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Luc Longpré, Gang Xiang, Vladik Kreinovich, and Eric Freudenthal
Department of Computer Science, University of Texas at El Paso,

El Paso, TX 79968, USA, contact email vladik@utep.edu

Abstract

In many practical situations, it is important to store large amounts of data and to be able
to statistically process the data. A large part of the data is confidential, so while we welcome
statistical data processing, we do not want to reveal sensitive individual data. If we allow
researchers to ask all kinds of statistical queries, this can lead to violation of people’s privacy.
A sure-proof way to avoid these privacy violations is to store ranges of values (e.g., between
40 and 50 for age) instead of the actual values. This idea solves the privacy problem, but
it leads to a computational challenge: traditional statistical algorithms need exact data, but
now we only know data with interval uncertainty. In this paper, we describe new algorithms
designed for processing such interval data.
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1 Interval Approach to Preserving Privacy in Statistical
Databases

Need for statistical databases. In many practical situations, it is very useful to collect
large amounts of data.

For example, from the data that we collect during a census, we can extract a lot of information
about health, mortality, employment in different regions – for different age ranges, and for people
from different genders and of different ethnic groups. By analyzing this statistics, we can reveal
troubling spots and allocate (usually limited) resources so that the help goes first to social groups
that need it most.

Similarly, by gathering data about people’s health in a large medical database, we can extract
a lot of useful information on how the geographic location, age, and gender affect a person’s
health. Thus, we can make measures which are aimed at improving public health, more focused.

Finally, a large statistical database of purchases can help find out what people are looking
for, make shopping easier for customers and at the same time, decrease the stores’ expenses
related to storing unnecessary items.

Need for privacy. Privacy is an important issue in the statistical analysis of human-related
data. For example, to check whether in a certain geographic area, there is a gender-based
discrimination, we can use the census data to check, e.g., whether for all people from this area
who have the same level of education, there is a correlation between salary and gender. One
can think of numerous possible questions of this type related to different sociological, political,
medical, economic, and other questions. From this viewpoint, it is desirable to give researchers
ability to perform whatever statistical analysis of this data that is reasonable for their specific
research.

On the other hand, we do not want to give them direct access to the raw census data, because
a large part of the census data is confidential. For example, for most people (those who work in
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private sector) salary information is confidential. Suppose that a corporation is deciding where
to built a new plant and has not yet decided between two possible areas. This corporation would
benefit from knowing the average salary of people of needed education level in these two areas,
because this information would help them estimate how much it will cost to bring local people
on board. However, since salary information is confidential, the company should not be able to
know the exact salaries of different potential workers.

The need for privacy is also extremely important for medical experiments, where we should
be able to make statistical conclusions about, e.g., the efficiency of a new medicine without
disclosing any potentially embarrassing details from the individual medical records.

Such databases in which the outside users have cannot access individual records but can
solicit statistical information are often called statistical databases.

Maintaining privacy is not easy. Maintaining privacy in statistical databases is not easy.
Clerks who set up policies on access to statistical databases sometimes erroneously assume that
once the records are made anonymous, we have achieved perfect privacy. Alas, the situation
is not so easy: even when we keep all the records anonymous, we can still extract confidential
information by asking appropriate questions. For example, suppose that we are interested in
the salary of Dr. X who works for a local company. Dr. X’s mailing address can be usually
taken from the phone book; from the company’s webpage, we can often get his photo and thus
find out his race and approximate age. Then, to determine Dr. X’s salary, all we need is to ask
what is the average salary of all people with a Ph.D. of certain age brackets who live in a small
geographical area around his actual home address – if the area is small enough, then Dr. X will
be the only person falling under all these categories.

Even if only allow statistical information about salaries s1, . . . , sq when there are at least a
certain amount n0 people within a requested range, we will still be able to reconstruct the exact
salaries of all these people. Indeed, for example, we can ask for the number and average salary
of all the people who live on Robinson street at houses 1 through 1001, and then we can ask the
same question about all the people who live in houses from 1 to 1002. By comparing the two
numbers, we get the average salary of the family living at 1002 Robinson – in other words, we
gain the private information that we tried to protect.

In general, we can ask for the average
s1 + . . . + sq

q
, and for several moments of salary

(variance, third moment, etc): if we know the values vj at least q different functions fj(s1, . . . , sq)
of si, then we can, in general, reconstruct all these values from the corresponding system of q
equations with q unknowns: f1(s1 . . . , sq) = v1, . . . , fq(s1, . . . , sq) = vq.

At first glance, moments are natural and legitimate statistical characteristics, so researchers
would be able to request them, but on the other hand, we do not want them to be able to extract
the exact up-to-cent salaries of all the folks leaving in a certain geographical area.

What restriction should we impose on possible statistical queries that would guarantee pri-
vacy but restrict research in the least possible way?

What is known. These are anecdotal example of poorly designed privacy and security, but,
as we have mentioned, the problem is indeed difficult: many seemingly well-designed privacy
schemes later turn out out to have unexpected privacy and security problem.

For different aspects of the problem of privacy in statistical databases, and for different
proposed solution to this problem and their drawbacks, the readers are referred to [3, 4, 5, 6,
7, 12, 13, 15, 17, 18, 20, 21, 22, 24]; an extended bibliography of pre-1980s papers appears in
Chapter 6 of [4].

That the privacy problem is really difficult was confirmed by the fact that several formaliza-
tions of this general privacy problem turned out to be, in their general formulations, NP-hard [4].
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Interval approach to privacy protection. A sure-proof way to avoid these privacy viola-
tions is to store ranges (intervals) of values instead of the actual values. For example, instead of
keeping the exact age, we only record whether the age is between 0 and 10, 10 and 20, 20 and
30, etc.

In this case, no matter what statistics we allow, the worst that can happen is that the
corresponding ranges will be disclosed. However, in this situation, we do not disclose the original
exact values – since these values are not stored in the database in the first place.

2 Related Challenges and Algorithms of Computational Statis-
tics

Related challenges of computational statistics. This idea of storing intervals solves the
privacy problem, but it leads to a computational challenge.

Indeed, suppose that we are interested in the value of a statistical characteristic

C(x1, . . . , xn) such as population mean E =
x1 + . . . + xn

n
, (biased) population variance

V =
(x1 − E)2 + . . . + (xn − E)2

n
, covariance, correlation, etc.

Traditional statistical algorithms for computing these characteristics assume that we know
the exact values of the samples xi, yi, etc. However, in our case, we do not know these actual
values, we only know the intervals xi = [xi, xi] of possible values of these characteristics. Since
we do not know the actual values xi, we cannot compute the exact range of the characteristic
C, we can only find the range of this characteristic:

C(x1, . . . ,xn) def= {C(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

So, the challenge is: given the characteristic C(x1, . . . , xn) and the intervals xi, we must compute
the corresponding range.

The resulting computational problem is known – as interval computations. While
privacy-related applications are reasonably novel, the problem of computing the range of a
known function f(x1, . . . , xn) under interval uncertainty xi ∈ xi is a well-known and well-
studied problem in applications, known as a problem of interval computations; see, e.g., [9] (see
also [16]).

Indeed, in many real-life problems, we are interesting in the values of some quantity y which
are difficult or impossible to measure directly; example include the amount of oil in a given
well or a distance to a star. To estimate the value of this quantity y, we measure the values of
easier-to-measure quantities x1, . . . , xn related to y in a known way y = f(x1, . . . , xn), and then
use the measured values x̃i of these quantities to estimate y as ỹ = f(x̃1, . . . , x̃n).

Measurements are never 100% accurate. As a result, the result x̃ of the measurement is,
in general, different from the (unknown) actual value x of the desired quantity. The difference
∆x

def= x̃−x between the measured and the actual values is usually called a measurement error.
The manufacturers of a measuring device usually provide us with an upper bound ∆ for the

(absolute value of) possible errors, i.e., with a bound ∆ for which we guarantee that |∆x| ≤ ∆.
The need for such a bound comes from the very nature of a measurement process: if no such
bound is provided, this means that the difference between the (unknown) actual value x and
the observed value x̃ can be as large as possible.

Since the (absolute value of the) measurement error ∆x = x̃ − x is bounded by the given
bound ∆, we can therefore guarantee that the actual (unknown) value of the desired quantity
belongs to the interval [x̃−∆, x̃ + ∆].

In many practical situations, we not only know the interval [−∆, ∆] of possible values of the
measurement error; we also know the probability of different values ∆x within this interval [19].
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In practice, we can determine the desired probabilities of different values of ∆x by comparing
the results of measuring with this instrument with the results of measuring the same quantity by
a standard (much more accurate) measuring instrument. Since the standard measuring instru-
ment is much more accurate than the one use, the difference between these two measurement
results is practically equal to the measurement error; thus, the empirical distribution of this
difference is close to the desired probability distribution for measurement error.

There are two cases, however, when this determination is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fundamental science.
When a Hubble telescope detects the light from a distant galaxy, there is no “standard”
(much more accurate) telescope floating nearby that we can use to calibrate the Hubble:
the Hubble telescope is the best we have.

• The second case is the case of measurements on the shop floor. In this case, in principle,
every sensor can be thoroughly calibrated, but sensor calibration is so costly – usually
costing ten times more than the sensor itself – that manufacturers rarely do it.

In both cases, we have no information about the probabilities of ∆x; the only information we
have is the upper bound on the measurement error.

In this case, after performing a measurement and getting a measurement result x̃i, the only
information that we have about the actual value xi of the measured quantity is that it belongs
to the interval xi = [x̃i − ∆i, x̃i + ∆i]. In this situation, for each i, we know the interval xi

of possible values of xi, and we need to find the range y of the function f(x1, . . . , xn) over all
possible tuples xi ∈ xi.

Interval computations are sometimes easy. In some cases, it is easy to estimate the
desired range. For example, the arithmetic average E is a monotonically increasing function of
each of its n variables x1, . . . , xn, so its smallest possible value E is attained when each value
xi is the smallest possible (xi = xi) and its largest possible value is attained when xi = xi

for all i. In other words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)], where,

E =
1
n
· (x1 + . . . + xn) and E =

1
n
· (x1 + . . . + xn).

Interval computations are, in general, computationally difficult. For more complex
functions C(x1, . . . , xn), the problem of computing the range is often more computationally
difficult.

For example, it is known that the problem of computing the exact range V = [V , V ] for the
variance V over interval data xi ∈ [x̃i −∆i, x̃i + ∆i] is, in general, NP-hard; see, e.g., [10, 11].
Specifically, there is a polynomial-time algorithm for computing V , but computing V is, in
general, NP-hard.

Efficient algorithms exist for several practically useful situations. In many practical
situations, there are efficient algorithms for computing V ; see, e.g., [10, 11, 14].

For example, an O(n · log(n)) time algorithm exists when no two narrowed intervals [x−i , x+
i ],

where x−i
def= x̃i−∆i

n
and x+

i
def= x̃i +

∆i

n
, are proper subsets of one another, i.e., when [x−i , x+

i ] 6⊆
(x−j , x+

j ) for all i and j [2].

Computational problem are usually easier in the privacy case. In the privacy case,
intervals correspond to the fixed subdivision of the real line, For such situations, efficient algo-
rithms exist for computing most statistical characteristics; see, e.g., [10, 11].
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3 New Problem: Hierarchical Statistical Analysis under
Privacy-Related Interval Uncertainty

Need for hierarchical statistical analysis. In the above description, we assumed that we
have all the data in one large database, and we process this large statistical database to estimate
the desired statistical characteristics.

In reality, the data is often stored hierarchically. For example, it makes sense to store the
census results by states, get averages and standard deviations per state, and then combine these
characteristics to get nation-wide statistics; see, e.g., [1].

Formulas behind hierarchical statistical analysis. Let the data values x1 . . . , xn be di-
vided into m < n groups I1, . . . , Im. For each group j, we know the frequency pj of this group
(i.e., the number nj of elements of this group divided by the overall number of records), the
average Ej over this group, and the population variance Vj within j-th group.

One can show that in this case, E =
m∑

j=1
pj ·Ej and V = VE +Vσ, where VE =

m∑
j=1

pj ·E2
j −E2

and Vσ =
m∑

j=1
pj · Vj .

Hierarchical case: situation with interval uncertainty. When we start with values xi

which are only known with interval uncertainty, we end up knowing Ej and Vj also with interval
uncertainty. In other words, we only know the intervals Ej = [Ej , Ej ] and [V j , V j ] that contain
the actual (unknown) values of Ej and Vj . In such situations, we must find the ranges of the
possible values for the population mean E and for the population variance V ; see, e.g., [14].

Analysis of the interval problem. The formula that describes the dependence of E on Ej

is monotonic in Ej . Thus, we get an explicit formula for the range [E, E] of the population

mean E: E =
m∑

j−1
pj · Ej and E =

m∑
j−1

pj · Ej .

Since the terms VE and Vσ in the expression for V depend on different variables, the range
[V , V ] of the population variance V is equal to the sum of the ranges [V E , V E ] and [V σ, V σ] of
the corresponding terms: V = V E +V σ and V = V E +V σ. Due to similar monotonicity, we can

find an explicit expression for the range [V σ, V σ] for Vσ: V σ =
m∑

j=1
pj · V j and V σ =

m∑
j=1

pj · V j .

Thus, to find the range of the population variance V , it is sufficient to find the range of the term
VE . So, we arrive at the following problem:

4 Formulation of the Problem in Precise Terms and Main Result

GIVEN:

• an integer m ≥ 1;

• m numbers pj > 0 for which
m∑

j=1
pj = 1; and

• m intervals Ej = [Ej , Ej ].

COMPUTE the range VE = {VE(E1, . . . , Em) |E1 ∈ E1, . . . , Em ∈ Em}, where

VE
def=

m∑

j=1

pj · E2
j − E2; E

def=
m∑

j=1

pj · Ej .
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Main result. Since the function VE is convex, we can compute its minimum V E on the box
E1× . . .×Em by using known polynomial-time algorithms for minimizing convex functions over
interval domains; see, e.g., [23].

For computing maximum V E , even the particular case when all the values pj are equal
p1 = . . . = pm = 1/m, is known to be NP-hard. Thus, the more general problem of computing
V E is also NP-hard. Let us show that in a reasonable class of cases, there exists a feasible
algorithm for computing V E .

For each interval Ej , let us denote its midpoint by Ẽj
def=

Ej + Ej

2
, and its half-width by

∆j
def=

Ej − Ej

2
. In these terms, the j-th interval Ej takes the form [Ẽj −∆j , Ẽj + ∆j ].

In this paper, we consider narrowed intervals [E−
j , E+

j ], where E−
j

def= Ẽj − pj · ∆j and

E+
j

def= Ẽj +pj ·∆j . We show that there exists an efficient O(m · log(m)) algorithm for computing
V E for the case when no two narrowed intervals are proper subsets of each other, i.e., when
[E−

j , E+
j ] 6⊆ (E−

k , E+
k ) for all j and k.

Algorithm.

• First, we sort the midpoints Ẽ1, . . . , Ẽm into an increasing sequence. Without losing
generality, we can assume that Ẽ1 ≤ Ẽ2 ≤ . . . ≤ Ẽm.

• Then, for every k from 0 to m, we compute the value V
(k)
E = M (k)−(E(k))2 of the quantity

VE for the vector E(k) = (E1, . . . , Ek, Ek+1, . . . , Em).

• Finally, we compute V E as the largest of m + 1 values V
(0)
E , . . . , V

(m)
E .

To compute the values V
(k)
E , first, we explicitly compute M (0), E(0), and V

(0)
E = M (0) − E(0).

Once we computed the values M (k) and E(k), we can compute

M (k+1) = M (k) + pk+1 · (Ek+1)
2 − pk+1 · (Ek+1)2 and

E(k+1) = E(k) + pk+1 · Ek+1 − pk+1 · Ek+1.

5 Proof

Number of computation steps.

• It is well known that sorting requires O(m · log(m)) steps.

• Computing the initial values M (0), E(0), and V
(0)
E requires linear time O(m).

• For each k from 0 to m− 1, we need a constant number O(1) of steps to compute the next
values M (k+1), E(k+1), and V

(k+1)
E .

• Finally, finding the largest of m + 1 values V
(k)
E also requires O(m) steps.

Thus, overall, we need

O(m · log(m)) + O(m) + m ·O(1) + O(m) = O(m · log(m)) steps.
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Proof of correctness. The function VE is convex. Thus, its maximum V E on the box
E1 × . . . × Em is attained at one of the vertices of this box, i.e., at a vector (E1, . . . , Em)
in which each value Ej is equal to either Ej or to Ej .

To justify our algorithm, we need to prove that this maximum is attained at one of the
vectors E(k) in which all the lower bounds Ej precede all the upper bounds Ej . We will prove
this by reduction to a contradiction. Indeed, let us assume that the maximum is attained at a
vector in which one of the lower bounds follows one of the upper bounds. In each such vector,
let i be the largest upper bound index followed by the lower bound; then, in the optimal vector
(E1, . . . , Em), we have Ei = Ei and Ei+1 = Ei+1.

Since the maximum is attained for Ei = Ei, replacing it with Ei = Ei − 2∆i will either
decrease the value of VE or keep it unchanged. Let us describe how VE changes under this
replacement. Since VE is defined in terms of M and E, let us first describe how E and M
change under this replacement. In the sum for M , we place (Ei)2 with

(Ei)
2 = (Ei − 2∆i)2 = (Ei)2 − 4 ·∆i · Ei + 4 ·∆2

i .

Thus, the value M changes into M + ∆iM , where

∆iM = −4 · pi ·∆i · Ei + 4 · pi ·∆2
i . (1)

The population mean E changes into E + ∆iE, where

∆iE = −2 · pi ·∆i. (2)

Thus, the value E2 changes into (E + ∆iE)2 = E2 + ∆i(E2), where

∆i(E2) = 2 · E ·∆iE + (∆iE)2 = −4 · pi · E ·∆i + 4 · p2
i ·∆2

i . (3)

So, the variance V changes into V + ∆iV , where

∆iV = ∆iM −∆i(E2) = −4 · pi ·∆i · Ei + 4 · pi ·∆2
i + 4 · pi · E ·∆i − 4 · p2

i ·∆2
i =

4 · pi ·∆i · (−Ei + ∆i + E − pi ·∆i).

By definition, Ei = Ẽi + ∆i, hence −Ei + ∆i = −Ẽi. Thus, we conclude that

∆iV = 4 · pi ·∆i · (−Ẽi + E − pi ·∆i). (4)

So, the fact that ∆iV ≤ 0 means that

E ≤ Ẽi + pi ·∆i = E+
i . (5)

Similarly, since the maximum of VE is attained for Ei+1 = Ei+1, replacing it with Ei+1 =
Ei+1 + 2∆i+1 will either decrease the value of VE or keep it unchanged. In the sum for M , we
replace (Ei+1)2 with

(Ei+1)2 = (Ei+1 + 2∆i+1)2 = (Ei+1)
2 + 4 ·∆i+1 · Ei+1 + 4 ·∆2

i+1.

Thus, the value M changes into M + ∆i+1M , where

∆i+1M = 4 · pi+1 ·∆i+1 · Ei+1 + 4 · pi+1 ·∆2
i+1. (6)

The population mean E changes into E + ∆i+1E, where

∆i+1E = 2 · pi+1 ·∆i+1. (7)
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Thus, the value E2 changes into E2 + ∆i+1(E2), where

∆i+1(E2) = 2 · E ·∆i+1E + (∆i+1E)2 = 4 · pi+1 · E ·∆i+1 + 4 · p2
i+1 ·∆2

i+1. (8)

So, the term VE changes into VE + ∆i+1V , where

∆i+1V = ∆i+1M −∆i+1(E2) =

4 · pi+1 ·∆i+1 · Ei+1 + 4 · pi+1 ·∆2
i+1 − 4 · pi+1 · E ·∆i+1 − 4 · p2

i+1 ·∆2
i+1 =

4 · pi+1 ·∆i+1 · (Ei+1 + ∆i+1 −E − pi+1 ·∆i+1).

By definition, Ei+1 = Ẽi+1 −∆i+1, hence Ei+1 + ∆i+1 = Ẽi+1. Thus, we conclude that

∆i+1V = 4 · pi+1 · (Ẽi+1 − E − pi+1 ·∆i+1). (9)

Since VE attains maximum at (E1, . . . , Ei, Ei+1, . . . , Em), we have ∆i+1V ≤ 0, hence

E ≥ Ẽi+1 − pi+1 ·∆i+1 = E−
i+1. (10)

We can also change both Ei and Ei+1 at the same time. In this case, from the fact that VE

attains maximum, we conclude that ∆VE ≤ 0.
Here, the change ∆M in M is simply the sum of the changes coming from Ei and Ei+1:

∆M = ∆iM + ∆i+1M, (11)

and the change in E is also the sum of the corresponding changes:

∆E = ∆iE + ∆i+1E. (12)

So, for ∆V = ∆M −∆(E2), we get

∆V = ∆iM + ∆i+1M − 2 · E ·∆iE − 2 · E ·∆i+1E − (∆iE)2 − (∆i+1E)2−
2 ·∆iE ·∆i+1E.

Hence,

∆V = (∆iM − 2 · Ei ·∆iE − (∆iE)2) + (∆i+1M − 2 · Ei+1 ·∆i+1E − (∆i+1E)2)−
2 ·∆Ei ·∆Ei+1,

i.e.,
∆V = ∆iV + ∆i+1V − 2 ·∆iE ·∆i+1E. (13)

We already have expressions for ∆iV , ∆i+1V , ∆iE, and ∆i+1E, and we already know that
E−

i+1 ≤ E ≤ E+
i . Thus, we have D(E) ≤ 0 for some E ∈ [E−

i+1, E
+
i ], where

D(E) def= 4 · pi ·∆i · (−E+
i + E) + 4 · pi+1 ·∆i+1 · (E−

i+1 −E) + 8 · pi ·∆i · pi+1 ·∆i+1.

Since the narrowed intervals are not subsets of each other, we can sort them in lexicographic
order; in which order, midpoints are sorted, left endpoints are sorted, and right endpoints are
sorted, hence E−

i ≤ E−
i+1 and E+

i ≤ E+
i+1.

For E = E−
i+1, we get

D(E−
i+1) = 4 · pi ·∆i · (−E+

i + E−
i+1) + 8 · pi ·∆i · pi+1 ·∆i+1 =

4 · pi ·∆i · (−E+
i + E−

i+1 + 2 · pi+1 ·∆i+1).

By definition, E−
i+1 = Ei+1 − pi+1 ·∆i+1, hence E−

i+1 + 2 · pi+1 ·∆i+1 = E+
i+1, and

D(E−
i+1) = 4 · pi ·∆i · (E+

i+1 − E+
i ) ≥ 0.

Similarly, D(E+
i ) = 4 · pi+1 · ∆i+1 · (E−

i+1 − E+
i ) ≥ 0. The only possibility for both values to

be 0 is when interval coincide; in this case, we can easily swap them. In all other cases, all
intermediate values D(E) are positive, which contradicts to our conclusion that D(E) ≤ 0. The
statement is proven.
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6 Auxiliary Result: What if the Frequencies Are Also Only
Known with Interval Uncertainty?

Reminder: hierarchical statistical data processing. If we know the frequency of the

group j, the mean Ej of the group j, and its second moment Mj =
1

pj · n ·
∑

i∈Ij

x2
i = Vj + E2

j ,

then we can compute the overall mean E and the overall variance as E =
m∑

j=1
pj · Ej and

V =
m∑

j=1
pj ·Mj − E2.

Reminder: hierarchical statistical data processing under interval uncertainty. In the
above text, we considered the case when the statistical characteristics Ej and Vj corresponding
to different groups are known with interval uncertainty, but the frequencies pj are known exactly.

New situation. In practice, the frequencies pj may also only be known with interval uncer-
tainty. This may happen, e.g., if instead of the full census we extrapolate data – or if we have
a full census and try to take into account that no matter how thorough the census, a certain
portion of the population will be missed.

In practice, the values xi (age, salary, etc.) are usually non-negative. In this case, Ej ≥ 0. In
this section, we will only consider this non-negative case. Thus, we arrive at the new formulation
of the problem:

GIVEN: an integer m ≥ 1, and for every j from 1 to m, intervals [p
j
, pj ], [Ej , Ej ], and [M j , M j ]

for which p
j
≥ 0, Ej ≥ 0, and M j ≥ 0.

COMPUTE the range E = [E,E] of E =
m∑

j=1
pj · Ej and the range M = [M,M ] of M =

m∑
j=1

pj · Mj − E2 under the conditions that pj ∈ [p
j
, pj ], Ej ∈ [Ej , Ej ], Mj ∈ [M j ,M j ], and

m∑
j=1

pj = 1.

Derivation of an algorithm for computing E. When the frequencies pj are known, we can
easily compute the bounds for E. In the case when pj are also known with interval uncertainty,
it is no longer easy to compute these bounds.

Since E monotonically depends on Ej , the smallest value E of E is attained when Ej = Ej for
all j, so the only problem is to find the corresponding probabilities pj . Suppose that p1, . . . , pn

are minimizing probabilities, and for two indices j and k, we change pj to pj + ∆p (for some

small ∆p) and pk to pk − ∆p. In this manner, the condition
m∑

j=1
pj is preserved. After this

change, E changes to E + ∆E, where ∆E = ∆p · (Ej − Ek).
Since we start with the values at which E attains its minimum, we must have ∆E ≥ 0 for

all ∆p. If both pj and pk are strictly inside the corresponding intervals, then we can have ∆p of
all signs hence we should have Ej = Ek. So, excluding this degenerate case, we should have at
most one value pi strictly inside – others are at one of the endpoints.

If pj = p
j

and pk = pk, then we can have ∆p > 0, so ∆E ≥ 0 implies Ej ≥ Ek. So, the
values Ej for all j for which pj = p

j
should be ≤ than all the values Ek for which pk = pk.

This conclusion can be reformulated as follows: if we sort the groups in the increasing order of
Ej , we should get first pj then all p

k
. Thus, it is sufficient to consider only such arrangements
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of probabilities for which we have p1, . . . pl0−1, plo , pl0+1
, . . . p

m
. The value l0 can be uniquely

determined from the condition that
m∑

j=1
pj = 1. Thus, we arrive at the following algorithm:

Algorithm for computing E. To compute E, we first sort the values Ej in increasing order.
Let us assume that the groups are already sorted in this order, i.e., that E1 ≤ E2 ≤ . . . ≤ Em.

For every l from 0 to k, we then compute Pl = p1 + . . . + pl + p
l+1

+ . . . + p
n

as follows: we
explicitly compute the sum P0, and then consequently compute Pl+1 as Pl + (pl+1− p

l+1
). This

sequence is increasing. Then, we find the value l0 for which Pl0 ≤ 1 ≤ Pl0+1, and take

E =
l0−1∑

j=1

pj · Ej + pl0 · El0 +
m∑

j=l0+1

p
j
· Ej ,

where pl0 = 1−
l0−1∑
j=1

pj −
m∑

j=l0+1
p

j
.

Computation time. We need O(m · log(m)) time to sort, O(m) time to compute P0, O(m)
time to compute all Pl and hence, to find l0, and O(m) time to compute E – to the total of
O(m · log(m)).

Algorithm for computing E. Similarly, we can compute E in time O(m · log(m)). We first
sort the values Ej in increasing order. Let us assume that the groups are already sorted in this
order, i.e., that E1 ≤ E2 ≤ . . . ≤ Em.

For every l from 0 to k, we then compute Pl = p
1
+ . . . + p

l
+ pl+1 + . . . + pn as follows: we

explicitly compute the sum P0, and then consequently compute Pl+1 as Pl − (pl+1− p
l+1

). This
sequence is decreasing. Then, we find the value l0 for which Pl0 ≥ 1 ≥ Pl0+1, and take

E =
l0−1∑

j=1

p
j
· Ej + pl0 · El0 +

m∑

j=l0+1

pj · Ej ,

where pl0 = 1−
l0−1∑
j=1

p
j
−

m∑
j=l0+1

pj .

Derivation of an algorithm for computing M . First, we notice that the minimum is
attained when Mj are the smallest (Mj = M j) and Ej are the largest (Ej = Ej). So, the only
problem is to find the optimal values of pj .

Similarly to the case of E, we add ∆p to pj and subtract ∆p from pk. Since we started with
the values at which the minimum is attained we must have ∆M ≤ 0, i.e.,

∆ · [M j −Mk − 2E · (Ej − Ek)] ≤ 0.

So, at most one value pj is strictly inside, and if pj = p
j

and pk = pk, we must have M j −Mk−
2E · (Ej − Ek) ≤ 0, i.e., M j − 2E · Ej ≤ Mk − 2E · Ej .

Once we know E, we can similarly sort and get the optimal pj . The problem is that we
do not know the value E, and for different values E, we have different orders. The solution to
this problem comes from the fact that the above inequality is equivalent to comparing 2E with

the ratio
M j −Mk

Ej − Ek
. Thus, if we compute all n2 such ratios, sort them, then within each zone

between the consequent values, the sorting will be the same. Thus, we arrive at the following
algorithm.
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Algorithm for computing M . To compute M , we first compute all the ratios
M j −Mk

Ej − Ek
,

sort them, and take Es between two consecutive values in this sorting.
For each such E, we sort the groups according to the value of the expression M j − 2E ·Ej .

In this sorting, we select the values pj = (p1, . . . , pl0−1, pl0 , pl0+1
, . . . , p

m
) and pick l0 in the same

manner as when we computed E.

For the resulting pj , we then compute M =
m∑

j=1
pj ·M j −

(
m∑

j=1
pj · Ej

)2

.

Computation time. We need O(m · log(m)) steps for each of m2 zones, to the (still polyno-
mial) total time O(m3 · log(m))).

Algorithm for computing M . A similar polynomial-time algorithm can be used to compute

M . We first compute all the ratios
M j −Mk

Ej − Ek

, sort them, and take Es between two consecutive

values in this sorting.
For each such E, we sort the groups according to the value of the expression M j − 2E ·Ej .

In this sorting, we select the values pj = (p
1
, . . . , p

l0−1
, pl0 , pl0+1, . . . , pm) and pick l0 in the same

manner as when we computed E.

For the resulting pj , we then compute M =
m∑

j=1
pj ·M j −

(
m∑

j=1
pj · Ej

)2

.
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