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Abstract�Experts are often not 100% con�dent in their
statements. In traditional fuzzy logic, the expert's degree of
con�dence in each of his or her statements is described by
a number from the interval [0, 1]. However, due to similar
uncertainty, an expert often cannot describe his or her degree
by a single number. It is therefore reasonable to describe this
degree by, e.g., a set of numbers. In this paper, we show that
under reasonable conditions, the class of such sets coincides either
with the class of all 1-point sets (i.e., with the traditional fuzzy
set set of all numbers), or with the class of all subintervals of
the interval [0, 1], or with the class of all closed subsets of the
interval [0, 1]. Thus, if we want to go beyond standard fuzzy
logic and still avoid sets of arbitrary complexity, we have to use
intervals. These classi�cation results shows the importance of
interval-valued fuzzy logics.

I. FORMULATION OF THE PROBLEM

A. Fuzzy Logic: Brief Reminder
In classical (2-valued) logic, every statement is either true

or false. Such a 2-valued logic is often not adequate in
describing expert knowledge, because experts are usually not
fully con�dent about their statements.

To formally describe this uncertainty in human reasoning,
L. A. Zadeh introduced the notion of fuzzy logic; see, e.g.,
[2], [4]. In fuzzy logic, a person's degree of con�dence
is described by a number from the interval [0, 1], so that
absolute con�dence in a statement corresponds to 1, absolute
con�dence in its negation corresponds to 0, and intermediate
values correspond to intermediate degrees of con�dence.

In fuzzy logic, once we know the degree of con�dence a in
a statement A and the degree of con�dence b in a statement
B, we usually estimate the degree of con�dence in composite
statements A ∧B and A ∨B as, correspondingly,

a ∧ b
def= min(a, b)

and
a ∨ b

def= max(a, b).

B. Mappings Which Preserve Standard Fuzzy Logic Opera-
tions

One can easily check that if a bijection (1-1 onto mapping)

ϕ : [0, 1] → [0, 1]

is monotonic, then it preserves both operations ∧ and ∨ in the
sense that

ϕ(a) ∧ ϕ(b) = ϕ(a ∧ b)

and
ϕ(a) ∨ ϕ(b) = ϕ(a ∨ b).

Vice versa, if a bijection ϕ preserves the operations ∧ and ∨,
then it is monotonic.

In mathematical terms, a strictly monotonic continuous
function from [0, 1] to [0, 1] for which ϕ(0) = 0 and ϕ(1) = 1
is called an automorphism of the structure ([0, 1],∧,∨). The
set of all automorphisms is called the automorphism group of
the structure ([0, 1],∧,∨).
C. From Single-Valued Fuzzy Logic to Interval-Valued and
Set-Valued Ones

As we have mentioned earlier, experts are usually not fully
con�dent about their statements. In traditional fuzzy logic, the
expert's degree of con�dence in each of his or her statements
is described by a number from the interval [0, 1]. However,
due to similar uncertainty, an expert often cannot describe his
or her degree by a single number.

It is therefore reasonable to describe this degree by, e.g., a
set of possible values.

There is a natural extension of operations ∧ and ∨ to such
sets. Indeed, a set A means that all values a ∈ A are possible,
B means that all the values b ∈ B are possible; so the set
A ∧B of possible values of a ∧ b is formed by all the values
a ∧ b where a ∈ A and b ∈ B:

A ∧B
def= {a ∧ b : a ∈ A, b ∈ B}. (1)

Similarly,

A ∨B
def= {a ∨ b : a ∈ A, b ∈ B}. (2)

In many applications, researchers have been successfully
using intervals of possible values; see, e.g., [2], [3], [4];
however, it is possible to consider more general sets as well
[5]. A natural question is: which sets should we consider?
D. We Want an Extension

Since we are talking about extensions of the traditional
fuzzy logic, it is reasonable to require that the desired class
of sets S contain all one-element sets (corresponding to
traditional fuzzy values).



E. We Want Invariance
It is also reasonable to assume that the class S is invariant

under automorphisms of the traditional fuzzy logic.
In precise terms, if S is a possible set (i.e., if S ∈ S), and

ϕ(x) is a strictly increasing continuous function with ϕ(0) = 0
and ϕ(1) = 1, then the image ϕ(S) = {ϕ(s) : s ∈ S} should
also be a possible set � i.e., we should have ϕ(S) ∈ S .

F. We Want Closure under ∧ and ∨
Another reasonable requirement is that the class S be closed

under naturally de�ned operations ∧ and ∨.

G. It Is Suf�cient to Consider Closed Sets
There is one more property that is natural to assume. If,

according to a set S ∈ S , the values s1, s2, . . . , sk, . . . are all
possible (i.e., sk ∈ S), and the sequence sk converges to a
certain number s, then no matter how accurately we compute
s, we will always �nd a number sk that is indistinguishable
from s (and possible). Therefore, it is natural to assume that
this limit value s is also possible.

In other words, it is natural to assume that every set S ∈ S
contains all its limit points, i.e., that it is a closed set.

H. It Is Suf�cient to Consider Closed Classes of Sets
A similar requirement can be formulated for different sets

S ∈ S .
Indeed, on the class of all bounded closed sets, there is a

natural metric � Hausdorff distance dH(S, S′). This distance is
de�ned as the smallest ε > 0 for which S is contained in the ε-
neighborhood of S′ and S′ is contained in the ε-neighborhood
of S. In more precise terms, the Hausdorff distance is the
smallest number ε for which

∀s ∈ S ∃s′ ∈ S′ (d(s, s′) ≤ ε)

and
∀s′ ∈ S′ ∃s ∈ S (d(s, s′) ≤ ε),

where d(s, s′) = |s− s′| is the standard distance between the
points on the real line.

Informally, it means that if dH(S, S′) ≤ ε, and we only
know the values s ∈ S and s′ ∈ S′ with accuracy ε, then we
cannot distinguish between the sets S and S′.

So, if the sets S1, S2, . . . , Sk, . . . are all possible (i.e.,
Si ∈ S), and the sequence of sets Sk converges to a certain
set S (i.e., dH(Sk, S) → 0), then no matter how accurately
we compute the values, we will always �nd a set Sk that is
indistinguishable from the set S (and possible). Therefore, it
is natural to assume that this limit set S is also possible.

In other words, it is natural to assume that the class S
contains all its limit points, i.e., that it is a closed class under
the Hausdorff metric.

We are now ready to formulate the main classi�cation result.

II. MAIN RESULT

De�nition 1. A class S of closed non-empty subsets of the
interval [0, 1] is called a set-valued extension of fuzzy logic
if it satis�es the following conditions:
(i) the class S contains all 1-element sets {s}, s ∈ [0, 1];

(ii) the class S is closed under �and� and �or� operations
(1) and (2);

(iii) the class S is closed under arbitrary automorphisms
of ([0, 1],∧,∨), i.e., if S ∈ S and ϕ(x) is a strictly
increasing function for which ϕ(0) = 0 and ϕ(1) = 1,
then ϕ(S) ∈ S; and

(iv) the class S is closed under Hausdorff metric.

Theorem 1. Every set-valued extension of fuzzy logic coin-
cides with one of the following three classes:
• the class P of all one-point sets {s};
• the class I of all subintervals [s, s] ⊆ [0, 1] of the interval

[0, 1];
• the class C of all closed subsets S of the interval [0, 1].

Comments.
• This result shows that under reasonable conditions, every

set-valued extension of fuzzy logic coincides either with
the traditional fuzzy logic, or with interval-valued fuzzy
logic, or with the class of all closed subsets of the interval
[0, 1]. So, if want to go beyond traditional single-valued
fuzzy sets and do not want to consider arbitrarily complex
closed sets, we must use intervals. This classi�cation
result shows the importance of interval-valued fuzzy
logics.

• Our proofs are similar in style to the proof from set-
valued analysis; see, e.g., [1].

• For reader's convenience, all the proofs are placed in
special Appendices.

III. AUXILIARY RESULTS

A. First Auxiliary Result: No Need to Require Single-Valued
Fuzzy Values

Since single-valued fuzzy values are probably un-realistic,
it may be not necessary to require that one-point sets belong
to the class S . It turns out that for our classi�cation, it is not
necessary to require one-point sets, it is suf�cient to require
that there is at least one set S ∈ S which corresponds to �pure
uncertainty�, i.e., does not contain 0 and does not contain 1.

Theorem 2. Every class S of closed non-empty subsets of the
interval [0, 1] which satis�es the condition
(i′) the class S contains a set S for which 0 6∈ S and 1 6∈ S,
and conditions (ii)-(iv), coincides with one of the three classes
P , I , and C described in Theorem 1.

B. A General Classi�cation Result
A natural question is: What happens if the opposite to (i′)

is true, i.e., if every set S ∈ S contains either 0 or 1? In this
case, several other classes are possible:



Theorem 3. Every class S of closed non-empty subsets of the
interval [0, 1] which satis�es the condition
(i′′) every set S ∈ S contains either 0 or 1,
and conditions (ii)-(iv), is a union of one or more of the
following classes:
• the class consisting of a single set {0};
• the class consisting of a single set {1};
• the class consisting of a single interval [0, 1];
• the class I0 of all subintervals S ⊆ [0, 1] which contain

0, i.e., the class of all subintervals of the type [0, s];
• the class I1 of all subintervals S ⊆ [0, 1] which contain

1, i.e., the class of all subintervals of the type [s, 1];
• the class I01 of all sets S ⊆ [0, 1] of the type [0, s]∪[s, 1];
• the class C0 of all closed subsets S ⊆ [0, 1] which

contain 0;
• the class C1 of all closed subsets S ⊆ [0, 1] which

contain 1;
• the class C01 of all closed subsets S ⊆ [0, 1] which

contain both 0 and 1.

Comment. Here, one of the cases is when we have a 3-valued
logic (true = 1, false = 0, and unknown = [0, 1]) or its sublogic
(including the case of classical logic S = {{0}, {1}}). In all
other cases, we have either intervals or arbitrarily complex
closed set. So, here too, if we do not want arbitrarily complex
sets, we must restrict ourselves to intervals.

C. From Set-Valued to Type-2 Fuzzy Logic

Set-values fuzzy logics are a particular case of general type-
2 fuzzy sets, in which a degree of con�dence is itself a
fuzzy set. In particular, instead of intervals, it is reasonable
to consider fuzzy numbers as fuzzy sets, i.e., membership
functions which increase to 1 and then decrease back to 0. An
important case is strictly monotonic fuzzy numbers (e.g., tri-
angular ones) in which the membership function continuously
strictly increase to 1 and then continuously strictly decreases
back to 0.

It is worth mentioning that every two such functions can be
transformed into each other by an appropriate automorphism
ϕ : [0, 1] → [0, 1], and that very other fuzzy number can be
represented as a limit of strictly monotonic ones. Thus, if a
class S of fuzzy sets contains at least one strictly increasing
fuzzy number and that it is invariant under automorphisms and
closed (in the sense of the appropriately de�ned Hausdorff
metric), that S should contain all fuzzy numbers.
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APPENDIX A: PROOF OF THEOREM 1
1◦. If the class S consists only of one-point sets, then we
clearly have the �rst case of the theorem.

It is therefore suf�cient to consider only classes S which
contain at least one set which has two or more points.
2◦. Let us �rst consider the case when all the sets from the
class S are intervals. We will prove that in this case, the class
S contains the interval [0, 1].

Indeed, in this case, the class S contains at least one non-
degenerate interval [s, s], with s < s. Let us denote the
midpoint of this interval by s0 =

s + s

2
.

2.1◦. Let us prove that then S contains the interval [0, s].
This is automatically true if s = 0. If s > 0, then, for

every ε ∈ (0, s), let us construct a strictly increasing piece-
wise linear function ϕε(x) for which ϕε(0) = 0, ϕε(s) = ε,
ϕε(s0) = s0, ϕε(s) = s, and ϕε(1) = 1. Then, for every ε,
we get ϕε([s, s]) = [ε, s] ∈ S . In the limit ε → 0, we get
[ε, s] → [0, s]. So, from the fact that the class S is closed, we
conclude that [0, s] ∈ S .
2.2◦. Let us now prove that then S contains the interval [0, 1].

This is automatically true if s = 1. If s < 1, then, for every
ε ∈ (0, 1 − s), let us construct a strictly increasing piece-
wise linear function ϕε(x) for which ϕε(0) = 0, ϕε(s/2) =
s/2, ϕε(s) = 1 − ε, and ϕε(1) = 1. Then, for every ε, we
get ϕε([0, s]) = [0, 1 − ε] ∈ S. In the limit ε → 0, we get
[0, 1− ε] → [0, 1]. So, from the fact that the class S is closed,
we conclude that [0, 1] ∈ S .
2.3◦. To complete the proof for this case, we need to show that
the class S contains an arbitrary intervals [a, b] with a ≤ b.

Indeed, we have already proven that [0, 1] ∈ S , and by
de�nition, the class S contains all 1-point sets, in particular,
it contains {a} and {b}. Since the class S is closed under ∧
and ∨, we thus conclude that [0, 1]∨{a} ∈ S . One can easily
check that

[0, 1] ∨ {a} = {max(s, a) : s ∈ [0, 1]} = [a, 1].

Similarly, we conclude that [a, 1] ∧ {b} = [a, b] ∈ S .
So, the class S contains all intervals. Since we are in the

case when all its elements are intervals, the class S is thus the
class of all subintervals of the interval [0, 1].



3◦. Let us now consider the remaining case when the class S
contains a closed set S which is not an interval.

3.1◦. Let us prove that in this case, the class S contains the
set {0, 1}.

Let s− def= inf S and s+ def= sup S; then, by de�nition of
inf S and sup S, we have S ⊆ [s−, s+]. Since the set S is not
an interval, we must have S 6= [s−, s+], i.e., there must exist
a point s0 ∈ [s−, s+] which is not contained in the set S.

Since the set S is closed, it contains it limit points s− and
s+; thus, the point s0 6∈ S must be strictly between s− and
s+: s− < s0 < s+. From this, we conclude that 0 < s0 < 1.

A complement to a closed set is open. So, since s 6∈ S, there
exists a whole open interval (s, s) containing the point s which
has no common point with S. Let us denote t− def=

s + s0

2
and t+

def=
s0 + s

2
. Then, 0 < t− < s0 < t+ < 1, and

S∩[t−, t+] = ∅, i.e., S ⊆ [0, t−]∪[t+, 1], with s− ∈ S∩[0, t−]
and s+ ∈ S ∩ [t+, 1].

For every ε ∈ (0, min(s0, 1−s0)), let us construct a strictly
increasing piece-wise linear function ϕε(x) for which ϕε(0) =
0, ϕε(t−) = ε, ϕε(s0) = s0, ϕε(t+) = 1− ε, and ϕε(1) = 1.

Then, from 0 ≤ s− < t− and s− ∈ S, we conclude that
ϕε(s−) ≤ ε, i.e., that the set ϕε(S) contains a point from the
interval [0, ε]. Similarly, from t+ < s+ ≤ 1 and s+ ∈ S, we
conclude that ϕε(s−) ≥ 1−ε, i.e., that the set ϕε(S) contains
a point from the interval [1− ε, 1].

Here, ϕε([0, t−]) = [0, ε] and ϕε([t+, 1]) = [1 − ε, 1]. So,
from S ⊆ [0, t−] ∪ [t+, 1], it follows that

ϕε(S) ⊆ [0, ε] ∪ [1− ε, 1].

In the limit ε → 0, we conclude that the sequence of sets
ϕε(S) tends to the set {0, 1}. Thus, the class S indeed contains
the set {0, 1}.

3.2◦. Let us now prove that the class S contains an arbitrary
�nite set {p1, p2, . . . , pn} with 0 < p2 < . . . < pn.

Indeed, from {0, 1} ∈ S and {pn} ∈ S, we conclude that
{0, 1} ∧ {pn} = {0, pn} ∈ S .

Let us now prove by induction over k, that
{0, pn−k, p(n−k)+1, . . . , pn} ∈ S . Indeed, we have shown it
for k = 0. If we have this inclusion for k, then

{0, pn−k, p(n−k)+1, . . . , pn} ∨ {0, pn−k−1} ∈ S.

Here, 0 ∨ pn−k−1 = pn−k−1, and for every other element pi,
we have pi ∨ pn−k−1 = pi, hence we have

{0, pn−k, p(n−k)+1, . . . , pn} ∨ {0, pn−k−1} =

{0, pn−k−1, pn−k, p(n−k)+1, . . . , pn} ∈ S.

The statement is proven.
For k = n− 1, we get the conclusion {0, p1, p2, . . . , pn} ∈

S. From this, we conclude that {0, p1, p2, . . . , pn}∨{p1} ∈ S ,
and one can easily check that

{0, p1, p2, . . . , pn} ∨ {p1} = {p1, p2, . . . , pn}.

Thus, an arbitrary �nite set indeed belongs to the class S .

3.3◦. Let us now prove that the class S contains an arbitrary
closed set S ⊆ [0, 1].

Indeed, for every ε, we can consider a �nite approximation
Sε to the set S, by taking the set of all the grid points k · ε
(with integer k) for which [k · ε, (k + 1) · ε]∩S 6= ∅. One can
easily check that in the limit ε → 0, we have Sε → S. Thus,
from the fact that the class S contains all �nite sets Sε, we
conclude that the class S must also contain their limit S.

The theorem is proven.

APPENDIX B: PROOF OF THEOREM 2
1◦. Let us �rst prove that the class S contains a one-point set
{s0} for some s0 ∈ (0, 1).

Let us pick one of the classes S ∈ S which does not contain
0 or 1. If this class is already a one-point set, we are done,
so it is suf�cient to consider the case when this set is not a
one-point set.

We already know that for s− = inf S and s+ = supS,
we have s− ∈ S, s+ ∈ S, and S ⊆ [s−, s+]. Since 0 6∈ S
and 1 6∈ S, we thus conclude that s− 6= 0 (i.e., s− > 0) and
s+ 6= 1 (i.e., s+ < 1). So, S ⊆ [s−, s+] for some s− and s+

for which 0 < s− ≤ s+ < 1.
In the case s− = s+, the set S would be a one-point set.

Since we assumed that S is not a one-point set, we have s− <
s+. Let us denote the midpoint of the interval [s−, s+] by s0.
Here, 0 < s0 < 1.

For every ε ∈ (0,min(s0, 1−s0)), let us construct a strictly
increasing piece-wise linear function ϕε(x) for which ϕε(0) =
0, ϕε(s−) = s0 − ε, ϕε(s0) = s0, ϕε(s+) = s0 + ε, and
ϕε(1) = 1.

Then, from the fact that S ∈ S and S ⊆ [s−, s+], we
conclude that ϕε(S) ∈ S and

ϕε(S) ⊆ ϕ([s−, s+]) = [s0 − ε, s0 + ε].

In the limit ε → 0, these sets tend to a one-point set {s0}.
Thus, the class S indeed contains a one-point set {s0}.

2◦. Let us now prove that the class S contains all one-point
sets {s} for which s ∈ (0, 1).

Indeed, for every s ∈ (0, 1), we can construct a strictly
increasing piece-wise linear function ϕ(x) for which ϕ(0) =
0, ϕ(s0) = s, and ϕ(1) = 1. For this function ϕ(x), we have
ϕ({s0}) = {s}, so indeed {s} ∈ S .

3◦. Next, let prove that the class S contains all one-point sets
{s}.

After Part 2 of this proof, the only missing one-point sets are
{0} and {1}. The �rst set can be represented as a limit of sets
{1/n} ∈ S and is, thus, also an element of the class S . The
second set {1}, in its turn, is the limit of sets {1− 1/n} ∈ S ,
so we also have {1} ∈ S .

Thus, the condition (i) is satis�ed, and the result follows
from Theorem 1.



APPENDIX C: PROOF OF THEOREM 3
1◦. One can easily check that an arbitrary union of the above
classes indeed satis�es conditions (i′) and (ii)-(iv).
2◦. Let us �rst consider the case when we have a set S ∈ S
that contains both 0 and 1 but is different from the interval
[0, 1]. Since the set S ∈ S is different from [0, 1] and contain 0
and 1, it must have �holes�, i.e., non-empty complement −S.

2.1◦. If every such set S ∈ S has only one hole, i.e., if its
complement is a connected interval, then all such sets have
the form [0, a] ∪ [b, 1]. By applying appropriate ϕ(x), we can
show that with each set of this type, every other set of this
type also belongs to S � and in the limit when an → b, we
conclude that the entire interval [0, 1] also belongs to S . So, in
this case, we have the class of all sets of the type [0, s]∪ [s, 1].

2.2◦. The only remaining situation is when there is a set S ∈
S that contains 0, 1, and at least two holes, i.e., for which
S ⊆ [0, s1] ∪ [s2, s3] ∪ [s4, 1] for some values 0 ≤ s1 < s2 ≤
s2 < s4 ≤ 1 for which 0 ∈ S, S ∪ [s2, s3] 6= ∅, and 1 ∈ S.

In this case, by using appropriate functions ϕε(x), we
�compress� the interval [0, s1] into a single point 0, the interval
[s4, 1] into a single point 1, and the interval [s2, s3] into a
single midpoint s0 ∈ (0, 1). Thus, we conclude that a 3-point
set S0

def= {0, s0, 1} belongs to the class S .
For an arbitrary value s ∈ (0, 1), by using a strictly in-

creasing piece-wise linear function ϕ(x) for which ϕ(0) = 0,
ϕ(s0) = s, and ϕ(1) = 1, we can now conclude that
ϕ(S0) = {0, s, 1} ∈ S .

For s = 0 and s = 1, we can take a limit and thus conclude
that {0, s, 1} ∈ S for all values s ∈ [0, 1].

It is easy to check that for every two sets A and A′,

({0, 1} ∪A) ∨ ({0, 1} ∪A′) = {0, 1} ∪ (A ∪A′). (3)

Indeed, by de�nition of the set �or� operation, every element
of S∨S′ has the form s∨s′ = max(s, s′) for some s ∈ S and
s′ ∈ S′ and is, thus, equal either to s ∈ S or to s′ ∈ S′. Thus,
every element of the set S ∨ S′ belongs to the union S ∪ S′.
On the other hand, every element s ∈ S can be represented
as s ∨ 0, and every element s′ ∈ S′ as 0 ∨ s′ � hence every
element of the union indeed belongs to A ∨A′.

We start with sets {0, s, 1} which correspond to 1-element
sets A = {s}. An arbitrary �nite set can be represented as
a union of its one-element subsets. Thus, due to the equality
(3), we can conclude that S contains sets {0, 1} ∪ A for an
arbitrary �nite A � i.e., that S contains an arbitrary �nite set
which contains 0 and 1.

Since every closed set can be represented as a limit of �nite
sets, in the limit, we conclude that S contains an arbitrary
closed set which contains 0 and 1, i.e., C01 ⊆ S .

3◦. If we have a set S0 6= [0, 1] that contains 0, does not
contain 1, and is different from {0}, then we also have two
possibilities: either all such sets are intervals, or one of them
is not an interval.
3.1◦. Let us �rst consider a situation in which all such sets
S ∈ S are intervals. Since 0 ∈ S, they can only be intervals of
type [0, s]. In particular, the interval S0 (whose existence we
have just assumed) is different from {0} and does not contain
1, so it has the form [0, s0] for some s0 ∈ (0, 1).

By using an appropriate ϕ(x), we conclude that every
interval of the type [0, s] with s ∈ (0, 1) also belongs to S. By
taking a limit, we deduce that S contains all intervals [0, s],
i.e., that I0 ⊆ S .
3.2◦. Let us now consider a situation in which there exist a
non-interval set S ∈ S which contains 0 but does not contain 1.

As we have shown earlier, S ⊆ [s−, s+], with s− = inf S ∈
S and s+ = sup S ∈ S. Since 1 6∈ S, we have s+ < 1; since
S 6= {0}, we have 0 < s+. Due to the fact the set S is not an
interval, it must have a hole, i.e., we have S ⊆ [0, s1]∪[s2, s

+]
for some valued 0 ≤ s1 < s2 ≤ s+ < 1 for which 0 ∈ S and
s+ ∈ S.

By using appropriate functions ϕε(x), we �compress� the
interval [0, s1] into a single point 0 and the interval [s2, s

+]
into a single point s+ ∈ (0, 1). Thus, we conclude that a 2-
point set S0

def= {0, s+} belongs to the class S .
For an arbitrary value s ∈ (0, 1), by using a strictly in-

creasing piece-wise linear function ϕ(x) for which ϕ(0) = 0,
ϕ(s+) = s, and ϕ(1) = 1, we can now conclude that
ϕ(S0) = {0, s} ∈ S .

For s = 0 and s = 1, we can take a limit and thus conclude
that {0, s} ∈ S for all values s ∈ [0, 1].

It is easy to check that for every two sets A and A′,

({0} ∪A) ∨ ({0} ∪A′) = {0} ∪ (A ∪A′). (4)

We start with sets {0, s} which correspond to 1-element sets
A = {s}. An arbitrary �nite set can be represented as a union
of its one-element subsets. Thus, due to the equality (4), we
can conclude that S contains sets {0}∪A for an arbitrary �nite
A � i.e., that S contains an arbitrary �nite set which contains
0. In the limit, we conclude that S contains an arbitrary closed
set which contains 0, i.e., that C0 ⊆ S .
4◦. If we have a set S0 6= [0, 1] that contains 1, does not
contain 0, and is different from {1}, then we can use a similar
argument to conclude that either I1 ⊆ S or C1 ⊆ S. The only
difference is that instead of (4), we must use a dual formula

({1} ∪A) ∧ ({1} ∪A′) = {1} ∪ (A ∪A′). (5)

The theorem is proven.


