eP (s) = s′ + (n).

• For the CP class P = EventualC(p1, . . . , pn) that
holds at state s, we take bP (s) = s, and as eP (s), we
take the �rst state sn > s in which the last proposition
pn is true and the previous propositions p2, . . . , pn−1

were true at the corresponding states s2, . . . , sn−1 for
which s < s2 < . . . < sn−1 < sn.

• For the CP class P = EventualE(p1, . . . , pn) that
holds at state s, we take as bP (s), the last state state
s1 at which all the propositions were false and in the
next state the �rst proposition p1 becomes true, and as
eP (s), the �rst state sn in which the last proposition
pn becomes true.

Using the notions of beginning and ending states, we can
give a precise de�nitions of the Precedence, Strict Prece-
dence, and Response patterns with Global scope:

De�nition 1 Let P and Q be CP classes. We say that Q
precedes P if once P holds at some state s, then Q also
holds at some state s′ for which eQ(s′) ≤ bP (s). This sim-
ply indicates that Q precedes P iff the ending state of Q
is the same as the beginning state of P or it is a state that
happens before the beginning state of P .

4



De�nition 2 Let P and Q be CP classes. We say that Q
strictly precedes P if once P holds at some state s, then Q
also holds at some state s′ for which eQ(s′) < bP (s). This
simply indicates that Q strictly precedes P iff the ending
state of Q is a state that happens before the beginning state
of P .

De�nition 3 Let P and Q be CP classes. We say that Q
responds to P if once P holds at some state s, then Q also
holds at some state s′ for which bQ(s′) ≥ eP (s). This sim-
ply indicates that Q responds to P iff the beginning state of
Q is the same as the ending state of P or it is a state that
follows the ending state of P .

5 Non-Global Scopes De�ned With Compos-
ite Propositions

So far we have discussed patterns within the �Global�
scope. In this Section, we provide a formal de�nition of the
other scopes described in Section 2.2.

We start by providing formal de�nitions of scopes that
use CP as their parameters.1

• For the �Before R� scope, there is exactly one scope �
the interval [0, bR(sf )), where sf is the �rst state when
R becomes true. Note that the scope contains the state
where the computation starts, but it does not contain
the state associated with bR(sf ).

• For the scope �After L�, there is exactly one scope �
the interval [eL(sf ),∞), where sf is the �rst state in
which L becomes true. This scope, includes the state
associated with eL(sf ).

• For the scope �Between L and R�, a scope is an inter-
val [eL(sL), bR(sR)), where sL is the state in which L
holds and sR is the �rst state > eL(sL) when R be-
comes true. The interval contains the state associated
with eL(sL) but not the state associated with bR(sR).

• For the scope �After L Until R�, in addition to scopes
corresponding to �Between L and R�, we also allow
a scope [eL(sL),∞), where sL is the state in which
L holds and for which R does not hold at state s >
eL(sL).

Using the above de�nitions of scopes made up of CP, we
can now de�ne what it means for a CP class to hold within
a scope.

De�nition 4 Let P be a CP class, and let S be a scope. We
say that P s-holds (meaning, P holds in the scope S) in S
if PLTL holds at state sp ∈ S and eP (sP ) ∈ S (i.e. ending
state eP (sp) belongs to the same scope S).

1These de�nitions use the notion of beginning state and ending state as
de�ned in Section 4.

Table 3. Description of Patterns Within
Scopes

Pattern Description)
Existence We say that there is an existence of P within a scope

S if P s-holds at some state within this scope.
Absence We say that there is an absence of P within a scope

S if P never s-holds at any state within this scope.
Precedence We say that Q precedes P within the scope s if once

P s-holds at some state s, then Q also s-holds at
some state s′ for which eQ(s′) ≤ bP (s).

Strict
Precedence

We say that Q strictly precedes P within the scope
s if once P s-holds at some state s, then Q also s-
holds at some state s′ for which eQ(s′) < bP (s).

Response We say that Q responds to P within the scope s if
once P s-holds at some state s, then Q also s-holds
at some state s′ for which bQ(s′) ≥ eP (s).

Table 3 provides a formal description of what it means
for a pattern to hold within a scope.

Now that we have de�ned what it means for a pattern to
hold within the different types of scopes, we are ready to
provide the LTL description of the �ve patterns within the
scopes (�Before R�, �After L�, �Between L And R�, and
�After L Until R�).

6 Need for New Operations

To describe LTL formulas for the patterns and scopes
with CP, we need to de�ne new �and� operations. These
operations will be used to simplify the speci�cation of the
LTL formulas in Section 7.

In non-temporal logic, the formula A ∧B simply means
that both A and B are true. In particular, if we consider a
non-temporal formula A as a particular case of LTL formu-
las, then A means simply that the statement A holds at the
given state, and the formula A ∧ B means that both A and
B hold at this same state.

In general a LTL formula A holds at state s if some �sub-
formulas� of A hold in s and other subformulas hold in
other states. For example, the formula p1 ∧ Xp2 means
that p1 holds at the state s while p2 holds at the state s + 1;
the formula p1 ∧X ¦ p2 means that p1 holds at state s and
p2 holds at some future state s2 > s, etc. The statement
A∧B means that different subformulas of A hold at the cor-
responding different states but B only holds at the original
state s. For patterns involving CP, we de�ne an �and� oper-
ation that ensures that B holds at all states in which different
subformulas of A hold. For example, for this new �and� op-
eration, (p1 ∧ Xp2) and B would mean that B holds both
at the state s and at the state s + 1 (i.e. the correct formula
is (p1 ∧B ∧X(p2 ∧B))). Similarly, (p1 ∧X ¦ p2) and B
should mean that B holds both at state s and at state s2 > s

5



when p2 holds. In other words, we want to state that at the
original state s, we must have p1∧B, and that at some future
state s2 > s, we must have p2 ∧ B. This can be described
as (p1 ∧B) ∧X ¦ (p2 ∧B).

To distinguish this new �and� operation from the origi-
nal LTL operation ∧, we will use a different �and� symbol
& to describe this new operation. However, this symbol by
itself is not suf�cient since people use & in LTL as well; so,
to emphasize that our �and� operation means �and� applied
at several different moments of time, we will use a combi-
nation &r of several & symbols.

In addition to the original �and� A ∧ B which means
that B holds at the original moment of time t and to the
new �repeated and� A &r, B meaning that B holds at all
moments of time which are relevant for the LTL formula A,
we will also need two more operation.

• The new operation A &l B will indicate that B holds
at the last of A-relevant moments of time.

• The new operation A &−l B will indicate that B holds
at the all A-relevant moments of time except for the
last one.

In the following text, we give a formal de�nition of the &r

operation. The de�nitions of the two remaining operations
are provided in the Appendix. It is important to note that the
de�nition of &r is given for general LTL formulas; for &−l

and &l, we only give the de�nition for the particular cases
needed in our patterns (i.e, in the cases of �anding� two CP
classes)

6.1 The New Operator “&r”

In logic in general, recursive de�nitions of a formula lead
to a de�nition of a subformula � as one of the auxiliary for-
mulas in the construction of a given formula. Speci�cally,
for our de�nition of LTL formulas, we have the following
de�nition of an immediate subformula which leads to the
recursive de�nition of a subformula.

De�nition 5 A formula P is an immediate subformula of
the formulas ¬P , P ∨ Q, Q ∨ P , P ∧ Q, Q ∧ P , P → Q,
Q → P , XP , ¦P , 2P , P U Q, and QU P .

De�nition 6

• A formula P is its own subformula.

• If a formula P is an immediate subformula of the for-
mula Q, then P is a subformula of Q.

• If P is a subformula of Q and Q is a subformula of R,
then P is a subformula of R.

• Nothing else is a subformula.

De�nition 7

• An LTL formula that does not contain any LTL tempo-
ral operations X , ¦, 2, and U , is called a propositional
formula.

• A propositional formula P that is a subformula of an
LTL formula Q is called a propositional subformula of
Q.

• A formula P is called a maximal propositional sub-
formula of the LTL formula Q if it is a propositional
subformula of Q and it is not a subformula of any other
propositional subformula of Q.

For example, a formula ¬p1 is a propositional subfor-
mula of the LTL formula (¬p1∧¬p2)∧((¬p1∧¬p2)U (p1∨
p2)) (another particular case of AtLeastOneLTL

E ) but it is
not its maximal propositional subformula � because it is a
subformula of another propositional subformula ¬p1∧¬p2.
On the other hand, ¬p1 ∧ ¬p2 is a maximal propositional
subformula.

Now, we are ready to de�ne the construction P &r Q.
Informally, we replace each maximal propositional subfor-
mula P ′ of the formula P with P ′ ∧Q.

• If P is a propositional formula, then P &r Q is de�ned
as P ∧Q.

• If P is not a propositional formula, P is of the type
¬R, and R &r Q is already de�ned, then P &r Q is
de�ned as ¬(R &r Q).

• If P is not a propositional formula, P is of the type R∨
R′, and formulas R &r Q and R′&r Q are already de-
�ned, then P &r Q is de�ned as (R &r Q)∨(R′&r Q).

• If P is not a propositional formula, P is of the type R∧
R′, and formulas R &r Q and R′&r Q are already de-
�ned, then P &r Q is de�ned as (R &r Q)∧(R′&r Q).

• If P is not a propositional formula, P is of the type
R → R′, and formulas R &r Q and R′&r Q are al-
ready de�ned, then P &r Q is de�ned as (R &r Q) →
(R′&r Q).

• If P is of the type XR, and R &r Q is already de�ned,
then P &r Q is de�ned as X(R &r Q).

• If P is of the type ¦R, and R &r Q is already de�ned,
then P &r Q is de�ned as ¦(R &r Q).

• If P is of the type 2R, and R &r Q is already de�ned,
then P &r Q is de�ned as 2(R &r Q).

6



• If P is of the type R U R′, and formulas R &r Q and
R′&r Q are already de�ned, then P &r Q is de�ned
as (R &r Q)U (R′&r Q).

For example, when P is a formula:

(¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)∧
((¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn) U (p1 ∨ p2 ∨ . . . ∨ pn))

then P &r Q is the formula

(¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧Q)∧
((¬p1∧¬p2∧ . . .∧¬pn∧Q)U ((p1∨p2∨ . . .∨pn)∧Q))

7 General LTL Formulas for Patterns and
Scopes With CP

This Section provides the template LTL formulas that
can be used to de�ne LTL speci�cations for all pat-
tern/scope/CP combinations. We start by de�ning the for-
mulas within the Global and Before R scopes. These formu-
las will be used to de�ne the formulas for patterns within the
remaining scopes as explained in Section 7.2.

7.1 Formulas for Patterns Within Global
and Before R Scopes

Table 4 and 5 provide the template LTL formulas for pat-
terns within the Global and Before R scopes respectively.
Note that the subscripts C and E attached to each CP indi-
cates whether the CP class is of type condition or event, re-
spectively. In the case where no subscript is provided, then
this indicates that the type of the CP class is irrelevant and
that the formula works for both types of CP classes. Also,
in Tables 4-6, the terms PLTL, LLTL, RLTL, QLTL refer
to the LTL formula representing the CP class as described
in Tables 1 and 2.

7.2 Formulas for Patterns Within the Re-
maining Scopes

Pattern formulas for the scopes �After L�, �Between L
And R�, and �After L Until R� can be generated using the
formulas for the Global and Before R scopes described in
Tables 3 and 4. In this section, we use the symbol PLTL

G to
refer to formulas for the speci�c pattern within the Global
scope, and we use the symbol PLT L<R to refer to formulas
for the speci�c pattern within the Before R scope. Table 6
provides the template LTL formulas for patterns within the
After L, Between L And R, and After L Until R scopes.

The following is an example of how these general LTL
formulas can be used. Let us assume that the desired prop-
erty can be described by the Response (P,Q) pattern within

Table 4. Template LTL Formulas for Patterns
Within Global Scope

Pattern LTL Formula
Absence of P 2¬P LTL

Existence of P ¦P LTL

Q Precedes PC ¬((¬(QLTL&−l¬P LTL)) U P LTL)

Q Precedes PE ¬((¬(QLTL&−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))) U (¬p1∧ . . .∧¬pn∧XP LTL
H ))

Q Strictly
Precedes PC

¬((¬(QLTL &r ¬P LTL)) U P LTL)

Q Strictly
Precedes PE

¬((¬(QLTL&r ¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))) U (¬p1∧ . . .∧¬pn∧XP LTL
H ))

Q Responds to P 2(P LTL → (P LTL &l ¦QLTL))

the Between L and R scope. In addition, let us assume that
L is of type ParallelC (l1, l2), P is of type ConsecutiveC

(p1, p2), Q is of type ParallelC (q1, q2), and R is of type
AtLeastOneC (r1, r2). To get the desired LTL formula
for the Response (P,Q) pattern within the Between L and
R scope, we �rst need to get the formula for this pattern
within the Before R scope (i.e. we need to �nd PLT L<R ). The
general LTL formula corresponding to this pattern, scope,
and CP classes combination is the one next to last in Table
4. The resulting LTL formula (PLT L<R ) for Response (P,Q)
Before R is:

¬((¬(r1∨r2))U (((p1∧(¬(r1∨r2))∧X((p2∧¬(r1∨r2))

∧(((¬((q1 ∧ q2 ∧ ¬(r1 ∨ r2))))U (r1 ∨ r2))))))))

We can then use this formula PLT L<R to generate the LTL
formula for the Response (P,Q) Between L And R. Using
the second general LTL formula in Table 5, the resulting
formula is:

2((l1 ∧ l2 ∧ ¬(r1 ∨ r2)) → ((l1 ∧ l2 ∧ (PLT L<R ))))

or

2((l1 ∧ l2 ∧ ¬(r1 ∨ r2)) →
((l1 ∧ l2 ∧ (¬((¬(r1 ∨ r2)) U (((p1 ∧ (¬(r1 ∨ r2)) ∧X

((p2∧¬(r1∨r2))∧(((¬((q1∧q2∧¬(r1∨r2))))U (r1∨r2) . . .)

8 Veri�cation of LTL Templates

An advantage behind the use of formal veri�cation tech-
niques, and hence formal speci�cations, is that they can dis-
cover subtle errors that are missed by traditional techniques.

7



Table 5. Template LTL Formulas for Patterns
Within BeforeR Scope

Pattern LTL Formula)
Absence of P
Before RC

¬((¬RLTL) U ((P LTL&r¬RLTL)&l

¦RLTL))

Absence of P
Before RE

((¦RLTL) → ¬((¬((¬r1 ∧ . . . ∧ ¬rn) ∧
X(RLTL

H ))) U (P LTL&r(¬(¬r1 ∧ . . . ∧
¬rn ∧XRLTL

H )))))

Existence of P
Before RC

¬((¬(P LTL &r ¬RLTL)) U RLTL)

Existence of P
Before RE

¬((¬(P LTL&r ¬(¬r1 ∧ . . . ∧ ¬rn ∧
XRLTL

H ))) U (¬r1 ∧ . . . ∧ ¬rn ∧XRLTL
H ))

Q Precedes
PC Before RC

(¦RLTL → ((¬(P LTL&r¬RLTL)) U

((QLTL&−l¬P LTL) ∨RLTL))

Q Precedes
PE Before RC

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬RLTL ∧ X(P LTL

H &r¬RLTL)))

U ((QLTL&−l¬(¬p1 ∧ . . .¬pn ∧
XP LTL

H )) ∨RLTL))

Q Precedes
PC Before RE

(¦RLTL) → (((¬(P LTL&r¬(¬r1 ∧ . . . ∧
¬rn ∧XRLTL

H ))) U ((QLTL&−l¬P LTL)∨
((¬r1 ∧ . . . ∧ ¬rn) ∧XRLTL

H ))))

Q Precedes
PE Before RE

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬(¬r1 ∧ . . . ∧ ¬rn ∧ XRLTL)H ∧
X(P LTL

H &r¬(¬r1∧. . .∧¬rn∧XRLTL
H ))))

U ((QLTL&−l¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))∨((¬r1∧ . . .∧¬rn)∧XRLTL
H )))

Q Str.Precedes
PC Before RC

(¦RLTL) → ((¬(P LTL&r¬RLTL)) U

((QLTL&r¬P LTL) ∨RLTL))

Q Str.Precedes
PE Before RC

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬RLTL ∧ X(P LTL

H &r¬RLTL)))

U ((QLTL&r¬(¬p1∧ . . .¬pn∧XP LTL
H ))∨

RLTL))

Q Str.Precedes
PC Before RE

(¦RLTL) → (((¬(P LTL&r¬(¬r1 ∧ . . . ∧
¬rn ∧ XRLTL

H ))) U ((QLTL&r¬P LTL)∨
((¬r1 ∧ . . . ∧ ¬rn) ∧XRLTL

H ))))

Q Str.Precedes
PE Before RE

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬(¬r1 ∧ . . . ∧ ¬rn ∧ XRLTL)H ∧
X(P LTL

H &r¬(¬r1∧. . .∧¬rn∧XRLTL
H ))))

U ((QLTL&r¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))∨((¬r1∧ . . .∧¬rn)∧XRLTL
H )))

Q Responds to
P Before RC

¬((¬RLTL) U ((P LTL&r¬RLTL)&l

((¬(QLTL&r¬RLTL)) U RLTL)))

Q Responds to
P Before RE

¬((¬((¬r1 ∧ . . . ∧ ¬ rn) ∧ X(RLTL
H )))

U ((P LTL&r¬(¬r1 ∧ . . . ∧ ¬rn ∧
XRLTL

H ))&l((¬(QLTL&r¬(¬r1 ∧ . . . ∧
¬rn ∧ XRLTL

H )))U(¬r1 ∧ . . . ∧ ¬rn ∧
XRLTL

H ))))

Table 6. Template LTL Formulas for Patterns
Within the Remaining Scopes

Scope LTL Formula)
After L ¬((¬LLTL) U (LLTL&l¬PLTL

G ))

Between L
and RC

2((LLTL&l¬RLTL)→ (LLTL&lPLTL
<R ))

Between L
and RE

2(LLTL → (LLTL&lPLTL
<R ))

After L
Until RC

2((LLTL&l¬RLTL) → (LLTL&l((PLTL
<R ∧

((¬ ¦RLTL)→PLTL
G )))))

After L
Until RE

2((LLTL)→ (LLTL&l((PLTL
<R ∧ ((¬¦RLTL)

→PLTL
G )))))

This motivates the use of these techniques in safety critical
systems, where a failure could result in the loss of human
life or expensive equipments. For this reason, it is impor-
tant to verify that the formal speci�cations used in these
techniques match the original intent of the speci�er.

The template LTL formulas introduced in the previous
section were veri�ed using the following three techniques:

• formal proofs were used to verify the formulas for pat-
terns within the Global scope (i.e., formulas in Table
4),

• testing using equivalence classes and boundary analy-
sis techniques was used to verify the formulas for pat-
terns within the Before R scope (i.e., formulas in Ta-
ble 5), and

• reviews were used to verify the correctness of the for-
mulas for patterns within the remaining three scopes
(i.e., formulas in Table 6).

Because of the lack of space, this paper only discusses
the proofs used for verifying the LTL templates for the
global scope and provides one such proof. The remaining
proofs along with the detailed descriptions of the techniques
used in the veri�cation of the LTL templates for the other
scopes are provided in Salamah [9].

8.1 Formal Proofs for Correctness of For-
mulas of the Global Scope

As mentioned above, the formulas for patterns within the
global scope were veri�ed using formal proofs. The proofs
used de�nitions 1-3 of patterns within the Global scope pro-
vided in Section 4. This section highlights the proof of cor-
rectness for the template LTL formula of the Response.

The main theorem of this paper follows:

8



Theorem 1 For every pattern within the Global scope, the
corresponding LTL formula is equivalent to the formal def-
inition of the pattern in �rst order logic

In order to prove this theorem, it is necessary to prove
the correctness of each of the formulas in Table 4.

8.1.1 Theorem 1.1: The LTL formula �2(PLTL →
(PLTL &l ¦ QLTL))� is equivalent to the formal
de�nition of the pattern �Q Responds to P� in
Global scope.

Proof:
1◦. According to De�nition 3, �Q responds to P � means

that if P holds at some moment s, then Q holds at some
moment s′ for which bQ(s′) ≥ eP (s). Formally, we can
describe this property as follows:

∀s (P (s) → ∃s′ (Q(s′) ∧ bQ(s′) ≥ eP (s)) (1)

We want to prove that this formula is equivalent to the cor-
responding LTL formula

2(P → (P &l ¦Q)) (2)

Comment. To make the proof more readable, we describe
the LTL formula PLTL corresponding to P simply as P .
We already know that the formulas P and PLTL are equiv-
alent, so from the logical viewpoint these simpli�ed nota-
tions are well justi�ed.

Similarly, we describe the LTL formula QLTL corre-
sponding to Q simply as Q.

2◦. To prove the desired equivalence, let us �rst refor-
mulate the LTL formula (2) in terms of quanti�ers.

2.1◦. By the de�nition of the �always� operator 2, the
formula 2A means that A holds at all moments of time s,
i.e., that ∀sA(s). So, the above formula (2) is equivalent to

∀s (P (s) → (P &l ¦Q)(s))) (3)

2.2◦. The connective (A &l B)(s) was de�ned as mean-
ing that A holds at the moments s and B holds at the last
of A-relevant moments of time, i.e., at the moment eA(s).
Thus, the formula (2) can be equivalently reformulated as

∀s (P (s) → (P (s) ∧ (¦Q)(eP (s)))). (4)

In this implication, if P (s) holds, then of course P (s) auto-
matically holds, so we can delete this term from the right-
hand side of the implication and simplify the above formula
to

∀s (P (s) → (¦Q)(eP (s))). (5)

2.3◦. By the de�nition of the �eventually� operator ¦, the
formula ¦A means that A holds either at the current moment
of time s, or at some later moment of time s′′ > s, i.e., that
∃s′′ (A(s′′) ∧ s′′ ≥ s).

Thus, the formula (2) is equivalent to

∀s (P (s) → ∃s′′ (Q(s′′) ∧ s′′ ≥ eP (s))). (6)

3◦. Since the LTL formula (2) is equivalent to (6), to
complete our proof we only need to prove the equivalence
between (1) and (6).

3.1◦. Let us �rst prove that (6) implies (1).

Indeed, let us assume that (6) holds, and that P (s) holds
for some moment of time s. Then, the formula (6) implies
that for some s′′ ≥ s, we have Q(s′′) and s′′ ≥ eP (s).

We have de�ned bA(s) as the �rst moment of time ≥ s
for which a certain condition holds. Thus, we always have
bA(s) ≥ s.

In particular, we have bQ(s′′) ≥ s′′. From s′′ ≥ eP (s),
we can now conclude that bQ(s′′) ≥ eP (s). Thus, for s′ =
s′′, we have bQ(s′) ≥ eP (s) and Q(s′). So, we have proven
the formula (1).

3.2◦. Let us now prove that (1) implies (6).

Indeed, assume that (1) holds, and P (s) holds for some
moment of time s. Then, according to (1), there exists a
moment s′ for which bQ(s′) ≥ eP (s) and Q(s′).

By de�nition of bA(s), we can easily conclude that the
formula A always holds at the moment bA(s): A(bA(s)).
Thus, for s′′ = bQ(s), we have Q(s′′) and s′′ ≥ eP (s). So,
we have proven the formula (6).

The equivalence is proven and hence Theorem 1.1 is
proven.

9 Summary and Future Work

This paper provided formal descriptions of the different
composite propositions (CP) classes de�ned by Mondragon
et al. [6]. In addition, we formally described the patterns
and scopes de�ned by Dweyer et al. [2] when using CP
classes. The main contribution of the paper is de�ning gen-
eral LTL formulas that can be used to generate LTL speci-
�cations of properties de�ned by patterns, scopes, and CP
classes. The general LTL formulas for the Global scope
(formulas in Table 4) have been veri�ed using formal proofs
[9]. On the other hand, formulas for the remaining scopes
(formulas in Tables 5 and 6) were veri�ed using testing and
formal reviews [9].

9



The next step in this work consists of providing formal
proofs for formulas of the remaining scopes. In addition,
we aim at enhancing the Prospec tool by including the gen-
eration of LTL formulas that use the translations provided
by this paper.

Acknowledgments. This work is funded in part by the
National Science Foundation (NSF) through grant NSF
EAR-0225670, by Texas Department of Transportation
grant No. 0-5453, and by the Japan Advanced Institute
of Science and Technology (JAIST) International Joint Re-
search Grant 2006-08.

References

[1] Cimatti, A., Clarke, E., Giunchiglia, F., and
Roveri,M., �NUSMV: a new Symbolic Model Ver-
i�er�, International Conference on Computer Aided
Veri�cation CAV, July 1999.

[2] Dwyer, M. B., Avrunin, G. S., and Corbett, J.
C.,�Patterns in Property Speci�cation for Finite State
Veri�cation,� Proceedings of the 21st international
conference on Software engineering, Los Angeles,
CA, 1999, 411�420.

[3] Hall, A., �Seven Myths of Formal Methods,� IEEE
Software, September 1990, 11(8)

[4] Holzmann G. J., The SPIN Model Checker: Primer
and Reference Manual, Addison-Wesley Professional,
2004.

[5] Havelund, K., and Pressburger, T., �Model Checking
Java Programs using Java PathFinder�, International
Journal on Software Tools for Technology Transfer,
2(4), April 2000.

[6] Mondragon, O. and Gates, A. Q., �Supporting Elicita-
tion and Speci�cation of Software Properties through
Patterns and Composite Propositions,� Intl. Journal
Software Engineering and Knowledge Engineering,
14(1), Feb. 2004.

[7] Manna, Z. and Pnueli, A., �Completing the Temporal
Picture,� Theoretical Computer Science, 83(1), 1991,
97�130.

[8] Rushby, J., �Theorem Proving for Veri�cation,� Mod-
elling and Veri�cation of Parallel Processes, June
2000.

[9] Salamah, I. S., De�ning LTL formulas for com-
plex pattern-based software properties, University of
Texas at El Paso, Department of Computer Science,
PhD Dissertation, July 2007.

[10] Smith, R, Avrunin, G, Clarke, L, and Osterweil, L,
�PROPEL: an approach supporting property elucida-
tion� Proceedings of the 22rd International Confer-
ence on Software Engineering, ICSE, May 2002, Or-
lando, Florida

[11] Stolz, V. and Bodden, E., �Temporal Assertions us-
ing AspectJ�, Fifth Workshop on Runtime Veri�cation,
July 2005.

[12] Spec Patterns, http://patterns.projects.cis.ksu.edu/,
May 2007.

10



APPENDIX: Description of the Operators &−l� and
�&l

Unlike the operator &r, we do not provide a general
de�nition of the two new operators the new operators
�&−1� and �&l�. We provide a de�nition for these
operators in term of CP class. In other words, we provide
de�nitions for (A &−1 B) and (A &lB) in the cases where
A and B are both CP classes. This de�nition does not
extend to any A and B such that A and B are LTL formulas
but not CP classes2.

De�nition 8 the operator �&−l� is de�ned as follows:
• When P is of the type TC(p1, . . . , pn) or

TH(p1, . . . , pn), with T = Parallel or
T = AtLeastOne, then P &−l A is de�ned as
P ∧A.

• When P is of the type TC(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &l A is de-
�ned as TC(p1 ∧A, . . . , pn−1 ∧A, pn).

• When P is of the type TH(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &−l A is de-
�ned as

TC(p1∧¬p2∧. . .∧¬pn∧A, . . . , pn−1∧¬pn∧A, pn).

• When P is of the type TE(p1, . . . , pn), then P &−l A
is de�ned as

(¬p1 ∧ . . . ∧ ¬pn ∧A)∧
((¬p1 ∧ . . . ∧ ¬pn ∧A)U (TH(p1, . . . , pn) &−lA)).

De�nition 9 the operator �&l� is de�ned as follows:
• When P is of the type TC(p1, . . . , pn) or

TH(p1, . . . , pn), with T = Parallel or
T = AtLeastOne, then P &l A is de�ned as
P ∧A.

• When P is of the type TC(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &l A is de-
�ned as TC(p1, . . . , pn−1, pn ∧A).

• When P is of the type TH(p1, . . . , pn), with T =
Consecutive or T = Eventual, then P &l A is de-
�ned as

TC(p1 ∧ ¬p2 ∧ . . . ∧ ¬pn, . . . , pn−1 ∧ ¬pn, pn ∧A).

• When P is of the type TE(p1, . . . , pn), then P &l A is
de�ned as

(¬p1 ∧ . . . ∧ ¬pn)∧
((¬p1 ∧ . . . ∧ ¬pn) U (TH(p1, . . . , pn)&lA)).

2The symbols TC , TE , and TH in the De�nitions 8 and 9 indicate the
type of the CP class as condition, event, or hold respectively.

11


