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Abstract

This chapter presents a rigorous theory of random fuzzy sets in its
most general form. Some applications are included.

Keywords: continuous lattices, random sets, random fuzzy sets, Choquet
theorem, coarse data, perception-based information

1 Introduction

It is well known that in decision making under uncertainty, while we are guided
by a general (and abstract) theory of probability and of statistical inference,
each specific type of observed data requires its own analysis. Thus, while text-
book techniques treat precisely observed data in multivariate analysis, there are
many open research problems when data are censored (e.g., in medical or bio-
statistics), missing, or partially observed (e.g., in bioinformatics). Data can be
imprecise due to various reasons, e.g., due to fuzziness of linguistic data. Impre-
cise observed data are usually called coarse data. In this chapter, we consider
coarse data which are both random and fuzzy.

Fuzziness is a form of imprecision often encountered in perception-based
information. In order to develop statistical reference procedures based on such
data, we need to model random fuzzy data as bona fide random elements, i.e.,
we need to place random fuzzy data completely within the rigorous theory of
probability. This chapter presents the most general framework for random fuzzy
data, namely the framework of random fuzzy sets. We also describe several
applications of this framework.



2 From Multivariate Statistical Analysis to
Random Sets

What is a random set? An intuitive meaning. What is a random set?
Crudely speaking, a random number means that we have different numbers with
different probabilities, a random vector means that we have different vectors
with different probabilities; similarly, a random set means that we have different
sets with different probabilities.

How can we describe this intuitive idea in precise terms? To provide such
a formalization, let us recall how probabilities and random vectors are usually
defined.

How probabilities are usually defined. To describe probabilities, in gen-
eral, we must have a set §2 of possible situations w € 2, and we must be able to
describe the probability P of different properties of such situations. In mathe-
matical terms, a property can be characterized by the set of all the situations w
which satisfy this property. Thus, we must assign to sets A C Q, the probability
value P(A).
According to the intuitive meaning of probability (e.g., as frequency), if we
have two disjoint sets A and A’, then we must have P(AUA’) = P(A) + P(4’).
Similarly, if we have countably many mutually disjoint sets A;, we must have
n (oo}

P <U Ai) = Y P(4;). A mapping which satisfies this property is called o-
i=1 i=1

additive.

It is known that even in the simplest situations, e.g., when we randomly
select a number from the interval = [0,1], it is not possible to have a o-
additive function P which would be defined on all subsets of [0,1]. Thus, we
must restrict ourselves to a class A of subsets of 2. Since subsets represent
properties, a restriction on subsets means restriction on properties. If we allow
two properties F' and F’, then we should also be able to consider their logical
combinations F' & F’, FV F’, and —F — which in set terms correspond to union,
intersection, and complement. Similarly, if we have a sequence of properties
F,,, then we should also allow properties Vn F),, and 3n F),, which correspond to
countable union and intersection. Thus, the desired family A should be closed
under (countable) union, (countable) intersection, and complement. Such a
family is called a o-algebra.

Thus, we arrive at a standard definition of a probability space as a triple
(Q, A, P), where € is a set, A is a o-algebra of subsets of 2, and P : A — [0, 1]
is a o-additive function.

How random objects are usually defined. Once a probability space is
fixed, a random object from the set C is defined as mapping V : 2 — C. For
example, the set of all d-dimensional vectors is the Euclidean space R?, so a
random vector is defined as a map V : Q — R%,



The map V must enable us to define probabilities of different properties of
objects. For that, we need to fix a class of properties; we already know that
such a class B should be a g-algebra. For each property of objects, i.e., for each
set B € B, it is natural to define the probability P(B) as the probability that
for a random situation w, the corresponding object V(w) belongs to the set B
(i.e., satisfies the desired property). In precise terms, this means that we define
this probability as P(V~1(B)), where V~!(B) denotes {w : V(w) € B}.

For this definition to be applicable, we must require that for every set B from
the desired o-algebra B, the set V~1(B) must belong to A. Such mappings are
called A-B-measurable.

How random vectors are usually defined. In particular, for random vec-
tors, it is reasonable to allow properties corresponding to all open sets B C R¢
(like 21 > 0) and properties corresponding to all closed sets B (such as z1 > 0).
So, we must consider the smallest o-algebra which contains all closed and open
sets. Sets from this smallest subalgebra are called Borel sets; the class of all
Borel sets over R? is denoted by B(R?). So, a random vector is usually defined
as a A-B%measurable mapping V : Q — R9.

Alternatively, we can consider the vectors themselves as events, i.e., con-
sider a probability space (RY, B(RY), Py/). In this reformulation, as we have
mentioned, for every set B, we get Py (B) = P(V~1(B)), so we can say that Py
is a composition of the two mappings: Py = PV ~!. This measure Py is called
a probability law of the random vector.

How random vectors are usually described. From the purely mathemat-
ical viewpoint, this is a perfect definition of a random vector. However, from the
computational viewpoint, the need to describe Py (B) for all Borel sets B makes
this description impractical. Good news is that due to o-additivity, we do not
need to consider all possible Borel sets B, it is sufficient to describe Py (B) only
for the sets of the type (—oo,z1] X ... x (—00, 24], i.e., it is sufficient to consider
only the probabilities that & <z & ... & &g < 4.

In the 1-dimensional case, the probability F(x) that £ < z is called a (cumu-
lative) distribution function. Similarly, in the general d-dimensional case, the
probability F(x1,...,xq) that & < zq, ..., and &g < x4 is called a distribu-
tion function. In these terms, the probability measures on B(R?) are uniquely
characterized by their distribution functions. This result was first proved by
Lebesgue and Stieltjes and is thus called the Lebesgue-Stieltjes theorem.

From random vectors to slightly more general random objects. The
above definition of a random vector does not use any specific features of a multi-
dimensional vector space R, so it can be naturally generalized to the case when
the set C of objects (possible outcomes) is a locally compact Hausdorff second
countable topological space. Such spaces will be described as LCHS, for short.



From random vectors to random sets. As we have mentioned, in some
real-life situations, the outcome is not a vector by a set of possible vectors. In
this case, possible outcomes are subsets of the vector space R%, so the set C of
possible outcomes can be described as the set of all such subsets — a power set

P(RY).

Need to consider one-element sets. An important particular case of this
general situation is the case when we know the exact vector x. In this case,
the set of all possible vectors is the corresponding one-element set {x}. So,
one-element sets must appear as possible sets.

Restriction to closed sets. From the practical viewpoint, it is sufficient to
only consider closed sets.

Indeed, by definition, a closed set is a set which contains all the limits of
its elements. If z,, € S and z,, — x, then, by definition of a limit, this means
that whatever accuracy we choose, we cannot distinguish between x and values
xy, for sufficiently large n. Since x,, € S and z is undistinguishable from x,,, it
makes sense to conclude that x also belongs to S —i.e., that S is indeed a closed
set.

Since one-element sets are closed, this restriction is in accordance with the
above-mentioned need to consider one-element sets. (In a more general frame-
work of a LCHS space, the requirement that all one-point sets be closed is one of
the reasons why we impose the restriction that the topology must be Hausdorft:
for Hausdorff topological spaces, this requirement is satisfied.)

With this restriction, the set C of possible outcomes is the class of all closed
subsets of the space R?; this class is usually denoted by F(R?), or simply F,
for short.

It is worth mentioning that the decision to restrict ourselves to closed sets
was made already in the pioneering book (Mathéron 1975) on random sets.

‘We need a topology on F. To finalize our definition of closed random sets,
we must specify a o-field on F. To specify such a field, we will follow the same
idea as with random vectors — namely, we will define a topology on F and then
consider the o-field of all the Borel sets in this topology (i.e., the smallest o-filed
that contains all sets which are open or closed in the sense of this topology.

In his 1975 monograph (Mathéron 1975), Mathéron described a natural
topology that he called a hit-or-miss topology. (It is worth mentioning that
this topology was first introduced in a completely different problem: the con-
struction of the regularized dual space of a C*-algebra (Fell 1961), (Fell 1962).)

Mathéron’s motivations and definitions work well for random sets. However,
they are difficult to directly generalize to random fuzzy sets. Since the main
objective of this paper is to describe and analyze random fuzzy sets, we will
present a different derivation of this topology, a derivation that can be naturally
generalized to random fuzzy sets.



This alternative definition is based on the fact that on the class of closed sets,
there is a natural order A O B. The meaning of this order is straightforward.
If we have a (closed) set A of possible vectors, this means that we only have
partial information about the vector. When we gain additional information,
this enables us to reduce the original set A to its subset B. Thus, A O B means
that the set B carries more information about the (unknown) vector than the
set A.

It turns out that in many important situations, this order enables us to de-
scribe a natural topology on the corresponding ordered set. Specifically, this
topology exists when the corresponding order forms a so-called continuous lat-
tice. To describe this topology in in precise terms, we will thus need to recall
the basic notions of lattice theory and the definition of a continuous lattice.

Basics of lattice theory. Lattices are a particular case of partially ordered
sets (also knows as posets); so, to define the lattice, we must first recall the
definition of a poset. A poset is defined as a set X together with a relation <
which satisfies the following properties:

(i) < is reflezive, i.e., v < zx for all z € X;

(ii) < is anti-symmetric, i.e., for all z,y € X, z <y and y < z imply that
T =y;

(iii) < is transitive, i.e., for all z,y,z € X, if <y and y < z, then z < z.

An element u € X is called an upper bound for a pair z,y is ¢ < u and y < u.
Dually, an element v € X is called a lower bound for a pair z,y is v < z and
v < y. These concepts can be naturally extended to arbitrary collections of
elements A C X: an element v € X is an upper bound for A if x
leu for all z € A; an element v € X is a lower bound for A if v < x for all x € A.
The least upper bound is exactly what it sounds like: the least of all the
upper bounds. Similarly, the greatest lower bound is the greatest of all the lower
bounds. In precise terms, an element v € X is called the least upper bound of
the set A if it satisfies the following two conditions:

a) u is an upper bound for the set A (i.e., x < wu for all z € A); and
b) if w is an upper bound for the set A, then v < w.

The least upper bound of a set A is also called its join or supremum and is
usually denoted by AA or sup A.

Similarly, an element v € X is called the greatest lower bound of the set A if
it satisfies the following two conditions:

a) v is a lower bound for the set A (i.e., v <z for all z € A); and

b) if w is an lower bound for the set A, then w < v.



The greatest lower bound of a set A is also called its meet or infimum and is
usually denoted by VA or inf A.
For two-element sets, A{a, b} is usually denoted by a Ab and V{a, b} by aVb.
A poset X is called a lattice if a Ab and a V b exist for all pairs a,b € X. A
poset X is called a complete lattice if both VA and AA exist for any set A C X.

Continuous lattices and Lawson topology. In some posets, in addition
to the original relation < (“smaller”), we can define a new relation < whose
meaning is “much smaller”. This relation is called way below.

The formal definition of <« requires two auxiliary notions: of a directed set
and of a decpo. A set A C X is called directed if every finite subset of A has an
upper bound in A. Of course, in a complete lattice, every set is directed.

A poset X is called a directed complete partial order (dcpo), if each of its
directed subsets D has a supremum VD. In particular, every complete lattice
is a dcpo.

We say that x is way below y (z < y) if for every directed subset D for which
y < VD, there exists an element d € D such that x < d.

In particular, a 1-element set D = {y} is always directed, and for this set,
we conclude that x < y — i.e., that “way below” indeed implies <. Another
simple example: for a natural order on the set of real numbers, * < y simply
means z < y.

From the common sense viewpoint, we expect that if x is way below y and z
is even smaller than x, then z should also be way below y. This is indeed true
for the above definition: indeed, if z < y and z < z, then z < y, then for every
D, we have x < d for some d and hence z < z < d, i.e., z < d for that same
element d € D. Similarly, we can proof all three statements from the following
lemma.

Lemma 1 Let (L, <) be a depo. Then, for any u,x,y,z in L, we have:
(i) © <y implies © < y;
(i) u<ax <<y <z implies u <K z;

(iii) if * < z and y < z, then z Vy < z.

For example, to prove (iii), for every directed set D, we must prove that
z < VD implies that z Vy < d for some d € D. Indeed, from z < z and y < z,
we conclude that z < d, and y < d,, for some d,,d, € D. Since D is a directed
set, there exists an element d € D which is an upper bound for both d, and
dy, i.e., for which d, < d and dy, < d. From z < d, and d, < d, we conclude
that x < d and similarly, that y < d, so d is an upper bound for x and y. By
definition of the least upper bound z V y, it must be smaller than or equal than
any other upper bound, hence z V y < d. The statement is proven.

We can define a topology if we take, as a subbase, sets {y € X : y < =} and
{y € X : 2 £y} for all x € X. In other words, as open sets for this topology,



we take arbitrary unions of finite intersections of these sets. This topology is
called a Lawson topology.

It is worth mentioning that for the standard order on real numbers, the sets
{yeX:y<et={y:y<z}land {ye X:oz Ly} ={y:y >z} are indeed
open, and the corresponding topology coincides with the standard topology on
the real line.

There is an important reasonably general case when the Lawson topology
has useful properties: the case of a continuous lattice. A complete lattice X is
called a continuous lattice if every element x € X is equal to the union of all the
elements which are way below it, ie., if z = V{y € X : y < 2z} for all z € X.
It is known that on every continuous lattice (X, <), the Lawson topology is
compact and Hausdorff; see, e.g., (Gierz et al. 1980).

Final definition of a (closed) random set and the need for further
analysis. In our analysis of random sets, we will use the Lawson topology to
describe the o-algebra of subsets of F — as the class of all Borel sets in the sense
of this topology.

From the purely mathematical viewpoint, this is a (somewhat abstract but)
perfect definition. However, since our objective is to apply this definition to
practical problems, we need to first reformulate this general abstract definition
in more understandable closer-to-practice terms.

3 The Lawson Topology of Closed Sets

First try. Let us describe what these notions lead to in the case of closed
sets. For the class F of closed sets, there is a natural ordering relation <: a set
inclusion F' C F’. The corresponding poset (F,C) is indeed a complete lattice:
indeed, for every family F; (i € I) of closed sets, there exist both the infimum
and the supremum:

MF, e Friely=(|{F:iel}
V{F; :i € I} = the closure of U{FZ cie I}

The resulting complete lattice is not continuous. Let us show that with
C as the ordering relation <, F is not continuous. Specifically, as we will show,
that, for example, in the 1-dimensional case R = R, the definition F = V{G €
F : G < F} of a continuous lattice is violated for F = R.

For that, we will prove that for every two sets F and G, G < F implies
that G = (). We will prove this by reduction to a contradiction. Let us assume
that G # 0 and G < F. Since the set G is not empty, it contains an element
x € G. For this element z, the one-point set S = {z} is a closed subset of
G: S C G. By our first-try definition of <, this means that S < G. We have
already mentioned that if S < G and G < F, then S < F. By definition of
the “way below” relation <, this means that if F' < VD, then there exists an



element d € D for which S < d. In particular, we can take as D the family
1 1

{d,, }n, where for every positive integer n, d, def <oo, T — } U [1’ + -, +oo>.
n n

It is easy to see that dy,, V...V dn, = dyax(n,,....n,), S0 the family D is indeed
directed. The union (Jd,, of these sets is equal to (—oo,z) U (x,400). Thus,

the closure VD of thisnunion is the entire real line R. Since F' is a subset of the
real line, we have F < VD. However, for every d, € D, we have x ¢ d, and
thus, S £ d,,. The contradiction shows that a non-empty set G cannot be way
below any other set F'. Therefore, the only set G for which G < R is an empty
set, so VG e F: G R} =0 #R.

Correct definition. Fortunately, a small modification of the above definition

makes F a continuous lattice. Namely, as the desired ordering relation < on

the class F of all closed sets, we can consider the reverse inclusion relation D.
It is easy to show that (F, D) is a complete lattice: indeed,

MNF; € F:i € I} = the closure of U{F’ riel};

V(Fciely=({Fi:iel}.

Let us prove that (F,D) is a continuous lattice. By definition, a continuous
lattice means that for every closed set F' € F, we have FF = V{G € F: G < F}
for every set F' € F. Since G < F implies G < F, i.e., G O F, we thus have
V{G € F: G < F} D F. So, to prove the desired equality, it is sufficient to
prove that F D V{G € F: G <« F}.

We have already mentioned that in the lattice (F, D), the union V is simply
the intersection of the corresponding sets, so the desired property can be rewrit-
tenas FF D N{G € F: G < F}. It turns out that it is easier to prove the equiv-
alent inclusion of complements, i.e., to prove that F* C U{G°: G € F,G < F}
(where F© denotes the complement of the set F).

There is no easy and intuitive way to immediately prove this result, because
the notion of “way below” is complex and is therefore not intuitively clear. So,
to be able to prove results about this relation <, let us reformulate it in an
equivalent more intuitive way.

Lemma 2 For X = RY (and, more generally, for an arbitrary locally compact
Hausdorff second countable topological space X ), for F,G € F(X), FF < G if
and only if there exists a compact set K C X such that F© C K C G°.

Proof.

(i) Sufficiency. Let F,G € F(X) and let K be a compact set such that
Fe C K C G° Let G < VD for some directed family D, i.e., let G 2 VD.
We already know that V is simply an intersection, i.e., G 2 ND. In terms
of complements, we get an equivalent inclusion G¢ C U{d® : d € D}. Since
K C G°, we conclude that K C U{d® : d € D}. Complements d° to closed



sets d € D are open sets. Thus, the compact K is covered by a family of open
sets d¢, d € D. By definition of a compact set, this means that we can select
a finite subcover, i.e., conclude that K C FY U ... U FF for some closed sets
F; € D. Since F°¢ C K, we thus have F'° C Ff U ... U Ff, ie., equivalently,
FOFRN..NE,ie, F<FV...VFE,.

Since sets Fi,..., F;, belong to the directed family D, this family must also
contain an upper bound d € D. By definition of the least upper bound, we have
Fy V...V F, <d, hence F < d. Thus, indeed, G < F.

(ii) Necessity. Let F' < G. Since the underlying topological space X is locally
compact, each point x € G¢ has a compact neighborhood @, C G°¢ such that

its interior @, contains z. We thus have G¢ = U{Q,: © € G} or, equivalently,
G=n{(Q,) :zeG}=V{(Q,)°:z e G}

Finite unions of closed sets (C?)m)c form a directed family D, for which the union
is the same set G. Since G < VD and F < G, we conclude (by definition of
the “way below” relation) that F < \/{(C?)x)c ci=1,...,n}, z; € G°. Thus,
FD F] (éz)C or, equivalently, F¢ C CJ ((,OQI) Therefore, F¢ C CJ Q. C G-
Sincelzelach set )y, is compact, theirzilnion is also compact, sol:v;e have the

desired inclusion F¢ C K C G¢ with K = |J Q,,. The lemma is proven.
i=1

Proof that (F(X), D) is a continuous lattice. Let us now use this Lemma 2
to show that (F(X), D) is a continuous lattice. We have already mentioned that
to prove this fact, we must prove that F¢ C U{G° : G € F,G < F'} for every
closed set F' € F(X). Indeed, let F' be a closed set. Since X is locally compact,
for every point z from the open set F¢, there exists a compact neighborhood

[e] (o)
K, C F¢ such that its interior K, contains z. The complement A = (K,)¢ to

this (open) interior is a closed set A € F(X), for which z € A° :]O{IQ K, C Fe.
So, due to Lemma 2, A < F. In other words, if x € F¢, then thereis an A € F
such that x € A° and A < F. So, we conclude that

FCCU{G°:Ge F,GK F},

i.e., that (F(X),D) is indeed a continuous lattice.

Lawson topology on the class of all closed sets. Since (F(X),D) is a
continuous lattice, we can define Lawson topology for this lattice. For this
lattice, let us reformulate the general abstract notion of the Lawson topology in
more understandable terms. In the following text, we will denote the class of all
compact subsets of the space X by K(X), and the class of all open subsets of
X by O(X). When the space X is clear from the context, we will simply write
K and O.



Theorem 1 For every LCHS X, the Lawson topology on the continuous lattice

(F(X), D) is generated by the subbase consisting of subsets of F of the form

FEY P er FANK =0} and Fo € {F e F: FNG # 0}, where K € K

and G € O.

Comment. The class {F € F : F N K = 0} is the class of all random sets F'
which miss the set K, and the class {F € F : F NG # (0} is the class of all
random sets F' which hit the set G. Because of this interpretation, the above
topology is called the hit-or-miss topology (Mathéron 1975). So, the meaning
of Theorem 1 is that the Lawson topology on (F(X),2) coincides with the
hit-or-miss topology.

Proof. By definition, the Lawson topology has a subbase consisting of sets of
the form {F' € F: F < F'} and {F' € F: F £ F'} for all F € F, where < is
D. It turns out that to prove the theorem, it is sufficient to reformulate these
sets in terms of D.

(i) Clearly,

{FleF:FLF}={F €eF:F nNF°+#0}.
(ii) For K € K, we have

{(FeF:FNnK=0}= ) {FeF:F <F}.
F'eF,F'CKe®

Indeed, if F € F and FN K = 0, then K is a subset of the open set F¢. Since
the space X is locally compact, there exists an open set B and a compact K’
such that K C B C K’ C F°¢. The complement G = B¢ to an open set B is a
closed set for which K C G¢ C K’ C F°. By Lemma 2, this means that G < F
and, of course, G C K°.

Conversely, let f € F and F' « F with F/ C K¢. Then, by the same
Lemma 2, there is a compact set K’ with (F’')¢ C K’ C F¢. On the other hand,
F’ C K¢ implies that K C (F’')¢, so we have K C F¢ and KN F = (). The
theorem is proven.

From topology to metric: need and possibility. We have defined topol-
ogy on the class of all closed sets. Topology describes the intuitive notion of
closeness in qualitative terms. From the viewpoint of applications, it is conve-
nient to use quantitative measures of closeness such as a metric.

Before we start describing a corresponding metric, let us first prove that
this metric is indeed possible, i.e., that the corresponding topological space is
metrizable. It is known that for every continuous lattice, the corresponding
Lawson topology is compact and Hausdorff. Let us prove that for LCHS spaces
X, the Lawson topology on (F(X), D) is not only compact and Hausdorff, it is
also second countable — and therefore metrizable.

Theorem 2 For every LCHS X, the Lawson topology on (F(X), D) is second
countable.

10



Proof. This proof is given in (Mathéron 1975) for the hit-or-miss topology.
We reproduce it here for completeness.

Since X is locally compact Hausdorff second countable space, there exists a
countable basis B for the topology O consisting of relatively compact sets B € B
(i.e., sets whose closure B is compact). The fact that B is a basis means that
every open set G € O can be represented as a union of open sets from this
basis, i.e., that it can be represented in the form G = |J B;, where B; € B, and

il
B; CG.

By definition of the hit-or-miss topology, its subbase consists of the sets

FA={FeF:FnA={} for compact sets A and sets

Fa={FeF:FNA+(}

for open sets A. Thus, the base of this topology consists of the finite intersections

of such sets. The intersection of two sets F4 < {F € F: Fn A = ¢} and
FA {FeF:FnA = 0} consists of all the sets F' which do not have
common points neither with A nor with A’; this is equivalent to saying that F'
has no common points with the union AU A’, i.e., that FA N FA = FAVA,
Thus, finite intersections which form the basis of the hit-or-miss topology (or,
equivalently, Lawson topology) have the form
FE o C{FeF:FNK=0,FNG;#0,i=12,...,n}
for all possible K € K and G; € O.
Let us consider the following subset of this basis:

7= {FR5Pm k > 0, B, D; € B}

Clearly 7 is countable. We need to verify that 7 is a basis for the Lawson
topology. For this, we need to prove that for every element F' € F, in every
open neighborhood of F, there is an open set from 7 that contains F. It
is sufficient to prove this property only for the neighborhood from the known
basis.

Indeed, let F' € F and let the open set fgl,‘..,Gn be a neighborhood of F.
We need to find a U € 7 such that F € U C F§ 5 . We will prove this by
considering two possible cases: F' = ) and F # (.

If F' = (), then we cannot have F'NG; # 0, so n must be 0, and F5 o
FK. Since B is a basis, the compact set K can be covered by open sets from
this basis. Since K is compact, we can extract a finite cover from this cover,
i.e., conclude that K C Dy U...U Dy, for some elements D; € B. Thus, K C
Dy U...UD;. Clearly, the empty set has no common point with anyone, so
F c ]:'DlLJ...UDk'

If a set has no common points with a larger set, then it will no common
points with a subset either; so we conclude that F € FP1Y-UPs C FF So, we

can take U = FP1Y--UDk a5 the desired neighborhood.

11



If F' # 0, then the fact that F belongs to the neighborhood F§  , means
that F NG # ) for every i. This means that for every i = 1,2,...,n, we can
pick a point z; € FNG;. Since B is a basis, for every i, there exists an open set
B, € B such that z; € B; C EZ C G;NKe-.

This means that our set F' not only has no common points with K, it also
has no common points with the closed sets B;. Since the closed sets K and

no__
Fu < U Bi) are disjoint and the space X is Hausdorff, we can find two disjoint
i=1

open sets A1 and As which contain these sets: K C Ay and F'U (U Bi> C As.
i=1

Since B is a basis, we can represent the open set A; as a union of open sets from
B: KCA = UDj for some D; € B for which D; C A;. The set K is compact

J
and thus, from this open cover of K, we can extract a finite sub-cover, i.e., we
have

and
J

The theorem is proven.

k k
Kc|JDp,c|JD; <A cas,
j=1 j=1

| C =

Dj) N Ay = 0. Thus,
1

def ~D,U...UDy, K
FeU=Fg "5 "CSFac. . .c

n

4 Metrics on Closed Sets

From theoretical possibility of a metric to a practical need for an
explicit metric. In the previous section, we have shown that for every LCHS
X (in particular, for X = R?), when we define Lawson topology on the set F(X)
of all closed subsets of X, then this set F(X) becomes metrizable. This means
that in principle, this topology can be generated by a metric. However, from
the practical viewpoint, it is not enough to consider a theoretical possibility of
a metric, it is desirable to describe a specific explicit example of a metric.

Known metric on the class of all closed sets: Hausdorff metric. In-
tuitively, the metric describes the notion of a distance between two sets. Before
we start describing an explicit metric which is compatible with the Lawson
topology, let us first describe natural ways to describe such a distance.

For points z,y € R, the standard distance J(x,y) can be described in terms
of neighborhoods: the distance is the smallest value € > 0 such that = belongs
to the e-neighborhood of y and y is in the e-neighborhood of x.

It is natural to extend the notion of e-neighborhood from points to sets.
Namely, a set A is collection of all its points; thus, an e-neighborhood N, (A) of

12



a set A is a collection of e-neighborhoods of all its points. In other words, we
can define ot
N.(A) = {z € X :6(x,a) < ¢ for some a € A}.

Now, we can define the distance dy (A, B) between the two sets as the smallest
smallest value ¢ > 0 for which A is contained in the e-neighborhood of B and
B is contained in the e-neighborhood of A:

Hs(A,B) Yinf{e >0: A C N.(B)& B C N.(A)}.
This metric is called the Hausdroff metric (after the mathematician who pro-
posed this definition).

Limitations of the known metric. Hausdorff metric works well for bounded
sets in R? or, more generally, for subsets of a compact set. However, if we
use the Haudorff metric to described distances between arbitrary closed sets
A, B C R4, we often get meaningless infinities: for example, in the plane, the
Hausdorff distance between any two non-parallel lines is infinity.

How to overcome these limitations: the notion of compactification.
To overcome the above limitation, it is desirable to modify the definition of a
Hausdorff metric.

Since Hausdorff metric works well for compact spaces, a natural idea is to
somehow embed the original topological spaces into a compact set. Such a
procedure is known as compactification.

Simplest compactification. In the simplest compactification, known as
Alezandroff (or one-point) compactification, we simply add a single point co
to the original space X.

The corresponding topology on X U {oco} is defined as follows:

e if a set S C G does not contain the new point oo, then it is open if and
only if it was open in the original topology;

e if a set .S contains oo, then it is called open if and only if its complement
S¢ is a compact subset of the original space X.

From points to closed sets. This compactification can be extended to an
abritrary closed set F': namely, a set F' which was closed in X is not necessarily
closed in the new space X U {oo}, so we have to take the closure F' of this set.

If we have a matric 4’ on the compactification, then we can define a distance
between closed sets F, F' € F as Hy (F,F’).

13



Compactification of R?. For R?, the one-point compactification can be im-
plemented in a very natural way, via a so-called stereographic projection. Specif-
ically, we can interpret a one-point compactification of the space R¢ as a sphere
S C R4, The correspondence between the original points of R? and S is
arranged as follows. We place the space R? horizontally, and we place the sphere
S?% on top of this plane, so that its “South pole” is on that plane. Then, to find
the image 7(z) of a point € R? on the sphere, we connect this point  with the
“North pole” of the sphere by a straight line, and take, as 7(z), the intersection
between this line and the sphere. In this manner, we cover all the points on the
sphere except for the North pole itself. The North pole corresponds to infinity
— in the sense that if £ — oo, then 7(x) tends to the North pole.

In this sense, S¢ is a one-point compactification of the original space R%: it
is a compact space, and it is obtained by adding a point (North pole) to (the
image of) R%.

From points to closed sets. By using this construction, we can naturally
find the projection of an arbitrary closed set F' € F(R?) as the collection of all
the projections of all its points, i.e., as 7(F) = {w(x) : € F'}. The only minor
problem is even while we started with a closed set F', this collection 7(F'), by
itself, may be not closed. For example, a straight line on a plane is closed, but
its projection is closed — since it has point arbitrary close to the North pole but
not the North pole itself.

To resolve this problem, we can then take a closure of this image. Thus, we
arrive at the following stereographic Hausdorff metric Hy (mw(F),w(F")), where
" is the standard distance on the sphere S.

Relation between this metric and the Lawson topology. It turns out
that the Lawson topology on F(R9) is compatible with the Hausdorff metric on
a one-point compactification.

For the stereographic Hausdorff metric, this equivalence is proven, e.g., in
(Rockafeller and Wets 1984); for the general LCHS space, this is proven in (Wei
and Wang 2007).

5 Random Closed Sets: Final Definition and
Choquet Theorem

Final definition of a random (closed) set. With the material developed
in previous sections, we are now ready to formulate rigorously the concept of
random closed sets as bona fide random elements. These are generalizations of
random vectors and serve as mathematical models for observation processes in
which observables are sets rather than points.

Again, let F(R?) (F(X)) be the space of closed sets of R?, or more generally,
of a LCHS space X. Let o(F) denote the Borel o-field of subsets of F where
F is equipped with the Lawson topology. Let (€2, A, P) be a probability space.

14



A map V : Q — F, which is A-o(F)-measurable, is called a random closed
set (RCS) on RY. As usual, the probability law governing V is the probability
measure Py = PV ! on o(F).

Need to practically describe a random set. A random set is, in effect, a
probability measure on the class of all closed subsets F(X) of the LCHS X. In
principle, we can thus describe the random set by listing, for different subsets
S C F, the corresponding probability P(S).

From the practical viewpoint, however, this description is duplicating — e.g.,
since due to additivity, the probability Py (SUS’) of a union of two disjoint sets
is equal to the sum Py (S) + Py (S’) of the probabilities Py (S) and Py (S’) and
thus, does not have to be described independently.

For random numbers and for random vectors, the solution was to only give
probability of sets from a given subbase. For real numbers, this subbase con-
sisted of sets (—oo,x] — which let to the notion of a probability distribution.
For elements of RY, we considered sets of the type (—oo,x1] X ... X (—00,z4].
For the hit-or-miss topology on the space F(X), the subbase consists of the sets
{F: FNnA =0} for compact A and {F : F N A # (} for open sets A. It is
therefore reasonable to define the probability only on the sets of these type.

The set {F : FN A =0} is a complement to the set {F : F N A # (0}, so we
do not have to describe its probability separately: it is sufficient to describe the
probability of the sets {F : F N A # (}.

Resulting description: capacity functionals. As a result, we arrive at the
following definition. Once a random closed set X is defined, we can define the
mapping T : K — [0,1] as T(K) = P{w : X(w)N K # 0} = Px(Fk). This
mapping is called a capacity functional of a random closed set.

Is this description sufficient? A natural question is whether from this func-
tional we can uniquely determined the corresponding probability measure. A
related question is what are the conditions under which such a measure is pos-
sible.

It can be checked that T satisfies the following properties:

(i) 0<7()<1,T(0) =0
(i) If K, \, K then T(K,) \, T(K);

(iii) T is alternating of infinite order, i.e., T is monotone (with respect to C)
and for K1, Ks,..., K,, n>2,

(), x cmr(ye)
i=1 0AIC{1,2,....n} iel

where |I| denotes the cardinality of the set I.

It turns out that under these conditions, there is indeed such a measure.
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Theorem 3 (Choquet) Let T : K — R. Then the following two statements are
equivalent to each other:

e there exists a probability measure Q on o(F) for which Q(Fk) = T(K)
forall K € C;

o T satisfies the conditions (i), (i) and (iii).

If one of these statements is satisfied, then the corresponding probability measure
Q@ is uniquely determined by T .

For a proof, see (Mathéron 1975).

This theorem is the counter-part of the Lebesgue-Stieltjes theorem charac-
terizing probability measures on the Borel o-field of R? in terms of multivariate
distribution function S of random vectors. For subsequent developments of
RCS, see e.g. (Nguyen 2006).

6 From Random Sets to Random Fuzzy Sets

Need for fuzziness. As stated in the Introduction, random set observations
are coarse data containing the true, unobservable outcomes of random experi-
ments on phenomena.

A more general type of random and imprecise observations occurs when we
have to use natural language to describe our perception. For example, the risk is
“high” is an “observation” containing also imprecision at at a higher level due to
the fuzziness in our natural language. Modeling fuzziness in natural language,
i.e., modeling the meaning of terms is crucial if we wish to process information
of this type.

How we can describe fuzziness. Following Zadeh, we use the theory of
fuzzy sets to model the meaning of a nature language; see, e.g., (Nguyen and
Walker 2006) for fuzzy sets and fuzzy logics.

The theory is in fact valid for any LCHS space X. For concreteness, one can
keep in mind an example X = R?. By a fuzzy subset of X we mean a function
f:X —[0,1] where f(z) is the degree to which the element x is compatible with
the fuzzy concept represented by f. This function f is also called a membership
function.

For example, the membership function f of the fuzzy concept A = “small
non-negative numbers” of R could be f(z) =0, if z < 0,e™* for z > 0, where
f(z) = e~ is the degree to which z is considered as a “small non-negative
number”.

Ordinary subsets of X are special cases of fuzzy subsets of X, where for
A C X, its indicator function I, : RY — {0,1} C [0,1], Ia(z) = 1 if x € A, and
Is(z) =0if x & A, is the membership function of A.
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An alternative way to describe fuzzy sets: a-cuts. Informally, the fact
that the actual (unknown) value ..+ € X satisfies the property described by a
fully set f means the following:

e with confidence 1, the actual value x,.; satisfies the condition f(24c) > 0;

e with confidence 0.9, the actual value x,.; satisfies the condition f(xqet) >
1—-0.9 =0.1, i.e., belongs to the set {z : f(z) > 0.1};

e ctc.

In view of this interpretation, instead of describing the fuzzy set by its mem-
bership function f(z), we can alternatively describe it by the corresponding

sets Ay & {r € X : f(z) > a} for different o € [0,1]. These sets are called
alpha-cuts.

Alpha-cuts are nested in the sense that if o < o/, then A, 2 Ay . So, a
fuzzy set can be viewed as a nested family of sets (corresponding to different
degrees of confidence); see, e.g., (Klir and Yuan 1995), (Nguyen and Kreinovich,
1996), (Nguyen and Walker 2006).

Fuzzy analog of closed sets. In our description of random sets, we limited
ourselves to closed sets. Since a fuzzy set can be viewed as a nested family of sets
(its alpha-cuts), it is reasonable to consider fuzzy sets in which all alpha-cuts
are closed sets.

In other words, it is reasonable to restrict ourselves to fuzzy sets f : X —
[0,1] which have the following property: for every a € R, the set A, = {z €
X : f(z) > a} is a closed subset of X. In mathematics, functions f with this
property are called upper semicontinuous (usc, for short). We will thus call a
fuzzy set a fuzzy closed set if its membership function is usc.

Closed sets are a particular case of fuzzy closed sets. We have already
mentioned that traditional (crisp) sets are a particular case of fuzzy sets. It is
easy to check that closed crisp sets are also closed as fuzzy sets.

Moreover, a subset of X is closed if and only if its indicator function is upper
semicontinuous.

Towards a definition of a random fuzzy closed set. To formalize the con-
cept of random fuzzy (closed) sets, we will therefore consider the space USC/(X)
(where X is a LCHS space), of all usc functions on X with values in [0, 1].

As we mentioned earlier, a natural way to define a notion of the random
fuzzy closed set is to describe a topology on the set USC(X). Similar to the
case of closed sets, we will use the Lawson topology generated by a natural order
on USC(X).

The space USC(X) has a natural pointwise order: f < g if and only if
f(z) < g(z) for all x € X. We can also consider the dual order f > g (which is
equivalent to g < f). We will now look for the corresponding Lawson topology!
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7 The Continuous Lattice of Upper Semicontin-
uous Functions

First try: (USC(X),<). Let X as any LCHS space. By USC(X) we mean
the set of all usc functions f : X — [0,1].
With the order relation <, USC(X) is complete lattice, where

(,/\ f;) (x) = inf {f;(x).j € J} and (lv f;) (x) = sup{a € 0.1] 1z € Ao},

jeJ jeJ
where
Ay = closure of U{y € X: fi(y) > al.
jeJ
Remarks.

(i) Clearly f =inf{f;,j € J, f; e USC(X)} e USC(X).
Indeed, let o € [0,1], then {z € X : f(z) <o} = U{a: fj(z) <o} isan
open set. e
(ii) Let us explain why we cannot simply use pointwise supremum to define V.
Indeed, for f,(z) = I[%,_Foo)(x),n > 1, we have f, € USC(X), but the
pointwise supremum Slrlzp {I[%,—i-oo)(x)’n > 1} = I(0,400) () USC(X).

To define V{f; : 7 € J}, we proceed as follows.
For a € [0, 1], let

A, = closure of U{y € X: fi(y) > al,
jeJ

and define f(z) =sup{a € [0,1] : € A,}. We claim that f is the least upper
bound of {f; :j € J, f; e USC(X)} in USC(X) with respect to <.
Clearly each A, is closed and @ < 3 implies Az C A,. Assuch f € USC(X).
Next, for x € X, we have

x € closure of U{y 2 fi(y) > fi(@)} = Apa
jEJ

for any i € J. Thus, for every i € J, we have f;(x) < f(z). Since this is true
for every x, we thus conclude that f > f; for all i € J.

Now, for g € USC(X), we can write g(x) = sup{a € [0,1] : x € A,(9)}
where Ao (9) ={y € X : g(y) > a}.

For any y € U{x : fi(z) > a}, ie., for any y for which f;(y) > « for

jed

some j, we have g(y) > «a if g > f; for all i € I. Thus, y € A,(g), implying
that A, C Aa(g), since A,(g) is closed. But then sup{a € [0,1] : z € A,} <
sup{a € [0,1] : © € A,(g)} and hence f < g.
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(iii) However, the complete lattice (USC(X), <) is not continuous.

The proof of this statement is similar to the proof that the lattice (F(X)) is
not continuous. Indeed, let f : X — [0, 1] be a function for which f(x) =1 for
all z € X. Let us then show that the zero function, i.e. a function g for which
g(z) =0 for all z € X, is the only function in USC(X) which is way below f.

If suffice to show that for any real number r > 0, the function 7- I3 (-) (e.g.,

1
3 - I1o3(+)), is not way below f.

Let fo(z) = ](_007y_%)u(y+%7+oo), then \>/1 fn =1, but for any K, we have
nz
K K
V faly) =0, thus r- I,y £ \/1 [n, implying that r - I, is not way below f.

n=1 n=

Correct description: (USC,>). Thus, as in the case of F(X), we should
consider the reverse order >.

Theorem 4 The complete lattice (USC(X),>), where
V{fj:jeJt=mt{f;:jeJ}

and N{f; : j € J} = h with h(z) =sup{a € [0,1] : 2 € A,} and

A, = closure of U{y € X: fily) >al,
jeJ

18 continuous.

Before proving this theorem, we need a representation for elements of
USC(X). For every real number r and for every compact set K € K(X),

let us define an auxiliary function g, x as follows: g, x(z) = r if z € [O( and
gr. i (z) = 1 otherwise.

Lemma 3 Any f € USC(X) can be written as

f() =inf{g, k(") : f(y) <7 forally € K},

where infimum is taken over all pairs r € [0,1] and K € K(X) for which f(y) <
r forally € K.

Comment. In this definition, the infimum of an empty set is assumed to be
equal to 1.

Proof. Let 2 € X. Let us consider two possible cases: f(z) =1 and f(x) < 1.

(i) Let us first consider the case when f(x) = 1.
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o
To prove the formula for this case, we will consider two cases: when =z €K
and when z €K.

In the first subcase, when z gZI%, we have g, x(x) = 1 by definition of the
function g, . Thus, the infimum is equal to 1, i.e., to f(x).

In the second subcase, when z EIO(, then there is no r such that f(y) < r for
all y € K. Thus, the infimum is also equal to 1 = f(x).

(ii) Let us now consider the case when f(z) < 1.

We need to prove that f(z) is the greatest lower bound of the values g, k ().
Let us first prove that f(z) is a lower bound. For that, we will again consider
two subcases: © ng( and when e[%.

When z EIO{, we have f(z) <r = g, k(z). When QI%, we have f(z) < 1=
gr. i (x). Thus, in both subcases, f(x) is indeed a lower bound of {g, x(x)}.

Let us now prove that f(z) is the greatest lower bound. In other words, let
us prove that for any € > 0, the value f(z)+¢ is not a lower bound of {g, x (x)}.

Indeed, let ry = f(z) + 37 then = belongs to the open set

{y eX:fly)<ro=f(z)+ g} . By local compactness of X, we conclude that

Ko C{y: f(y) <ro}

such that z EIO(O, implying that g,, x,(z) = 10 < f(x) + ¢, i.e., that for every
y € Ky, we have f(y) < ro and g,, x,(z) < f(z) + . The Lemma is proven.

there is a compact set

Now, we are ready to prove the theorem.

Proof of Theorem 4. Consider (USC(X),>). For f € USC(X), we always
have f < inf{g € USC(X) : g < f}, thus it is sufficient to show that

inf{lge USC(X): g« f} < f=inf{g,x: fly) <rforalyeK}.

To prove this relation, it is sufficient to show that g, x < f for any (r, K) such
that f(y) <r for all y € K.

Indeed, let F' C USC(X) be a directed set such that f > VF, ie., inf FF < f
(pointwise). To prove the desired “way below” relation, we need to find h € F
such that h < g, k.

For (r, K) with » > f > inf F (pointwise on K), we will show that there
exists an h € F such that h < r on K. For any h € F', denote

K {xeK:r<hn)}

Since h is usc, the set K}, is a closed set.

Let us prove that the intersection () Kj, of all these sets K, is the empty
heF
set. Indeed, if € (] K}, then by definition of K}, it means that r < h(x)
heF
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for all h € F. This will imply that » < inf F' on K, contradicting the fact that
r > inf F on K.
Since every set K}, is closed, its complement K is open. From () Kj =0,
heF
we conclude that |J Kj = X and thus, K C |J Kj. Since K is a compact
hEF heF

n
set, from this open cover, we can extract a finite subcover, hence K C |J K b
i=1 )

for some functions h;. Thus, we have (| Kp, € K¢ Since K, C K¢ for all h,
i=1

we thus conclude that .
() Kn, = 0.
i=1

Since F' is directed, we have
B V(b ii=1,...,n)=inf{hi:i=1,...,n} € F.

For this h, we have K;, = (| Kp, = 0. This means that for every x € K, we
i=1
have h(z) < r.

Now, for an arbitrary point x € X, we have two possibilities: * € K and
x ¢ K. If v € K, then h(z) < r < gr x(z). On the other hand, if + ¢ K, then
h(z) <1 and g, x(z) =1, hence also h(z) < gr k(). So, for all z € X, we have
h(z) < gr k(x). The statement is proven.

Towards a practical description of the corresponding Lawson topol-
ogy. Since (USC,>) is a continuous lattice, we can define the corresponding
Lawson topology.

The Lawson topology is defined in very general, very abstract terms. To be
able to efficiently apply this abstractly defined topology to random fuzzy closed
sets, it is desirable to describe the Lawson topology for such sets in easier-to-
understand terms. Such a description is given by the following result.

Theorem 5 The following sets form a subbase for the Lawson topology on
(USC(X),>): the sets of the form

{f:fly) <r foralye K}
for allr € (0,1] and K € K(X), and the sets

{f:9(x) < f(x) for some z € X}

for all g e USC(X).
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Proof. By definition, the Lawson topology on (USC(X),>) is generated by
the subbase consisting of the sets {f : g < f} and {f : g 2 f}. For the ordered
set (USC(X),>), clearly,

{f:92f}=A{f:9(z) < f(z) for some z € X}.

Let us now considers sets {f : ¢ < f}. It is known that these sets form a
base of a topology which is called Scott topology; see, e.g., (Gierz et al. 1980).
A Scott open set is thus an arbitrary union of sets of the type {f : ¢ < f}
with different g. So, to prove our theorem, it is sufficient to prove that the sets
{f: f(y) <rforall ye K} form a subbase of the Scott topology.

To prove this, we first prove that each such set is indeed a Scott open set;
this is proved in the Lemma below. It then remains to verify that the above
sets indeed form a subbase for the Scott topology.

Indeed, let A be a Scott open set which contains an element h. Since A =
U{f:9 < f}, we have h € {f : g < f} for some g, i.e., g < h. It is easy to

sghow that
h = mIg {grrc :h(y) <rforallyc K} =V {g.x:h(y) <rforallyc K}.
Thus, by definition of the “way below” relation, g < f implies that
9> V{gr; k; :h(y) <rforallye K;,i=1,2,...,n} =
inf{g, i, : h(y) <r;forall y € K;,i=1,2,...,n},
and hence, h € (n]l{f cfly) < forally € K;}.

1=

Let us show that this intersection is indeed a subset of A. Observe that fog
every f € USC(X), we have g,, x, < fif f(y) < r; for all y € K;. Now let f
be an arbitrary function from the intersection, i.e.,

fe ﬁ{f :fly) <r;forally € K;}.
i=1

Then,
g def inf{gr, x, th(y) <rmforallye K;,i=1,...,n} < f

and hence, by the representation of A,

m{f cfly)y<riforallye K;,i=1,...,n} C A.

i=1
To complete the proof, it is therefore sufficient to prove the following lemma:
Lemma 4 For every r € (0,1] and K € K(X), we have

{feUSC(X): fly)<r forallye K} = U {feUSC(X): gk, < [}

o
KoK
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Proof. Let f € USC(X) be such that f(y) < r for all y € K. Since f is
usc, the set A = {& € X : f(x) < r} is an open set of X which contains K.
Thus, there exists separating sets: an open set U and a compact set V such
that K CU CV C A. Since U C V and U is an open set, we thus conclude

that U CV.
By definition of the function g, g, from V' C A, we conclude that g, v < f.
So,

{felUSCX): fly)y<rforallye K} C U {feUSC(X): gk, < [}

o
Ki2K

[e]
Conversely, if g, k, < f, where K2 K, then for every y € K, there exist ry

and K, such that y Elo(y and f(z) < ry < grk, (%) for all z € K. In particular,
for z =y, we f(y) <ry < grk,(y) =7, so that f(y) < r for all y € K. The
lemma is proven, and so is the theorem.

8 Metrics and Choquet Theorem for Random
Fuzzy Sets

Resulting formal definition of a random fuzzy set. As we have men-
tioned, in general, a random object on a probability space (€, A, P) is defined
a mapping = : £ — O which is A-B-measurable with respect to an appropriate
o-field B of subsets of the set O of objects.

For closed fuzzy sets, the set O is the set USC(X) of all semicontinuous
functions, and the appropriate o-algebra is the algebra £(X) of all Borel sets
in Lawson topology.

Thus, we can define a random fuzzy (closed) set S on a probability space
(Q,A,P) asamap S: Q — USC(X) which is A-L(X)-measurable.

Properties of the corresponding Lawson topology. From the general
theory of continuous lattices, we can conclude that the space USC(X) os a
compact and Hausdorff topological space. When X is a LCHS space, then,
similarly to the case of the set of all (crisp) closed sets F(X), we can prove that
the set of all fuzzy closed sets USC(X) is also second countable (see the proof
below) and thus, metrizable.

Later in this section, we will discuss different metrics on USC(X) which are
compatible with this topology, and the corresponding Choquet theorem.

Theorem 6 The topological space USC(X) with the Lawson topology is second
countable.

Proof. It is known that for every continuous lattice, the Lawson topology is
second countable if and only if the Scott topology has a countable base (Gierz
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et al. 1980). Thus, to prove our result, it is sufficient to prove that the Scott
topology has a countable base.

In view of the results described in the previous section, the Scott topology
has a base consisting of sets of the form

ﬁ{f eUSC(X): f(y) <r; for all y € K;},

i=1
where r; € (0,1], K; € K(X), and n > 0. Let us denote

Ul(rs, K;) ef {f:fly) <r;foral ye K;}.

In these terms, the base of the Scott topology consists of the finite intersections
n
A UG Ko).

=1
Recall that since X is LCHS, X is normal, and there is a countable base
B of the topological space (X, Q) such that for every B € B, the closure B is
compact, and for any open set G € O, we have G = |J B; for some B; € B
JjeJ
Our claim is that a countable base of USC(X) consists of sets of the form

i=1 j=
Bij e B.

It suffices to show that every neighborhood () U(r;, K;) of a closed fuzzy
i=1

n mi __
N <qi, Bij>, where ¢; are rational numbers from the interval (0, 1], and
1

set f € USC(X) contains a sub-neighborhood (| U (qi, U Bij> (which still
i=1 j=1
contains f).
Indeed, by definition of the sets U(r;, K;), the fact that f € () U(r;, K;)

i=1

means that for every ¢ and for every y € K;, we have f(y) < r;. Let us denote by

A; the set of all the values z € X for which f(z) > r;: A;={x € X : f(x) > r;}.

Since the function f is upper semicontinuous, the set A; is closed. The sets A;

and K; are both closed and clearly A; N K; = (). Since the space X is normal,

there exists an open set GG; that separates A; and Kj, i.e., for which K; C G;

and A; N G; = 0. Due to the property of the base, we have G; = |J B;; with
jeJ

Eij C G;. Thus, K; C |J Bj;. Since the set K; is compact, from this open

jeJ
cover, we can extract a finite sub-cover, i.e., conclude that

K; C Gsz - Uﬁij C G;.
j=1 j=1

From A;NG; = 0, we can now conclude that 4; N < U Bij> = (0, implying that
j=1
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for every y € U Bi;, we have y & A;, i.e., f(y) <r;. Thus, f(y) <r; for any
j=1

mgo___
(VRS U B”
j=1
mq
Since f is usc, it attains its maximum on |J B;; at some point ymayx. For this
=1

maximum value, we therefore also have f(ymax) < r; and therefore, there exists
a rational number ¢; such that f(ymax) < ¢; < 1. Since the value f(Ymax) is

my o
the maximum, we conclude that f(y) < f(Ymax) for all other y € |J B;;. Thus,
=1

1=

for all such y, we have f(y) < ¢;. This means that f € (U (qi, U B,»j>.
i=1 j=1

It is easy to show that

n m,,’ n
ﬂU G, UEU - mU(ri,KZ-).
i=1 Jj=1 i=1

The theorem is proven.

Towards defining metrics on USC(X). We have proven that the Lawson
topology on USC(X) is metrizable, i.e., that there exists a metric with is com-
patible with this topology. From the practical viewpoint, it is desirable to give
an explicit description of such a metric.

In Section 4, we used the point compactification procedure to explicit de-
scribe a specific metric compatible with the Lawson topology on the set F(X)
of all closed (crisp) sets. Let us show that for the class USC(X) of closed fuzzy
sets, we can define a similar metric if we identify these closed fuzzy sets with
their hypographs, i.e., informally, areas below their graphs.

Formally, for every function f : X — [0, 1], its hypograph Hyp(f) is defined
as

Hyp(f) = {(z;0) € X x [0,1] : f(2) > a}.

Every hypograph is a subset of X x [0, 1]. Since we consider usc functions, each
hypograph is closed.

Let HY P(X) denote the set of all hypographs of all functions f € USC(X).
Then, f — Hyp(f) is a bijection from USC(X) to HY P(X); see (Nguyen,
Wang, and Wei 2007). One can easily check that the set HY P(X) is a closed
subset of F(X x [0,1]). Note that since X is a LCHS space, the set F(X x
[0,1]) is also a LCHS space, so the set F(X x [0,1]) of all its closed subsets
is a topological space with a canonical Lawson topology. Thus, according to
Section 4, F(X x [0,1]) has a compatible metric H. Then the induced metric
on HY P(X) is also compatible with the induced Lawson topology (or hit-or-
miss topology) on HY P(X). The only things that remains to be proven is that
(HY P(X), H) is homeomorphic to (USC(X), £), where £ denotes the Lawson
topology on USC/(X). This result was proven in (Nguyen and Tran 2007).
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Finally, a Choquet theorem for USC(X) can be obtained by embedding
USC(X) into F(X x [0,1]) via hypographs and using Choquet theorem for
random closed sets on X x [0,1]. For more details, see (Nguyen, Wang, and Wei
2007).

9 Towards Practical Applications

Practical need for random sets and random fuzzy sets: reminder. We
have started this paper with explaining the practical motivation for random sets
and random fuzzy sets.

This motivation is that due to measurement uncertainty (or uncertainty
of expert estimates), often, instead of the actual values x; of the quantities
of interest, we only know the intervals x; = [Z; — A;, Z; + A;], where Z; is the
known approximate value and A; is the upper bound on the approximation error
(provided, for measurements, by the manufacturer of the measuring instrument).

These intervals can be viewed as random intervals, i.e., as samples from the
interval-valued random variable. In such situations, instead of the exact value
of the sample statistics such as covariance C|x, y], we can only have an interval
C|z,y] of possible values of this statistic.

The need for such random intervals is well recognized, and there has already
been a lot of related research; see, e.g., (Moller and Beer 2004). In this approach,
the uncertainty in a vector quantity = = (z1,...,z4) € R? is usually described
by describing intervals of possible values of each of its components. This is
equivalent to describing the set of all possible values of x as a boz (“multi-
dimensional interval”) [z,,Z1] X ... X [z,,,Tn]. However, the resulting data
processing problem are often very challenging, and there is still a large room for
further development.

One such need comes from the fact that uncertainty is often much more
complex than intervals. For example, for the case of several variables, instead
of an multi-dimensional interval, we may have a more complex set S C R?. In
such a situation, we need a more general theory of random sets.

We have also mentioned that to get a more adequate description of expert
estimates, we need to supplement the set S of possible values of the quantity (or
quantities) of interest with describing the sets S, which contain values which
are possible with a certain degree a. In such situations, we need to consider
random fuzzy sets.

What is needed for practical applications: an outline of this section.
As we have just recalled, there is a practical need to consider random sets and
random fuzzy sets. In order to apply the corresponding theory, we first need to
estimate the actual distribution of random sets or random fuzzy sets from the
observations.

In other words, we need to develop statistical techniques for random sets
and random fuzzy sets. In this section, we start with a reminder about tradi-
tional number-valued and vector-valued statistical techniques, and the need for
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extending these techniques to random sets and random fuzzy sets. Then, we
overview the main sources of the corresponding data uncertainty and techniques
for dealing with the corresponding uncertainty. This will prepare us for the case
study described in the following section.

Traditional statistics: brief reminder. In traditional statistics, we assume
that the observed values are independent identically distributed (i.i.d.) variables
Xly..vyZn, ..., and we want to find statistics C, (1, ..., x,) that would approx-
imate the desired parameter C' of the corresponding probability distribution.

For example, if we want to estimate the mean E, we can take the arithmetic
r1+...+x,

average F,[r] = ———————. Tt is known that as n — oo, this statistic tends
n
(with probability 1) to the desired mean: FE,[z] — E. Similarly, the sample
1 n
variance V,[z] = I (x; — Ey,[z])? tends to the actual variance V, the
n—

i

=1
1 n
sample covariance Cy[z,y] = —" > (i — Enlx]) - (yi — Enly]) between two
n —_ .

different samples tends to the actual covariance C, etc.

Coarsening: a source of random sets. In traditional statistics, we im-
plicitly assume that the values z; are directly observable. In real life, due to
(inevitable) measurement uncertainty, often, what we actually observe is a set
S; that contains the actual (unknown) value of x;. This phenomenon is called
coarsening; see, e.g., (Heitjan and Rubin 1991). Due to coarsening, instead of
the actual values z;, all we know is the sets X1,...,X,,... that are known the
contain the actual (un-observable) values z;: z; € X;.

Statistics based on coarsening. The sets X;,...,X,,,... are i.i.d. random
sets. We want to find statistics of these random sets that would enable us
to approximate the desired parameters of the original distribution x. Here, a
statistic S, (X71,...,X,,) transform n sets Xi,..., X, into a new set. We want
this statistic S, (X1,...,X,) to tend to a limit set L as n — oo, and we want
this limit set L to contain the value of the desired parameter of the original
distribution.

For example, if we are interested in the mean E[z], then we can take S,, =
(X1 +...4+X,)/n (where the sum is the Minkowski — element-wise — sum of the
sets). It is possible to show that, under reasonable assumptions, this statistic
tends to a limit L, and that E[x] € L. This limit can be viewed, therefore, as a
set-based average of the sets Xi,...,X,,.

Important issue: computational complexity. There has been a lot of in-
teresting theoretical research on set-valued random variables and corresponding
statistics. In many cases, the corresponding statistics have been designed, and
their asymptotical properties have been proven; see, e.g., (Goutsias, Mahler, and
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Nguyen 1997), (Li, Ogura, and Kreinovich 2002), (Nguyen 2006) and references
therein.

In many such situations, the main obstacle to a practical use of these statis-
tics is that going from random numbers to random sets drastically increases
the computational complexity — hence, the running time — of the required com-
putations. It is therefore desirable to come up with new, faster algorithms for
computing such set-values heuristics.

Sources of uncertainty: general reminder. Traditional engineering sta-
tistical formulas assume that we know the exact values z; of the corresponding
quantity. In practice, these values come either from measurements or from
expert estimates. In both case, we get only approzimations T; to the actual
(unknown) values z;.

When we use these approximate values ; # x; to compute the desired
statistical characteristics such as E' and V, we only get approximate valued £
and V for these characteristics. It is desirable to estimate the accuracy of these
approximations.

Case of measurement uncertainty. Measurements are never 100% accu-
rate. As a result, the result = of the measurement is, in general, different from

the (unknown) actual value x of the desired quantity. The difference Ax R
between the measured and the actual values is usually called a measurement er-
TOT.

The manufacturers of a measuring device usually provide us with an upper
bound A for the (absolute value of) possible errors, i.e., with a bound A for
which we guarantee that |Az| < A. The need for such a bound comes from the
very nature of a measurement process: if no such bound is provided, this means
that the difference between the (unknown) actual value z and the observed value
Z can be as large as possible.

Since the (absolute value of the) measurement error Ax = Z — z is bounded
by the given bound A, we can therefore guarantee that the actual (unknown)
value of the desired quantity belongs to the interval [ — A, T + A].

Traditional probabilistic approach to describing measurement uncer-
tainty. In many practical situations, we not only know the interval [—A, A]
of possible values of the measurement error; we also know the probability of
different values Az within this interval; see, e.g., (Rabinovich 2005).

In practice, we can determine the desired probabilities of different values
of Az by comparing the results of measuring with this instrument with the
results of measuring the same quantity by a standard (much more accurate)
measuring instrument. Since the standard measuring instrument is much more
accurate than the one use, the difference between these two measurement results
is practically equal to the measurement error; thus, the empirical distribution of
this difference is close to the desired probability distribution for measurement
error.
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Interval approach to measurement uncertainty. As we have mentioned,
in many practical situations, we do know the probabilities of different values of
the measurement error. There are two cases, however, when this determination
is not done:

e First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a dis-
tant galaxy, there is no “standard” (much more accurate) telescope float-
ing nearby that we can use to calibrate the Hubble: the Hubble telescope
is the best we have.

e The second case is the case of measurements on the shop floor. In this
case, in principle, every sensor can be thoroughly calibrated, but sensor
calibration is so costly — usually costing ten times more than the sensor
itself — that manufacturers rarely do it.

In both cases, we have no information about the probabilities of Ax; the only
information we have is the upper bound on the measurement error.

In this case, after performing a measurement and getting a measurement
result Z, the only information that we have about the actual value x of the
measured quantity is that it belongs to the interval x = [z — A, Z + A]. In this
situation, for each i, we know the interval x; of possible values of z;, and we
need to find the ranges E and V of the characteristics £ and V over all possible
tuples x; € x;.

Case of expert uncertainty. An expert usually describes his/her uncer-
tainty by using words from the natural language, like “most probably, the value
of the quantity is between 6 and 7, but it is somewhat possible to have val-
ues between 5 and 8”. To formalize this knowledge, it is natural to use fuzzy
set theory, a formalism specifically designed for describing this type of informal
(“fuzzy”) knowledge (Klir and Yuan 1995), (Nguyen and Walker 2006).

As a result, for every value x;, we have a fuzzy set p;(x;) which describes
the expert’s prior knowledge about x;: the number u;(x;) describes the expert’s
degree of certainty that x; is a possible value of the i-th quantity.

As we have mentioned earlier, an alternative user-friendly way to represent
a fuzzy set is by using its a-cuts {z; : p;(x;) > a}. In these terms, a fuzzy
set can be viewed as a nested family of intervals [z;(«), Z;(a)] corresponding to
different level a.

Estimating statistics under fuzzy uncertainty: precise formulation
of the problem. In general, we have fuzzy knowledge w;(x;) about each
value x;; we want to find the fuzzy set corresponding to a given character-
istic y = C(x1,...,2,). Intuitively, the value y is a reasonable value of
the characteristic if y = C(z1,...,2,) for some reasonable values x;, i.e., if
for some values x1,...,x,, x1 is reasonable, and x, is reasonable, ..., and
y=0C(z1...,2,). If we interpret “and” as min and “for some” (“or”) as max,
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then we conclude that the corresponding degree of certainty p(y) in y is equal
to p(y) = max{min(pi(x1),..., un(zn)) : C(21,...,2,) = y}.

Reduction to the case of interval uncertainty. It is known that the above
formula (called extension principle) can be reformulated as follows: for each «,
the a-cut y(a) of y is equal to the range of possible values of C(z1,...,z,) when
x; € x;(a) for all 7. Thus, from the computational viewpoint, the problem of
computing the statistical characteristic under fuzzy uncertainty can be reduced
to the problem of computing this characteristic under interval uncertainty; see,
e.g., (Dubois, Fargier, and Fortin 2005).

In view of this reduction, in the following text, we will consider the case of
interval (and set) uncertainty.

Estimating statistics under interval uncertainty: a problem. In the
case of interval uncertainty, instead of the true values zi,...,z,, we only
know the intervals x; = [z,Z1],...,%Xn = [z,,Tn] that contain the (un-
known) true values of the measured quantities. For different values x; € x;,
we get, in general, different values of the corresponding statistical characteristic

C(x1,...,2,). Since all values x; € x; are possible, we conclude that all the
values C(x1, ..., 2,) corresponding to z; € x; are possible estimates for the cor-
responding statistical characteristic. Therefore, for the interval data x1, ..., X,

a reasonable estimate for the corresponding statistical characteristic is the range

def
C(x1,...,Xp) = {C(z1,...,xp) : 1 €EX1,...,Tpn € Xp}.

We must therefore modify the existing statistical algorithms so that they com-
pute, or bound these ranges.

Estimating mean under interval uncertainty. The arithmetic average F
is a monotonically increasing function of each of its n variables x1, ..., ,, so its
smallest possible value E is attained when each value z; is the smallest possible
(x; = z;) and its largest possible value is attained when z; = Z; for all 4. In
other words, the range E of E is equal to [E(zy,...,%n), E(T1,...,Ty)]. In

1 — 1
other words, E=—-(z;+...+z,)and E=— - (T1 + ... + Tp).
n n

Estimating variance under interval uncertainty. It is known that the
problem of computing the exact range V = [V, V] for the variance V over
interval data x; € [Z; —A;, T; +A;] is, in general, NP-hard; see, e.g., (Kreinovich
et al. 2006), (Kreinovich et al. 2007). Specifically, there is a polynomial-time
algorithm for computing V, but computing V is, in general, NP-hard.

Comment. NP-hard means, crudely speaking, that no feasible algorithm can
compute the exact value of V for all possible intervals xi,...,x,; see, e.g.,
(Kreinovich et al. 1997).
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In many practical situations, there are efficient algorithms for computing V:
e.g., an O(n - log(n)) time algorithm exists when no two narrowed intervals

_ _ def ~ i def ~ A
[x; ,xj], where z; = 7; — — and x:r = T; + #, are proper subsets of one

n
another, i.e., when [z; ,z]] € (x;,xj) for all ¢ and j (Dantsin et al. 2006).
What can be done if we cannot effectively compute the exact range.
As we have just mentioned, the problem of computing statistical characteristics
under interval uncertainty is often NP-hard — which means, crudely speaking,
that we cannot efficiently compute the exact range for these characteristics.

A natural solution is as follows: since we cannot compute the exact range,
we should try to find an enclosure for this range. Computing the range
C(x1,...,%,) of a function C(zy,...,z,) based on the input intervals x; is
called interval computations; see, e.g., (Jaulin et al. 2001).

Interval computations techniques: brief reminder. Historically the first
method for computing the enclosure for the range is the method which is some-
times called “straightforward” interval computations. This method is based
on the fact that inside the computer, every algorithm consists of elementary
operations (arithmetic operations, min, max, etc.). For each elementary oper-
ation f(a,b), if we know the intervals a and b for a and b, we can compute
the exact range f(a,b). The corresponding formulas form the so-called interval
arithmetic. For example,

la,a] + [b,b] = [a+b,a+Db); [a,a] —[bb]=[a—b7a—10];
[a,@] - [b,b] = [min(a-b,a-b,a-b,a-b),max(a-b,a-b,a-b,a-b).

In straightforward interval computations, we repeat the computations forming
the program C for computing C(x1,...,x,) step-by-step, replacing each oper-
ation with real numbers by the corresponding operation of interval arithmetic.
It is known that, as a result, we get an enclosure Y 2 C(xy,...,%,) for the
desired range.

In some cases, this enclosure is exact. In more complex cases (see examples
below), the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclo-
sure, e.g., a centered form method. However, for each of these techniques, there
are cases when we get an excess width. (Reason: as have mentioned, the prob-
lem of computing the exact range is known to be NP-hard even for population
variance.)

10 Case Study: A Bioinformatics Problem

In this section, we describe an example of a practical applications. This example
was first outlined in (Kreinovich et al. 2007) and (Xiang 2007). For other ap-
plications, see (Kreinovich et al. 2006), (Kreinovich et al. 2007) and references
therein.

31



Description of the case study. In cancer research, it is important to find
out the genetic difference between the cancer cells and the healthy cells. In the
ideal world, we should be able to have a sample of cancer cells, and a sample of
healthy cells, and thus directly measure the concentrations ¢ and h of a given
gene in cancer and in healthy cells. In reality, it is very difficult to separate
the cells, so we have to deal with samples that contain both cancer and normal
cells. Let y; denote the result of measuring the concentration of the gene in i-th
sample, and let x; denote the percentage of cancer cells in i-th sample. Then,
we should have z; - ¢+ (1 — z;) - h = y; (approximately equal because there are
measurement errors in measuring y;).

Let us first consider an idealized case in which we know the exact percentages
x;. In this case, we can find the desired values ¢ and h by solving a system of
linear equations x; - ¢ + (1 — x;) - h &~ y; with two unknowns ¢ and h.

It is worth mentioning that this system can be somewhat simplified if instead

of ¢, we consider a new variable a 4f . _ h. In terms of the new unknowns a
and h, the system takes the following form: a - x; + h ~ y;.
The errors of measuring y; are normally i.i.d. random variables, so to esti-

mate a and h, we can use the Least Squares Method (LSM) > (a-z;+h—y;)* —

i=1

mihn. According to LSM, we have a = C‘E'E;]y] and h = Ely] — a - E[z], where

o 1 1 ,

Blel = % (ou ), Bl = 2+, Vi = = 35— Bl
1 n

and Clx,y] = . > (x; — Elx]) - (y; — Ely]). Once we know a = ¢ — h and
-1 3

h, we can then estimate ¢ as a + h.

The problem is that the concentrations x; come from experts who manually
count different cells, and experts can only provide interval bounds on the values
x; such as x; € [0.7,0.8] (or even only fuzzy bounds). Different values of z; in
the corresponding intervals lead to different values of a and h. It is therefore
desirable to find the range of a and h corresponding to all possible values z; €
[gzvfi]

Comment. Our motivation for solving this problem comes from bioinformatics,
but similar problems appear in various practical situations where measurements
with uncertainties are available and statistical data is to be processed.

Linear approximation. Let Z; = (z,4+7;)/2 be the midpoint of i-th intervals,
and let A; = (Z; — z;)/2 be its half-width. For a, we have

oa 1
ox; = m‘(yi—E[y]—2a'$i+2a~E[9€D~

We can use the formula E[y] = a-E[z]+h to simplify this expression, resulting in

1 n
] Z |Ay; —a-Ax;|-A;, where we denoted Ay; def yi—a-x;—h
T
i=1

Aa:(n—l)-V[ ~
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and Az; 2, — E[z].
oh Oa 1
i — Elyl—a-E h = == Bz -~ Ay =
Since h [y] — a - E[z], we have oz, oz, [z] 16, 50 O

i.

8x1

Prior estimation of the resulting accuracy. The above formulas provide
us with the accuracy after the data has been processed. It is often desirable to
have an estimate prior to measurements, to make sure that we will get ¢ and h
with desired accuracy.

The difference Ay; is a measurement error, so it is normally distributed with
0 mean and standard deviation o(y) corresponding to the accuracy of measuring
y;. The difference Ax; is distributed with 0 mean and standard deviation y/V[z].
For estimation purposes, it is reasonable to assume that the values Ax; are also
normally distributed. It is also reasonable to assume that the errors in z; and
y; are uncorrelated, so the linear combination Ay; — a - Ax; is also normally
distributed, with 0 mean and variance o7 4 a* - V[z]. It is also reasonable to
assume that all the values A; are approximately the same: A; = A.

For normal distribution ¢ with 0 mean and standard deviation o, the mean
value of [£| is equal to \/2/m - 0. Thus, the absolute value |Ay; — a - Az;| of

the above combination has a mean value \/2/7 - /02 4+ a? - V[z]. Hence, the
o2 +a* - Viz]-A
V]

Since measurements are usually more accurate than expert estimates, we
2
have o7 < V[z], hence A, ~ = -a- A.

Similar estimates can be given for Ay.

expected value of A, is equal to —

Why not get exact estimates? Because in general, finding the exact
range is NP-hard. Let us show that in general, finding the exact range for
the ratio C|x,y]/V[x] is an NP-hard problem; this proof was first presented in
(Kreinovich et al. 2007).

The proof is similar to the proof that computing the range for the variance is
NP-hard (Ferson et al. 2005): namely, we reduce a partition problem (known to
be NP-hard) to our problem. In the partition problem, we are given m positive
integers si,..., Sm, and we must check whether there exist values ¢; € {—1,1}

m

for which Y €; - s; = 0. We will reduce this problem to the following problem:
i=1

n = m—|—2, Y1 = ... = Yy = O7 Ym4+1 = 1’ Ymt2 = _1’ x; = [_Siasi] for

i < m, Tmy1 = 1, and xq2 = —1. In this case, Efy] = 0, so Clz,y] =
1 " 9

n—1 ;Iz “Yi — nT_L 1 - Elz] - Ely] = m Therefore, Clx,y]/V[z] — min

if and only if V[z] — max.
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“ m+ 2 1 L ’
Here, Viz] = (Zx +2> el (MZ;%) . Since
def
|zi| < s, we always have Viz] < V) = m+1 <ZS +2 ], and the only

possibility to have V[z] = Vj is when a; = +s; for all ¢ and Y x; = 0. Thus,

V]z] = V, if and only if the original partition problem has a solution. Hence,
2

Clx,y|/V]r] = =5—

V] = s

problem has a solution.
The reduction is proven, so our problem is indeed NP-hard.

if and only if the original instance of the partition

Comment 1. In this proof, we consider the case when the values x; can be
negative and larger than 1, while in bioinformatics, z; is always between 0 and
1. However, we can easily modify this proof: First, we can shift all the values
x; by the same constant to make them positive; shift does not change neither
Clz,y] nor V]z]. Second, to make the positive values < 1, we can then re-scale
the values x; (x; — A - x;), thus multiplying C|x,y]/V[z] by a known constant.

As a result, we get new values =} = - - (1 4+ z;/K), where K 4 hax s;, for
which 2} € [0,1] and the problem of computing C|[z, y]/V[z] is still NP-hard.

Comment 2. Since we cannot compute the exact range, what can we do to
compute the more accurate estimates for the range than those provided by
linear approximation? One possibility is to use known algorithms to find the
ranges for C[z, y] and for V[z] (Kreinovich et al. 2006), (Kreinovich et al. 2007),
and then use the division operation from interval arithmetic to get the interval
that is guaranteed to contain Clx,y|/V[z].
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