
Veri�cation of Automatically Generated Pattern-Based LTL Speci�cations

Salamah Salamah
Dept. Comp. and Software Engineering, Embry-Riddle Aeronautical Univ., salamahs@erau.edu

Ann Q. Gates, Vladik Kreinovich, Steve Roach
Computer Science Dept., University of Texas at El Paso, {agates,vladik,sroach}@utep.edu

Abstract

The use of property classi�cations and patterns, i.e.,
high-level abstractions that describe common behavior,
have been shown to assist practitioners in generating for-
mal speci�cations that can be used in formal veri�cation
techniques. The Speci�cation Pattern System (SPS) pro-
vides descriptions of a collection of patterns. The extent
of program execution over which a pattern must hold is de-
scribed by the notion of scope. SPS provides a manual tech-
nique for obtaining formal speci�cations from a pattern and
a scope. The Property Speci�cation Tool (Prospec) extends
SPS by introducing Composite Propositions (CPs), a clas-
si�cation for de�ning sequential and concurrent behavior
to represent pattern and scope parameters, and provides a
tool to support users.

This work provides general templates for generating for-
mal speci�cations in Linear Temporal Logic (LTL) for all
pattern, scope, and CP combinations. In addition, the work
explains the methodology for the veri�cation of the correct-
ness of these templates.

1 Introduction

Although the use of formal veri�cation techniques such
as model checking [5], theorem proving [9], and runtime
monitoring [13] improve the dependability of programs,
they are not widely adapted in standard software develop-
ment practices. One reason for the hesitance in using formal
veri�cation is the high level of mathematical sophistication
required for reading and writing the formal speci�cations
required for the use of these techniques [4].

Different approaches and tools, such as the Speci�ca-
tion Pattern System (SPS) [2], the Property Elucidation tool
(Propel) [11], and the Property Speci�cation Tool (Prospec)
[7], have been designed to provide assistance to practition-
ers in generating formal speci�cations in a variety of formal
languages.

The notions of patterns, scopes, and composite propo-

sitions (CPs) have been identi�ed as ways to assist users
in de�ning formal properties. Patterns are high-level ab-
stractions used to describe program behavior. Scopes de-
�ne the portion of execution over which a pattern is to hold.
A formal speci�cation is generated from a user's selection
for pattern and scope. SPS, for example, generates spec-
i�cations in Linear Temporal Logic (LTL) and Computa-
tional Tree Logic (CTL) among others, while Propel pro-
vides formal speci�cations in the form of a �nite automaton.
Finally, Prospec provides speci�cations in Future Interval
Logic (FIL) and Meta-Event De�nition Language. None of
these tools generate speci�cations using CPs in LTL. This
work provides a set of LTL templates that can be used to
specify a wide range of properties in LTL. The importance
of LTL stems from its expressive power and the fact that it
is widely used in formal veri�cation tools. By adding this
capability to a tool such as Prospec, one can specify a com-
plex property without being an LTL expert.

The paper is organized as follows: Section 2 provides
the background related information including description of
LTL and the work that has been done to support the genera-
tion of formal speci�cations. Section 3 highlights the chal-
lenges of generating formal speci�cations in LTL. Sections
4 and 5 provide the general formal de�nitions of patterns
and scopes that use CPs. Section 6 motivates the need for
three auxiliary LTL operators to simplify the speci�cations
and provides the formal de�nition for one of these opera-
tors. Section 7 describes the general LTL templates for the
different patterns and scopes de�ned using CPs. Section 8
provides a description of the veri�cation techniques for the
LTL templates, followed by summary and future work (in
Section 9).

2 Background

Linear Temporal Logic. Linear Temporal Logic (LTL) is
a prominent formal speci�cation language that is highly ex-
pressive and widely used in formal veri�cation tools such as
the model checker SPIN [5] and NUSMV [1]. LTL is also
used in the runtime veri�cation of Java programs [13].



Formulas in LTL are constructed from elementary propo-
sitions and the usual Boolean operators for not, and, or,
imply (neg, ∧, ∨, →, respectively). In addition, LTL pro-
vides the temporal operators next (X), eventually (¦),
always (2), until, (U), weak until (W ), and release
(R). In this work, we only use the �rst four of these op-
erators. These formulas assume discrete time, i.e., states
s = 0, 1, 2, . . . The meaning of the temporal operators is
straightforward. The formula XP holds at state s if P holds
at the next state s + 1. P U Q is true at state s, if there is a
state s′ ≥ s at which Q is true and, if s′ is such a state, then
P is true at all states si for which s ≤ si < s′. The formula
¦P is true at state s if P is true at some state s′ ≥ s. Finally,
the formula 2P holds at state s if P is true at all moments
of time s′ ≥ s. Detailed description of LTL is provided by
Manna et al. [8].
Speci�cation Pattern System (SPS). Writing formal spec-
i�cations, particularly those involving time, is dif�cult.
The Speci�cation Pattern System [2] provides patterns and
scopes to assist the practitioner in formally specifying soft-
ware properties. These patterns and scopes were de�ned
after analyzing a wide range of properties from multiple in-
dustrial domains (i.e., security protocols, application soft-
ware, and hardware systems). Patterns capture the expertise
of developers by describing software behavior for recurrent
situations. Each pattern describes the structure of speci�c
behavior and de�nes the pattern's relationship with other
patterns. Patterns are associated with scopes, which de�ne
the portion of program execution over which the property
holds.

The main patterns de�ned by SPS are: Universality,
Absence, Existence, Precedence, and Response. In
SPS, each pattern is associated with a scope that de�nes
the extent of program execution over which a property pat-
tern is considered. There are �ve types of scopes de�ned
in SPS: Global, Before R, After L, Between L And
R, and After L Until R. A detailed description of these
patterns and scopes can be found in Dwyer [2].
Composite Propositions (CPs). The notion of CPs was
introduced by Mondragon et al. [7] to allow for patterns
and scopes to be de�ned using multiple propositions. In
practical applications, we often need to describe properties
where one or more of the pattern or scope parameters are
made of multiple propositions, i.e., CPs (examples are given
in the following sections).

The CPs introduced by Mondragon et al. [7] allow
one to specify the sequential and concurrent behavior
among multiple propositions given as pattern or scope pa-
rameters. Mondragon et al. de�ned the following eight
CP classes: AtLeastOneC , AtLeastOneE , ParallelC ,
ParallelE , ConsecutiveC , ConsecutiveE , EventualC ,
and EventualE . The subscripts C and E describe whether
the propositions in the CP class are asserted as conditions

Table 1. Description of CP Classes in LTL

CP Class LTL Description (P LTL)
AtLeastOneC p1 ∨ . . . ∨ pn

AtLeastOneE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∨
. . . ∨ pn))

ParallelC p1 ∧ . . . ∧ pn

ParallelE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∧
. . . ∧ pn))

ConsecutiveC (p1 ∧X(p2 ∧ (. . . (∧Xpn)) . . .))
ConsecutiveE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∧

¬p2 ∧ . . .∧¬pn ∧X(p2 ∧¬p3 ∧ . . .∧¬pn ∧
X(. . . ∧X(pn−1 ∧ ¬pn ∧Xpn)) . . .))

EventualC (p1 ∧ X(¬p2 U (p2 ∧ X(. . . ∧
X(¬pn−1 U (pn−1 ∧X(¬pn U pn)))) . . .))))

EventualE (¬p1∧ . . .∧¬pn)∧((¬p1∧ . . .∧¬pn) U (p1∧
¬p2 ∧ . . .∧¬pn ∧ ((¬p2 ∧ . . .∧¬pn) U (p2 ∧
¬p3 ∧ . . . ∧ ¬pn ∧ (. . . ∧ (pn−1 ∧ ¬pn ∧
(¬pn U pn)) . . .)))))

AtLeastOneH (¬p1 ∧ . . . ∧ ¬pn) U (p1 ∨ . . . ∨ pn)
ParallelH (¬p1 ∧ . . . ∧ ¬pn) U (p1 ∧ . . . ∧ pn)
ConsecutiveH (¬p1 ∧ . . . ∧ ¬pn) U (p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧

X(p2 ∧¬p3 ∧ . . .∧¬pn ∧X(. . .∧X(pn−1 ∧
¬pn ∧Xpn)) . . .))

EventualH (¬p1 ∧ . . . ∧ ¬pn) U (p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧
((¬p2 ∧ . . .∧¬pn) U (p2 ∧¬p3 ∧ . . .∧¬pn ∧
(. . . ∧ (pn−1 ∧ ¬pn ∧ (¬pn U pn)) . . .))))

or events respectively. A proposition de�ned as a condi-
tion holds in one or more consecutive states. A proposition
de�ned as event means that there is an instant at which the
proposition changes value in two consecutive states. Table 1
provides the semantics of the CP classes in LTL. The last
four entries in the table are the auxiliary CP classes of type
Hold that are used in the de�nitions of the LTL formulas
given in Section 7.

3 Challenges in Generating LTL Formulas

SPS provides LTL formulas for basic patterns and
scopes, i.e., ones that use single, atomic propositions in the
parameters L,R, P, and Q of the patterns and scope. Mon-
dragon et al. provided LTL semantics for the CP classes as
described in Table 1; however, in at least some cases it is not
adequate to simply substitute the LTL description of the CP
class into the basic LTL formula for the pattern and scope
combination. Consider the following property: �The delete
button is enabled in the main window only if the user is
logged in as administrator, and the main window is invoked
by selecting it from the Admin menu.� This property can be
described using the Existence(EventualC(p1, p2)) pat-
tern and the Before(r) scope, where p1 is �the user logged
in as an admin,� p2 is �the main window is invoked,� and r
is �the delete button is enabled.�

According to Mondragon et al. [7], the LTL formula for
the Existence(P ) pattern with Before(R) is (2¬R) ∨



(¬R U (P ∧ ¬R)), and the LTL formula for the CP class
EventualC , as described in Table 1, is (p1∧X(¬p2 U p2)).
By replacing P by (p1 ∧ X(¬p2 U p2)) in the formula
for the pattern and scope, we get the formula: (2¬R) ∨
(¬R U ((p1 ∧ X(¬p2 U p2)) ∧ ¬R)). This formula, how-
ever, asserts that either R never holds, or R holds after the
formula (p1 ∧X(¬p2 U p2)) becomes true. In other words,
the formula asserts that it is acceptable for R (�the delete
button is enabled�) to hold after p1 (�the user logged in as
an admin�) holds and before p2 (�the main window is in-
voked�) holds. This should not be the case.

As seen by the above example, the temporal nature of
LTL and its operators makes direct substitution problematic.
To avoid the generation of formulas that do not meet the in-
tent of the user as speci�ed through patterns, scope, and CP,
it is necessary to provide abstract LTL formulas that can be
used as templates for the generation of LTL speci�cations
for all combinations of patterns, scope, and CPs.

4. Patterns De�ned with CPs

As we mentioned in Section 2, Dwyer's SPS system de-
�ned the notions of patterns and scopes to assist in the def-
inition of formal speci�cations. In this work we are con-
cerned with the following patterns: the absence of P , the
existence of P , Q precedes P , Q strictly precedes P , and
Q responds to P . The strict precedence pattern was de�ned
by Mondragon et al. [7], and it represents a modi�cation
of the precedence pattern as de�ned by Dwyer. The follow-
ing subsections describe these patterns when de�ned using
single and composite propositions.

The absence of P means that the (single or composite)
property P never holds, i.e., for every state s, P does not
hold at s. In the case of CP classes, this simply means that
PLTL (as de�ned in Table 1 for each CP class) is never
true. The LTL formula corresponding to the absence of P
is 2¬PLTL.

The existence of P means that the (single or composite)
property P holds at some state s in the computation. In
the case of CP classes, this simply means that PLTL is true
at some state of the computation. The LTL formula corre-
sponding to the existence of P is ¦PLTL.

For single proposition, the meaning of �precedes,�
�strictly precedes,� and �responds� is straightforward. To
extend the meanings of these patterns to ones de�ned using
CPs, we need to explain what �after� and �before� mean for
the case of CPs. While single propositions are evaluated in
a single state, CPs, in general, deal with a sequence of states
or a time interval (this time interval may be degenerate, i.e.,
it may consist of a single state). Speci�cally, for every CP
P = T (p1, . . . , pn), there is a beginning state bP � the �rst
state in which one of the propositions pi becomes true, and
an ending state eP � the �rst state in which the condition

T is ful�lled. For example, for ConsecutiveC , the end-
ing state is the state s + (n − 1) when the last statement
pn holds; for AtLeastOneC , the ending state is the same
as the beginning state � it is the �rst state when one of the
propositions pi holds for the �rst time.

For each state s and for each CP P = T (p1 . . . , pn) that
holds at this state s, we will de�ne the beginning state bP (s)
and the ending state eP (s). The following is a description
of bP and eP for the CP classes of types condition and event
de�ned in Table 1:

• For the CP class P = AtLeastOneC(p1, . . . , pn) that
holds at state s, we take bP (s) = eP (s) = s.

• For the CP class P = AtLeastOneE(p1, . . . , pn) that
holds at state s, we take, as eP (s), the �rst state s′ > s
at which one of the propositions pi becomes true and
we take bP (s) = (eP (s)− 1).

• For the CP class P = ParallelC(p1, . . . , pn) that
holds at state s, we take bP (s) = eP (s) = s.

• For the CP class P = ParallelE(p1, . . . , pn) that
holds at state s, we take, as eP (s), the �rst state s′ > s
at which all the propositions pi become true and we
take bP (s) = (eP (s)− 1).

• For the CP class P = ConsecutiveC(p1, . . . , pn) that
holds at state s, we take bP (s) = s and eP (s) = s +
(n− 1).

• For the CP class P = ConsecutiveE(p1, . . . , pn) that
holds at state s, we take, as bP (s), the last state s′ >
s at which all the propositions were false and in the
next state the proposition p1 becomes true, and we take
eP (s) = s′ + (n).

• For the CP class P = EventualC(p1, . . . , pn) that
holds at state s, we take bP (s) = s, and as eP (s), we
take the �rst state sn > s in which the last proposition
pn is true and the previous propositions p2, . . . , pn−1

were true at the corresponding states s2, . . . , sn−1 for
which s < s2 < . . . < sn−1 < sn.

• For the CP class P = EventualE(p1, . . . , pn) that
holds at state s, we take as bP (s), the last state state
s1 at which all the propositions were false and in the
next state the �rst proposition p1 becomes true, and as
eP (s), the �rst state sn in which the last proposition
pn becomes true.

We now can give a precise de�nitions of the Precedence,
Strict Precedence, and Response patterns with Global
scope:

De�nition 1 Let P and Q be CP classes. We say that Q
precedes P if once P holds at some state s, then Q also
holds at some state s′ for which eQ(s′) ≤ bP (s).

This simply means that Q precedes P iff the ending state of
Q is either identical to the beginning state of P or happens
before this beginning state.



De�nition 2 Let P and Q be CP classes. We say that Q
strictly precedes P if once P holds at some state s, then Q
also holds at some state s′ for which eQ(s′) < bP (s).

This means that Q strictly precedes P iff the ending state of
Q is a state that happens before the beginning state of P .

De�nition 3 Let P and Q be CP classes. We say that Q
responds to P if once P holds at some state s, then Q also
holds at some state s′ for which bQ(s′) ≥ eP (s).

5 Non-Global Scopes De�ned with CPs

So far we have discussed patterns within the �Global�
scope. In this section, we provide a formal de�nition of the
other scopes described in Section 2.

We start by providing formal de�nitions of scopes that
use CPs as their parameters.

• For Before R, there is exactly one scope � the interval
[0, bR(sf )), where sf is the �rst state when R becomes
true. Note that the scope contains the state where the
computation starts, but it does not contain the state as-
sociated with bR(sf ).

• For After L, there is exactly one scope � the interval
[eL(sf ),∞), where sf is the �rst state in which L be-
comes true. This scope, includes the state associated
with eL(sf ).

• For Between L and R, a scope is an interval
[eL(sL), bR(sR)), where sL is the state in which L
holds and sR is the �rst state > eL(sL) when R be-
comes true. The interval contains the state associated
with eL(sL) but not the state associated with bR(sR).

• For After L Until R, in addition to scopes corre-
sponding to �Between L and R�, we also allow a scope
[eL(sL),∞), where sL is the state in which L holds
and for which R does not hold at state s > eL(sL).

Using the above de�nitions of scopes made up of CPs, we
can now de�ne what it means for a CP class to hold within
a scope.

De�nition 4 Let P be a CP class, and let S be a scope.
We say that P holds in the scope S (or S-holds, for short)
if PLTL holds at a state sP ∈ S for which ending state
eP (sp) belongs to the same scope S (i.e., eP (sP ) ∈ S).

Table 2 provides a formal description of what it means
for a pattern to hold within a scope.

6 Auxiliary Operations

To describe LTL formulas for the patterns and scopes
with CPs, it is useful to de�ne a special �and� operation

Table 2. Description of Patterns within
Scopes

Pattern Description)
Existence We say that there is an existence of P within a scope

S if P s-holds at some state within this scope.
Absence We say that there is an absence of P within a scope

S if P never s-holds at any state within this scope.
Precedence We say that Q precedes P within the scope s if once

P s-holds at some state s, then Q also s-holds at
some state s′ for which eQ(s′) ≤ bP (s).

Strict
Precedence

We say that Q strictly precedes P within the scope
s if once P s-holds at some state s, then Q also s-
holds at some state s′ for which eQ(s′) < bP (s).

Response We say that Q responds to P within the scope s if
once P s-holds at some state s, then Q also s-holds
at some state s′ for which bQ(s′) ≥ eP (s).

that can be used as a shorthand to simplify the speci�cation
of the LTL formulas in Section 7. In propositional logic,
the formula A ∧ B means that both A and B are true. If
we consider a propositional formula A as a particular case
of LTL formulas, then A means simply that the statement A
holds at the given state, and the formula A ∧ B means that
both A and B hold at this same state.

In general, it is necessary to state that an LTL formula
A holds at state s if some subformulas of A hold in s and
other subformulas hold in other states. For example, the
formula p1∧Xp2 means that p1 holds at the state s while p2

holds at the state s + 1, and the formula p1 ∧X ¦ p2 means
that p1 holds at state s and p2 holds at some future state
s2 > s. For patterns involving CPs, we de�ne an �and�
operation that ensures that B holds at all states in which
different subformulas of A hold. For example, for this new
�and� operation,

(p1 ∧Xp2) and B

would mean that B holds both at the state s and at the state
s + 1, i.e., the correct formula is (p1 ∧ B ∧ X(p2 ∧ B)).
Similarly,

(p1 ∧X ¦ p2) and B

means that B holds both at state s and at state s2 > s when
p2 holds. At the original state s, we must have p1 ∧ B, and
at some future state s2 > s, we must have p2 ∧B. This can
be described as (p1 ∧B) ∧X ¦ (p2 ∧B).

To distinguish this new �and� operation from the origi-
nal LTL operation ∧, we will use the symbol &r to denote
this new operation. In addition, we introduce two more op-
erations:

• The operation A &l B indicates that B holds at the last
of A-relevant moments of time.



• The operation A &−l B indicates that B holds at all
A-relevant moments of time except for the last one.

This paper only includes the detailed description of �&r�
operator. The formal descriptions of the other two LTL
operators along with examples of their use is provided in
Salamah [10].

Recursive de�nitions of a formula lead to a de�nition of
a subformula as one of the auxiliary formulas in the con-
struction of a given formula. Speci�cally, for our de�nition
of LTL formulas, we have the following de�nition of an im-
mediate subformula, which leads to the recursive de�nition
of a subformula.

De�nition 5 A formula P is an immediate subformula of
the formulas ¬P , P ∨ Q, Q ∨ P , P ∧ Q, Q ∧ P , P → Q,
Q → P , XP , ¦P , 2P , P U Q, and QU P .

De�nition 6

• A formula P is its own subformula.
• If a formula P is an immediate subformula of the for-

mula Q, then P is a subformula of Q.
• If P is a subformula of Q and Q is a subformula of R,

then P is a subformula of R.
• Nothing else is a subformula.

De�nition 7

• An LTL formula that does not contain any LTL tempo-
ral operations X , ¦, 2, and U , is called a propositional
formula.

• A propositional formula P that is a subformula of an
LTL formula Q is called a propositional subformula
of Q.

• A formula P is called a maximal propositional subfor-
mula of the LTL formula Q if it is a propositional sub-
formula of Q and it is not a subformula of any other
propositional subformula of Q.

For example, a formula ¬p1 is a propositional subformula
of the LTL formula

(¬p1 ∧ ¬p2) ∧ ((¬p1 ∧ ¬p2) U (p1 ∨ p2))

(another particular case of AtLeastOneLTL
E ) but it is not

its maximal propositional subformula � because it is a sub-
formula of another propositional subformula ¬p1∧¬p2. On
the other hand, ¬p1 ∧ ¬p2 is a maximal propositional sub-
formula.

Now, we are ready to de�ne the construction P &r Q.
Informally, we replace each maximal propositional subfor-
mula P ′ of the formula P with P ′ ∧Q.

• If P is a propositional formula, then P &r Q is de�ned
as P ∧Q.

• If P is not a propositional formula, P is of the type
¬R, and R &r Q is already de�ned, then P &r Q is
de�ned as ¬(R &r Q).

• If P is not a propositional formula, P is of the type
R ∨R′, and formulas R &r Q and R′&r Q are already
de�ned, then P &r Q is de�ned as

(R &r Q) ∨ (R′&r Q).

• If P is not a propositional formula, P is of the type
R ∧R′, and formulas R &r Q and R′&r Q are already
de�ned, then P &r Q is de�ned as

(R &r Q) ∧ (R′&r Q).

• If P is not a propositional formula, P is of the type
R → R′, and formulas R &r Q and R′&r Q are al-
ready de�ned, then P &r Q is de�ned as (R &r Q) →
(R′&r Q).

• If P is of the type XR, and R &r Q is already de�ned,
then P &r Q is de�ned as X(R &r Q).

• If P is of the type ¦R, and R &r Q is already de�ned,
then P &r Q is de�ned as ¦(R &r Q).

• If P is of the type 2R, and R &r Q is already de�ned,
then P &r Q is de�ned as 2(R &r Q).

• If P is of the type R U R′, and formulas R &r Q and
R′&r Q are already de�ned, then P &r Q is de�ned
as (R &r Q)U (R′&r Q).

For example, when P is a formula:

(¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)∧
((¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn) U (p1 ∨ p2 ∨ . . . ∨ pn))

then P &r Q is equivalent to the formula

(¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧Q)∧
((¬p1∧¬p2∧ . . .∧¬pn∧Q)U ((p1∨p2∨ . . .∨pn)∧Q))

7 Speci�cation of Patterns and Scopes with
CPs in LTL

This section provides the LTL templates that can be used
to de�ne LTL speci�cations for all pattern/scope/CP combi-
nations. We start by de�ning the formulas within the Global
and Before R scopes. These formulas will be used to de�ne
the formulas for patterns within the remaining scopes as ex-
plained in Section 7.
Formulas for Patterns within Global and Before R
Scopes. Tables 3 and 4 provide the LTL templates for pat-
terns within the Global and Before R scopes respectively.
Note that the subscripts C and E attached to each CP indi-
cates whether the CP class is of type condition or event, re-
spectively. In the case where no subscript is provided, then



Table 3. LTL Templates for Patterns within
Global Scope

Pattern LTL Formula
Absence of P 2¬P LTL

Existence of P ¦P LTL

Q Precedes PC ¬((¬(QLTL&−l¬P LTL)) U P LTL)

Q Precedes PE ¬((¬(QLTL&−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))) U (¬p1∧ . . .∧¬pn∧XP LTL
H ))

Q Strictly
Precedes PC

¬((¬(QLTL &r ¬P LTL)) U P LTL)

Q Strictly
Precedes PE

¬((¬(QLTL&r ¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))) U (¬p1∧ . . .∧¬pn∧XP LTL
H ))

Q Responds to P 2(P LTL → (P LTL &l ¦QLTL))

this indicates that the type of the CP class is irrelevant and
that the formula works for both types of CP classes. Also,
in Tables 3-5, the terms PLTL, LLTL, RLTL, QLTL refer
to the LTL formula representing the CP class as described
in Table 1.
Formulas for Patterns within the Remaining Scopes.
Pattern formulas for the scopes After L, Between L and
R, and After L Until R can be generated using the for-
mulas for the Global and Before R scopes described in
Tables 3 and 4. In this section, we use the symbol PLTL

G to
refer to formulas for the speci�c pattern within the Global
scope, and we use the symbol PLT L<R to refer to formulas
for the speci�c pattern within the Before R scope. Table
5 provides the LTL templates for patterns within the After
L, Between L and R, and After L Until R scopes.

The following is an example of how these general LTL
formulas can be used. Let us assume that the desired
property can be described by the Response(P, Q) pattern
within the Between L and R scope. In addition, let us
assume that L is of type ParallelC(l1, l2), P is of type
ConsecutiveCp1, p2), Q is of type ParallelC(q1, q2), and
R is of type AtLeastOneC(r1, r2). To get the desired
LTL formula for the Response(P, Q) pattern within the
Between L and R scope, we �rst need to get the formula
for this pattern within the Before R scope (i.e. we need
to �nd PLT L<R ). The general LTL formula corresponding to
this pattern, scope, and CP classes combination is the one
next to last in Table 4. The resulting LTL formula (PLT L<R )
for Response(P,Q) pattern with Before R scope is:

¬((¬(r1∨r2)) U (((p1∧(¬(r1∨r2))∧X((p2∧¬(r1∨r2))

∧(((¬((q1 ∧ q2 ∧ ¬(r1 ∨ r2))))U (r1 ∨ r2)))))))).

We can then use this formula PLT L<R to generate the LTL
formula for the Response(P, Q) Between L and R. Us-
ing the second general LTL formula in Table 5, the resulting

Table 4. LTL Templates for Patterns within
Before R Scope

Pattern LTL Formula)
Absence of P
Before RC

¬((¬RLTL) U ((P LTL&r¬RLTL)&l

¦RLTL))

Absence of P
Before RE

((¦RLTL) → ¬((¬((¬r1 ∧ . . . ∧ ¬rn) ∧
X(RLTL

H ))) U (P LTL&r(¬(¬r1 ∧ . . . ∧
¬rn ∧XRLTL

H )))))

Existence of P
Before RC

¬((¬(P LTL &r ¬RLTL)) U RLTL)

Existence of P
Before RE

¬((¬(P LTL&r ¬(¬r1 ∧ . . . ∧ ¬rn ∧
XRLTL

H ))) U (¬r1 ∧ . . . ∧ ¬rn ∧XRLTL
H ))

Q Precedes
PC Before RC

(¦RLTL → ((¬(P LTL&r¬RLTL)) U

((QLTL&−l¬P LTL) ∨RLTL))

Q Precedes
PE Before RC

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬RLTL ∧ X(P LTL

H &r¬RLTL)))

U ((QLTL&−l¬(¬p1 ∧ . . .¬pn ∧
XP LTL

H )) ∨RLTL))

Q Precedes
PC Before RE

(¦RLTL) → (((¬(P LTL&r¬(¬r1 ∧ . . . ∧
¬rn ∧XRLTL

H ))) U ((QLTL&−l¬P LTL)∨
((¬r1 ∧ . . . ∧ ¬rn) ∧XRLTL

H ))))

Q Precedes
PE Before RE

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬(¬r1 ∧ . . . ∧ ¬rn ∧ XRLTL)H ∧
X(P LTL

H &r¬(¬r1∧. . .∧¬rn∧XRLTL
H ))))

U ((QLTL&−l¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))∨((¬r1∧ . . .∧¬rn)∧XRLTL
H )))

Q Str.Precedes
PC Before RC

(¦RLTL) → ((¬(P LTL&r¬RLTL)) U

((QLTL&r¬P LTL) ∨RLTL))

Q Str.Precedes
PE Before RC

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬RLTL ∧ X(P LTL

H &r¬RLTL)))

U ((QLTL&r¬(¬p1∧ . . .¬pn∧XP LTL
H ))∨

RLTL))

Q Str.Precedes
PC Before RE

(¦RLTL) → (((¬(P LTL&r¬(¬r1 ∧ . . . ∧
¬rn ∧ XRLTL

H ))) U ((QLTL&r¬P LTL)∨
((¬r1 ∧ . . . ∧ ¬rn) ∧XRLTL

H ))))

Q Str.Precedes
PE Before RE

(¦RLTL) → ((¬((¬p1 ∧ . . . ∧ ¬pn) ∧
¬(¬r1 ∧ . . . ∧ ¬rn ∧ XRLTL)H ∧
X(P LTL

H &r¬(¬r1∧. . .∧¬rn∧XRLTL
H ))))

U ((QLTL&r¬(¬p1 ∧ . . . ∧ ¬pn ∧
XP LTL

H ))∨((¬r1∧ . . .∧¬rn)∧XRLTL
H )))

Q Responds to
P Before RC

¬((¬RLTL) U ((P LTL&r¬RLTL)&l

((¬(QLTL&r¬RLTL)) U RLTL)))

Q Responds to
P Before RE

¬((¬((¬r1 ∧ . . . ∧ ¬ rn) ∧ X(RLTL
H )))

U ((P LTL&r¬(¬r1 ∧ . . . ∧ ¬rn ∧
XRLTL

H ))&l((¬(QLTL&r¬(¬r1 ∧ . . . ∧
¬rn ∧ XRLTL

H )))U(¬r1 ∧ . . . ∧ ¬rn ∧
XRLTL

H ))))



Table 5. LTL Templates for Patterns within the
Remaining Scopes

Scope LTL Formula)
After L ¬((¬LLTL) U (LLTL&l¬PLTL

G ))

Between L
and RC

2((LLTL&l¬RLTL)→ (LLTL&lPLTL
<R ))

Between L
and RE

2(LLTL → (LLTL&lPLTL
<R ))

After L
Until RC

2((LLTL&l¬RLTL) → (LLTL&l((PLTL
<R ∧

((¬ ¦RLTL)→PLTL
G )))))

After L
Until RE

2((LLTL)→ (LLTL&l((PLTL
<R ∧ ((¬¦RLTL)

→PLTL
G )))))

formula is:

2((l1 ∧ l2 ∧ ¬(r1 ∨ r2)) → ((l1 ∧ l2 ∧ (PLT L<R )))),

or
2((l1 ∧ l2 ∧ ¬(r1 ∨ r2)) →

((l1 ∧ l2 ∧ (¬((¬(r1 ∨ r2)) U (((p1 ∧ (¬(r1 ∨ r2)) ∧X

((p2∧¬(r1∨r2))∧(((¬((q1∧q2∧¬(r1∨r2))))U (r1∨r2) . . .).

8 Veri�cation of LTL Templates

An advantage of formal veri�cation techniques is that
they can uncover subtle errors that are missed by traditional
techniques. This motivates the use of these techniques in
safety critical systems, where a failure could result in the
loss of human life or expensive equipments. For this reason,
it is important to verify that the formal speci�cations used
in these techniques match the original intent of the speci�er.

The LTL templates introduced in the previous section
were veri�ed using the following three techniques:

• formal proofs were used to verify the formulas for pat-
terns within the Global scope (i.e., formulas in Ta-
ble 4),

• testing using a model checker with equivalence classes
and boundary analysis techniques was used to verify
the formulas for patterns within the Before R scope
(i.e., formulas in Table 5), and

• reviews were used to verify the correctness of the for-
mulas for patterns within the remaining three scopes
(i.e., formulas in Table 6).

Because of the lack of space, this paper only discusses
the proofs used for verifying the LTL templates for the
global scope and provides one such proof. The remaining
proofs along with the detailed descriptions of the techniques

used in the veri�cation of the LTL templates for the other
scopes are provided in Salamah [10].

As mentioned above, the formulas for patterns within
the global scope were veri�ed using formal proofs. The
proofs used de�nitions 1-3 of patterns within the Global
scope provided in Section 4. This section highlights the
proof of correctness for the LTL template corresponding to
the Response pattern.

The main theorem of this paper follows:
Theorem 1 For every pattern within the Global scope, the
corresponding LTL formula is equivalent to the formal def-
inition of the pattern in �rst order logic
In order to prove this theorem, it is necessary to prove the
correctness of each of the formulas in Table 4. Let us pro-
vide a proof for one case.
Proposition 1 The LTL formula

2(PLTL → (PLTL &l ¦QLTL))

is equivalent to the formal de�nition of the pattern �Q Re-
sponds to P� in Global scope.
Proof.
1◦. According to De�nition 3, �Q responds to P � means
that if P holds at some moment s, then Q holds at some
moment s′ for which bQ(s′) ≥ eP (s). Formally, we can
describe this property as follows:

∀s (P (s) → ∃s′ (Q(s′) ∧ bQ(s′) ≥ eP (s)) (1)

We want to prove that this formula is equivalent to the cor-
responding LTL formula

2(P → (P &l ¦Q)) (2)

Comment. To make the proof more readable, we describe
the LTL formula PLTL corresponding to P simply as P .
We already know that the formulas P and PLTL are equiv-
alent, so from the logical viewpoint these simpli�ed nota-
tions are well justi�ed.

Similarly, we describe the LTL formula QLTL corre-
sponding to Q simply as Q.
2◦. To prove the desired equivalence, let us �rst reformulate
the LTL formula (2) in terms of quanti�ers.
2.1◦. By the de�nition of the �always� operator 2, the for-
mula 2A means that A holds at all moments of time s, i.e.,
that ∀sA(s). So, the above formula (2) is equivalent to

∀s (P (s) → (P &l ¦Q)(s))) (3)

2.2◦. The connective (A &l B)(s) was de�ned as meaning
that A holds at the moments s and B holds at the last of A-
relevant moments of time, i.e., at the moment eA(s). Thus,
the formula (2) can be equivalently reformulated as

∀s (P (s) → (P (s) ∧ (¦Q)(eP (s)))). (4)



In this implication, if P (s) holds, then of course P (s) auto-
matically holds, so we can delete this term from the right-
hand side of the implication and simplify the above for-
mula to

∀s (P (s) → (¦Q)(eP (s))). (5)

2.3◦. By the de�nition of the �eventually� operator ¦, the
formula ¦A means that A holds either at the current moment
of time s, or at some later moment of time s′′ > s, i.e., that
∃s′′ (A(s′′) ∧ s′′ ≥ s).

Thus, the formula (2) is equivalent to

∀s (P (s) → ∃s′′ (Q(s′′) ∧ s′′ ≥ eP (s))). (6)

3◦. Since the LTL formula (2) is equivalent to (6), to com-
plete our proof we only need to prove the equivalence be-
tween (1) and (6).
3.1◦. Let us �rst prove that (6) implies (1).

Indeed, let us assume that (6) holds, and that P (s) holds
for some moment of time s. Then, the formula (6) implies
that for some s′′ ≥ s, we have Q(s′′) and s′′ ≥ eP (s).

We have de�ned bA(s) as the �rst moment of time ≥ s
for which a certain condition holds. Thus, we always have
bA(s) ≥ s.

In particular, we have bQ(s′′) ≥ s′′. From s′′ ≥ eP (s),
we can now conclude that bQ(s′′) ≥ eP (s). Thus, for s′ =
s′′, we have bQ(s′) ≥ eP (s) and Q(s′). So, we have proven
the formula (1).
3.2◦. Let us now prove that (1) implies (6).

Indeed, assume that (1) holds, and P (s) holds for some
moment of time s. Then, according to (1), there exists a
moment s′ for which bQ(s′) ≥ eP (s) and Q(s′).

By de�nition of bA(s), we can easily conclude that the
formula A always holds at the moment bA(s): A(bA(s)).
Thus, for s′′ = bQ(s), we have Q(s′′) and s′′ ≥ eP (s). So,
we have proven the formula (6).

The equivalence is proven, hence Proposition 1 is true.

9 Summary and Future Work

This paper provides formal descriptions of the different
CP classes de�ned by Mondragon et al. [7]. In addition, it
presents formal descriptions of the patterns and scopes de-
�ned by Dwyer et al. [2] when using CP classes. The main
contributions of the paper are the de�nitions of general LTL
formulas that can be used to generate LTL speci�cations of
properties de�ned by patterns, scopes, and CP classes. The
general LTL formulas for the Global scope (formulas in Ta-
ble 4) have been veri�ed using formal proofs [10]. Formulas
for the remaining scopes (formulas in Tables 5 and 6) were
veri�ed using testing and formal reviews [3, 10].

The next step in this work consists of providing formal
proofs for formulas of the remaining scopes. In addition,

we aim at enhancing the Prospec tool by including the gen-
eration of LTL formulas that use the translations provided
by this paper.
Acknowledgments. This work was partly funded by NSF
grants EAR-0225670 and HRD-0734825.

References

[1] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri,
M., �NUSMV: a new Symbolic Model Veri�er�, Int'l
Conf. on Computer Aided Veri�cation CAV, July 1999.

[2] Dwyer, M.B., Avrunin, G.S., and Corbett, J.C., �Pat-
terns in Property Speci�cation for Finite State Veri�-
cation,� Proc. 21st Int'l Conf. on Software Engineer-
ing, Los Angeles, CA, 1999, 411�420.

[3] Garcia, L.A., Automatic Generation and Veri�cation
of Complex Pattern-Based Speci�cations, University
of Texas at El Paso, Department of Computer Science,
Master's thesis, July 2007.

[4] Hall, A., �Seven Myths of Formal Methods,� IEEE
Software, September 1990, 11(8)

[5] Holzmann, G.J., The SPIN Model Checker, Addison-
Wesley, 2004.

[6] Havelund, K., and Pressburger, T., �Model Checking
Java Programs using Java PathFinder�, Int'l J. on Soft-
ware Tools for Technology Transfer, 2(4), April 2000.

[7] Mondragon, O., and Gates, A.Q., �Supporting Elicita-
tion and Speci�cation of Software Properties through
Patterns and Composite Propositions,� Int'l J. Soft-
ware Engineering and Knowledge Engineering, 14(1),
Feb. 2004.

[8] Manna, Z. and Pnueli, A., �Completing the Temporal
Picture,� Theoretical Computer Science, 83(1), 1991,
97�130.

[9] Rushby, J., �Theorem Proving for Veri�cation,� Mod-
elling and Veri�cation of Parallel Processes, June
2000.

[10] Salamah, I.S., De�ning LTL formulas for com-
plex pattern-based software properties, University of
Texas at El Paso, Department of Computer Science,
PhD Dissertation, July 2007.

[11] Smith, R., Avrunin, G., Clarke, L., and Osterweil, L.,
�PROPEL: an approach supporting property elucida-
tion� Proc. 22rd Int'l Conf. on Software Engineering,
ICSE, May 2002, Orlando, Florida

[12] Spec Patterns, http://patterns.projects.cis.ksu.edu/,
August 2007.

[13] Stolz, V. and Bodden, E., �Temporal Assertions us-
ing AspectJ�, Fifth Workshop on Runtime Veri�cation,
July 2005.


