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Abstract�In traditional statistical analysis, if we know that the
distribution is normal, then the most popular way to estimate
its mean a and standard deviation σ from the data sample
x1, . . . , xn is to equate a and σ to the arithmetic mean and
sample standard deviation of this sample. After this equation,
we get the cumulative distribution function F (x) = Φ

(
x− a

σ

)

of the desired distribution.
In many practical situations, we only know intervals [xi, xi]

that contain the actual (unknown) values of xi or, more generally,
a fuzzy number that describes xi. Different values of xi lead, in
general, to different values of F (x). In this paper, we show how
to compute, for every x, the resulting interval [F (x), F (x)] of
possible values of F (x) � or the corresponding fuzzy numbers.

I. INTRODUCTION

Formulation of the problem. In many real-life situations,
the actual distribution is normal (Gaussian). It is known that
a normal distribution is uniquely determined by its mean a
and its standard deviation σ. Usually, a cumulative distribution
function corresponding to the distribution (cdf) with 0 mean
and standard deviation 1 is denoted by Φ(x). In terms of this
function Φ(x), the cdf F (x) of a general normal distribution
has the form

F (x) = Φ
(

x− a

σ

)
. (1)

To �nd the cdf, we must therefore estimate the (unknown) pa-
rameters a and σ from the (known) sample values x1, . . . , xn.
In traditional statistical data processing, one of the most widely
used methods for estimating a and σ is the method of moments,
when we �nd the mean and variance of the data, i.e., the values

a =
1
n
·

n∑

i=1

xi, σ2 =
1
n
·

n∑

i=1

(xi−a)2 =
1
n
·

n∑

i=1

x2
i −a2, (2)

and consider the normal distribution with these values a and
σ as ��tted� to the data x1, . . . , xn; see, e.g., [12], [13].

Case of interval uncertainty. In practice, instead of the exact
values xi of the sample, we often only know the intervals xi =
[xi, xi] of possible values of xi. Different values of xi ∈ xi

lead, in general, to different values of a and σ and thus, for
every x, to different values of the cdf F (x) = Φ

(
x− a

σ

)
.

It is therefore desirable to �nd the interval [F (x), F (x)] of

possible values of the cdf, i.e., in terms of [3], to �nd a p-box
that contains all possible cumulative distribution functions.

Case of fuzzy uncertainty. Often, knowledge comes in terms
of uncertain expert estimates. In the fuzzy case, to describe
this uncertainty, for each value of estimation error ∆xi, we
describe the degree µi(∆xi) to which this value is possible.

For each degree of certainty α, we can determine the set
of values of ∆xi that are possible with at least this degree of
certainty � the α-cut {x |µ(x) ≥ α} of the original fuzzy set.
In most cases, this α-cut is an interval.

Vice versa, if we know α-cuts for every α, then, for each
object x, we can determine the degree of possibility that x
belongs to the original fuzzy set [1], [2], [5], [9], [10], [11].
A fuzzy set can be thus viewed as a nested family of its α-cuts.

A fuzzy number can be de�ned as a fuzzy set for which all
α-cuts are intervals.

So, if instead of a (crisp) interval xi of possible values
of the measured quantity, we have a fuzzy number µi(x) of
possible values, then we can view this information as a family
of nested intervals xi(α) � α-cuts of the given fuzzy sets.

From the computational viewpoint, processing fuzzy un-
certainty reduces to processing of interval uncertainty. We
have already mentioned that if instead of a (crisp) interval
xi of possible values of the measured quantity, we have a
fuzzy number µi(x) of possible values, then we can view this
information as a family of nested intervals xi(α) � α-cuts of
the given fuzzy sets.

Our objective is then to compute the fuzzy number corre-
sponding to this the desired value y = f(x1, . . . , xn). In this
case, for each level α, to compute the α-cut of this fuzzy
number, we can apply interval computations to the α-cuts
xi(α) of the corresponding fuzzy sets. The resulting nested
intervals form the desired fuzzy set for y.

So, e.g., if we want to describe 10 different levels of uncer-
tainty, then we must solve 10 interval computation problems.
In other cases, we know fuzzy numbers which describe xi.
In such situations, it is desirable, for every x, to �nd the
corresponding fuzzy number F(x).

Thus, from the computational viewpoint, it is suf�cient to
produce an ef�cient algorithm for the interval case.



Computing the fuzzy number can be reduced to computing,
for different values α, the corresponding α-cut intervals based
on the α-cuts of the fuzzy sets Xi.

What is known. Since the value of F (x) is determined by
the values of the mean a and of the standard deviation σ, it
is reasonable to �rst analyze the intervals of possible values
for a and for σ. For a, the interval of possible values is easy
to describe: since the average is an increasing function of all
its variables, its minimum is attained when all xi takes their
smallest values xi, and the maximum is attained when all its
variables take their largest values xi; as a result, we get the
interval [a, a], where

a =
1
n
·

n∑

i=1

xi, a =
1
n
·

n∑

i=1

xi. (3)

For standard deviation, the problem of computing the corre-
sponding interval [σ, σ] is, in general, NP-hard. Crudely speak-
ing, this means that unless it turns out that P=NP (which few
computer scientists believe), every algorithm that computes
this interval exactly in all cases requires time which grows
at least exponentially with n. Actually, exponential time is
suf�cient: we can compute the upper endpoint σ if we consider
all 2n possible combinations of the values xi and xi, i.e., all
the corners of the n-dimensional box [x1, x1]× . . .× [xn, xn].

In some practically important cases, there exist ef�cient
algorithms whose running time grows only polynomially with
n. For example, such algorithms are possible in the �no-
nesting� case when no two intervals [xi, xi] and [xj , xj ]
(i 6= j) are proper subset of one another in the sense that
[xi, xi] 6⊆ (xj , xj). For an overview of known results, see,
e.g., [7], [8].

In principle, we can use the resulting bounds [a, a] on a and
[σ, σ] on σ to produce bounds on the ratio x− a

σ
and thus,

on the desired cumulative distribution function (cdf) F (x).
However, the values a and σ are dependent in the sense that not
all combinations of a ∈ [a, a] and σ ∈ [σ, σ] are possible; as a
result, these bounds contain excess width � a typical situation
when computations with intervals ignore dependence (see, e.g.,
[4]).

How can we compute the exact bounds on F (x)? The
closest to this are the algorithms from [6] which produce
bounds for the absolute value |x− a|

σ
of the desired ratio.

What we plan to do. In this paper, we show how to compute
the desired p-box, i.e., the exact bounds for the normal F (x)
under interval data.

II. ALGORITHMS FOR COMPUTING THE P-BOX IN THE
GENERAL CASE: MOTIVATIONS AND DESCRIPTION

Reducing the problem to computing the ratio. The above
cdf Φ(x) of a �standard� normal distribution is a strictly in-
creasing function. Thus, for every x, the interval [F (x), F (x)]

of possible values of the the quantity F (x) = Φ
(

x− a

σ

)

can be computed as [Φ(r(x)), Φ(r(x))], where [r(x), r(x)] is
the interval of possible values of the ratio r

def=
x− a

σ
. Thus,

to compute the desired p-box, it is suf�cient to compute this
interval [r(x), r(x)].
Comment. To make the following text easier to read, we will
write r instead of r(x) and r instead of r(x). A reader should
keep in mind, however, that for different x, generally, we get
different bounds r and r.
The need to consider the signs: informal explanation. We
have already mentioned that we know how to compute the
bounds on the absolute value |r| of the ratio r; see, e.g., [6].
The absolute value can be equal either to the ratio itself or to
−r. Here:
• If r ≥ 0 and |r| = r, then, e.g., the maximum of |r| is

the same as the maximum of r.
• On the other hand, if r < 0 and |r| = −r, then the

maximum of the absolute value may correspond to the
minimum of r.

So, to apply the results and techniques from [6] to our problem,
we must �rst analyze the signs of the corresponding extreme
values r and r.
Signs of the bounds r and r. In view of the above, it is
reasonable to �rst �nd out the signs of the bounds r and r of
the desired interval.
Proposition 1.
• For x ≤ a, we have r ≤ r ≤ 0.
• For a < x < a, we have r < 0 < r.
• For x ≥ a, we have 0 ≤ r ≤ r.

Comment. For reader's convenience, all the proofs are placed
in the special Appendix.
General idea: using basic facts about derivatives. Let us �x
the value x. For this x, each tuple (x1, . . . , xn) from the box
B

def= x1 × . . . . . .xn leads, in general, to a different value of
the ratio r. The ratio is a continuous function of (x1, . . . , xn);
thus, both its smallest and its largest values are attained at
some tuple. (To be more precise, we �rst have to add −∞
and +∞ to the set of possible values of r to take care of the
possibility that σ = 0.)

Let (xM
1 , . . . , xM

n ) be a tuple at which the ratio r attains
its largest possible value. If we �x all the values except
one xi, then we conclude that the corresponding function
r(xM

1 , . . . , xM
i−1, xi, x

M
i+1, . . . , x

M
n ) also attains its maximum

for xi = xM
i . There are three possible cases:

• If the ratio r attains its maximum at xi ∈ (xi, xi), then,
according to calculus, we should have ∂r

∂xi
= 0 at this

point.
• If r attains its maximum at xi = xi, then the derivative

∂r

∂xi
at this point cannot be positive � else we would

have even larger values for xi > xi; thus, we should
have ∂r

∂xi
≤ 0.



• Similarly, if r attains its maximum at xi = xi, then at
this point, ∂r

∂xi
≥ 0.

For the point (xm
1 , . . . , xm

n ) at which the ratio r attains its
minimum, we similarly have three cases for each i:
• If the ratio r attains its minimum for xi ∈ (xi, xi), then

∂r

∂xi
= 0.

• If r attains its minimum at xi = xi, then ∂r

∂xi
≥ 0.

• Finally, if r attains its minimum at xi = xi, then at this
point, ∂r

∂xi
≤ 0.

The corresponding analysis leads to the following algorithm.
In this algorithm, we assumed that the value x is given. If we
need to �nd the range [F (x), F (x)] for several different values
x, we need to repeat this algorithm for each of these values
x.

Algorithm A1. In this algorithm, we consider all possible
partitions of the set of indices {1, . . . , n} into three disjoint
subsets I−, I+, and I0. For each subdivision we set xi = xi

for i ∈ I− and xi = xi for i ∈ I+. When I0 6= ∅, we set the
values xi for i ∈ I0 as follows:
• We compute the values

ã =
∑

i∈I−
xi +

∑

j∈I+

xj , m̃ =
∑

i∈I−
(xi)

2 +
∑

j∈I+

(xj)2.

• We �nd the value a from the quadratic equation

m̃+
1

N0
·(n·a−ã)2 = n·

(
a− n · a− ã

N0

)
·(x−a)+n·a2,

where N0 is the number of elements in the set I0, and
then compute a0 =

n · a− ã

N0
.

• If this quadratic equation does not have any real solutions,
or if it does but the corresponding value a0 does not
belong to all intervals xi with i ∈ I0, then we skip this
partition and go to the next one.

• For each solution a0 that belongs to all the intervals xi,
i ∈ I0, we set xi = a0 for i ∈ I0 and compute σ =√

(a− a0) · (x− a) and r =
x− a

σ
.

The smallest of these values r is returned as r, and the largest
is returned as r. Then, we compute the desired p-box as
[Φ(r), Φ(r)].

Proposition 2. The above algorithm always computes the
exact range [F (x), F (x)] of the normal cdf under interval
uncertainty.

Comments.
• For each of n indices i, we have 3 choices: we can assign

this index to I−, to I+, and to I0. For a single index,
we have 3 possible assignments; for two indices, we have
3 ·3 = 22 possible assignments; in general, for n indices,
we have 3n possible assignments. Thus, this algorithm
requires an exponential number of computational steps
which grows with n as 3n.

• In this algorithm, the values xi at which the minimum
and the maximum of r are assigned depend, in general,
on the value x at which we estimate F (x). So, in general,
to �nd the range [F (x), F (x)] at Np points x, we have
to repeat this algorithm Np times.

Some bounds can be computed faster. It turns out that some
of the bounds can be computed in polynomial time, namely,
the upper bound r for x ≥ a and the lower bound r for x ≤ a.

Algorithm A2. To �nd r for x ≥ a, we do the following:
• First, we sort all 2n values xi and xi into a non-

decreasing sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n). Thus,
we subdivide the real line into 2n + 1 zones [x(0), x(1)],
[x(1), x(2)], . . . , [x(2n−1), x(2n)], [x(2n), x(2n+1)], where
we denoted x0

def= −∞ and x(2n+1)
def= +∞.

• For each zone [x(k), x(k+1)], we partition indices i =
1, . . . , n into three sets

I− = {i : x(k+1) ≤ xi}, I+ = {i 6∈ I− : x(k) ≥ xi},
I0 = {1, . . . , n} − I− − I+.

Based on this partition, we compute ã, m̃, a, and a0 as
in Algorithm A1. For each value a0 which is within the
zone, we compute σ =

√
(a− a0) · (x− a) and r =

x− a

σ
.

• The largest of the resulting values r is the desired r.

Comment. To �nd r for x ≤ a, we perform the same
computations, with the only difference that at the end, instead
of �nding the largest of the resulting values r, we �nd the
smallest of these values.

Proposition 3. The above algorithms always computes the
exact bound r for x ≥ a and r for x ≤ a, and they require
quadratic time O(n2).

III. EFFICIENT ALGORITHM FOR THE NO-NESTING CASE

Let us show that in a no-nesting case, when no two intervals
are nested, i.e., when [xi, xi] 6⊆ (xj , xj) for all i 6= j. In this
case, we can compute the remaining bounds r for x > a and
r for x < a also in polynomial time.

It is known that intervals which satisfy the no-nesting
property can be ordered in �lexicographic� order, i.e., the order
in which [xi, xi] < [xj , xj ] if and only if either xi < xj

or (xi = xj and xi ≤ xj); see, e.g., [7], [8]. With respect
to this order, both sequences xi and xi become monotonic:
x1 ≤ x2 ≤ . . . ≤ xn and x1 ≤ x2 ≤ . . . ≤ xn. We have used
this order in our previous algorithms [7], [8], and we will use
it here as well.

Algorithm A3. To �nd r for x > a, we do the following:
• First, we sort all n intervals [xi, xi] in the lexicographic

order. As a result, we get two monotonic sequences

x1 ≤ x2 ≤ . . . ≤ xn, x1 ≤ x2 ≤ . . . ≤ xn.



• For every n− from 1 to n, we consequently compute
n−∑
i=1

xi and m̃ =
n−∑
i=1

(xi)
2: we start with 0 and we

consequently add, correspondingly, xi or (xi)
2.

• For every n+ from 1 to n+1, we consequently compute
n∑

i=n++1

xi and m̃ =
n∑

i=n++1

(xi)2: we start with 0 for

n+ = n + 1 and then we take n+ = n, n − 1, . . . , 1 by
consequently adding, correspondingly, xi or (xi)2.

• For every two natural numbers n− and n+ for which
0 ≤ n− < n+ ≤ n + 1, we do the following:
• We compute the values N0 = n−n−− (n+1−n+)

and

ã =
n−∑

i=1

xi +
n∑

j=n+

xj , m̃ =
n−∑

i=1

(xi)
2 +

n∑

j=n+

(xj)2.

• We �nd the value a from the same quadratic equation

m̃ +
1

N0
· (n · a− ã)2 =

n ·
(

a− n · a− ã

N0

)
· (x− a) + n · a2,

as in Algorithm A1 (with N0 = n+ − n− − 1), and
then compute a0 =

n · a− ã

N0
.

• If this quadratic equation does not have any real
solutions, or if it does but the corresponding value
a0 does not belong to the interval [xn+−1, xn−+1],
then we skip this partition and go to the next one.

• For each solution a0 which belongs to
the interval [xn+−1, xn−+1], we compute
σ =

√
(a− a0) · (x− a) and r =

x− a

σ
.

• The smallest of the resulting values r is the desired r.

Comments. To �nd r for x < a, we perform the same
computations, with the only difference that at the end, instead
of �nding the smallest of the resulting values r, we �nd the
largest of these values.

Proposition 4. The above algorithms always computes the
exact bound r for x > a and r for x < a, and they require
quadratic time O(n2).
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[6] V. Kreinovich, L. Longpré, P. Patangay, S. Ferson, and L. Ginzburg,
�Outlier Detection Under Interval Uncertainty: Algorithmic Solvability
and Computational Complexity�, Reliable Computing, 2005, Vol. 11,
No. 1, pp. 59�76.
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APPENDIX A: PROOF OF PROPOSITION 1

We know that the mean a can take any values from the
interval [a, a]. When x ≤ a, this means that the value x−a is
always non-positive. Since the standard deviation σ is always
non-negative, the ratio x− a

σ
is also non-positive. Therefore,

both the smallest and the largest values of this ratio are non-
positive: r ≤ 0 and r ≥ 0.

Similarly, when x ≥ a, we have x− a ≥ 0, hence the ratio
r is non-negative and its bounds are also non-negative.

When a < x < a, the difference x−a can take both positive
values (e.g., when x = a) and negative values (e.g., when x =
a). Thus, the ratio r can also be both positive and negative.
Hence, the largest possible value of this ratio is positive, and
the smallest possible value of this ratio is negative.

APPENDIX B: PROOF OF PROPOSITION 2

1◦. Within each interval [xi, xi], the value xi corresponding to
the optimal tuple can be either at the left endpoint xi or at the
right endpoint xi, or inside the interval (xi, xi). Let us denote
the set of all indices for which xi = xi by I−, the set of all
indices for which xi = xi by I+, and the set of all remaining
indices by I0.

2◦. According to the arguments described before the formula-
tion of this proposition, for every i, either xi = xi or xi = xi,
or ∂r

∂xi
= 0. Let us therefore describe an explicit formula for

this derivative.

2.1◦. Since r is de�ned in terms of a and σ, let us �rst �nd
the formulas for the derivatives of a and σ.



Since a =
1
n
·

n∑

i=1

xi, we have ∂a

∂xi
=

1
n

. Since σ =
√

V ,

where

V
def=

1
n
·

n∑

i=1

(xi − a)2 =
1
n
·

n∑

i=1

x2
i − a2,

we have
∂σ

∂xi
=

1
2σ

· ∂V

∂xi.
.

Here,
∂V

∂xi
=

2
n
· xi − 2a · ∂a

∂xi
=

2
n
· (xi − a).

Therefore, we have
∂σ

∂xi
=

1
n · σ · (xi − a).

2.2◦. Now, we are ready to compute the desired derivative.
Here,

∂r

∂xi
=

∂

∂xi

(
x− a

σ

)
=
− ∂a

∂xi
· σ − (x− a) · ∂σ

∂xi

σ2
.

In view of the analysis that preceded the formulation of this
proposition, we are only interested in the sign of the derivative
∂r

∂xi
. Since the denominator σ2 of the expression describing

this derivative is always non-negative, this sign coincides with
the sign of the numerator

Ni
def= − ∂a

∂xi
· σ − (x− a) · ∂σ

∂xi
.

Substituting the above expressions for ∂a

∂xi
and ∂σ

∂xi
into this

formula, we conclude that

Ni = − 1
n
· σ − (x− a) · 1

n · σ · (xi − a).

We can simplify this expression even further if we multiply
it by n · σ � which also does not change the signs. Thus, the
sign of the desired derivative ∂r

∂xi
coincides with the sign of

the product pi
def= n · σ ·Ni, which is equal to

pi = −(xi − a) · (x− a)− σ2.

3◦. The only possibility for xi to be inside the interval (xi, xi)
is to have pi = 0. Dividing both sides by x− a, we conclude
that xi = a0, where we denoted

a0
def= a− σ2

x− a
.

Thus, all the values xi with i ∈ I0 have exactly the same value
a0.

Once we know the partition into the sets I−, I+, and I0,
we also know the values xi for i ∈ I− and i ∈ I+. To �nd
the values xi for i ∈ I0, we need to �nd the value a0.

4◦. By de�nition of the sample mean a, the sum of all n values
xi is equal to n · a, i.e.,

∑

i∈I−
xi +

∑

i∈I+

xi + N0 · a0 = n · a.

The sum of the �rst two sums is what we denoted by ã; so,
we conclude that ã + N0 · a0 = n · a and hence, that

a0 =
n · a− ã

N0
. (4)

Since a0 = a− σ2

x− a
, we conclude that

σ2 = (a− a0) · (x− a) =
(

a− n · a− ã

N0

)
· (x− a). (5)

By de�nition of the sample variance, we have
n∑

i=1

x2
i = n ·

a2 + n · σ2, i.e.,
∑

i∈I−
(xi)

2 +
∑

i∈I+

(xi)2 + N0 · a2
0 = n · a2 + n · σ2.

The sum of the �rst two sums is what we denoted by m̃; so,
we conclude that m̃ + N0 · a2

0 = n · a2 + n · σ2. Substituting
the expressions (4) and (5) for a0 and σ2 into this formula,
we get the quadratic equation given in the algorithm.

So, the optimal solution is indeed among those processed
by the algorithm. The proposition is proven.

APPENDIX C: PROOF OF PROPOSITION 3
1◦. We have already proven that the sign of the desired
derivative ∂r

∂xi
coincides with the sign of the product pi =

−(xi − a) · (x− a)− σ2. According to Proposition ??, when
we are looking for r and x ≥ a, then x− a ≥ 0. In this case,
the sign of pi coincides with the sign of the ratio

ri
def=

pi

x− a
= a0 − xi.

So we make the following conclusions:
(i) If the maximum r is attained for xi ∈ (xi, xi), then (the

derivative is 0 hence) xi = a0.
(ii) If the maximum is attained for xi = xi, then (the

derivative is non-positive hence) xi ≥ a0.
(iii) Finally, if the maximum is attained for xi = xi, then (the

derivative is non-negative hence) xi ≤ a0.
Therefore, if a0 < xi, then we cannot have the case (i) when
xi ≤ xi = a0 and we cannot have the case (iii) when xi ≤
xi ≤ a0, so we must have case (ii), i.e., we must have xi = xi.

Similarly, if a0 > xi, then our only option is xi = xi, and
if xi ≤ a0 ≤ xi, then our only option is xi = a0. Thus, as
soon as we know the location of the value a0 in comparison
to the bounds xi and xi � i.e., as soon as we know the zone
which contains ai � we can (almost) uniquely determine the
values xi for all xi � with the only additional problem that
we still need to determine the value a0. We already described,
in Algorithm A1, how we can �nd a0.

The case of r for x ≤ a is handled similarly.



2◦. To complete the proof, it is suf�cient to show that
these algorithms require quadratic time. Indeed, in addition
to sorting (time O(n · log(n))), this algorithm requires linear
time for each of 2n + 1 zones. So, overall, we need O(n2)
computational steps. The proposition is proven.

APPENDIX D: PROOF OF PROPOSITION 4
1◦. We have already proven that in the optimal tuple, each
value of xi is either equal to xi or to xi, or to a common
value a0. Let us now prove that in the no-nesting case, we
can also assume that the optimal sequence xi is monotonic,
i.e., x1 ≤ x2 ≤ . . . ≤ xn.

Indeed, let us assume that in the optimal sequence, we have
xi > xj for some i < j. Here, we have xi ≤ xi ≤ xi,
xj ≤ xj ≤ xj , and, since i < j, we also have xi ≤ xj and
xi ≤ xj . Let us show that in this case, xi ∈ xj and xj ∈ xi.

Indeed, from xi ≤ xi and xi ≤ xj , we conclude that xi ≤
xj . Similarly, from xj ≤ xj and xj < xi, we conclude that
xi < xj . Thus, indeed xi ∈ [xi, xi]. Similarly, we have xi ∈
[xi, xi].

Because of these two inclusions, we can �swap� the values
xi and xj , i.e., produce a new tuple in which xnew

i = xj and
xnew

j = xi. The values of sample mean a and sample standard
deviation σ do not change if we simply swap two values. So,
for this new tuple, we can the exact same values of a, σ and
therefore, the same value of the ratio r. Since the original tuple
maximized r, the new tuple is also maximizing r.

By repeating this swapping suf�ciently many times, we will
get a monotonic optimizing tuple.
2◦. Let us now prove that if in the optimal solution, we have
xi > xi and xj < xj , then we should have xi ≥ xj .

Indeed, in this case, for suf�ciently small h > 0, we can
simultaneously do the following:
• decrease xi by h, i.e., replace it with xnew

i = xi−h, and
• increase xj by h, i.e., replace it with xnew

j = xj + h,
and still keep both values xi and xj within the corresponding
intervals [xi, xi] and [xj , xj ].

Since the value of r was originally the smallest, it cannot
decrease under this replacement. After the replacement, the
sum

∑
xi does not change hence the average a does not

change, and the value of the numerator x − a > 0 does not
change either.

The value of σ2 =
1
n
·
∑

x2
i −a2 changes since two terms

change: x2
i to (xi − h)2 = x2

i − 2h · xi + o(h) and x2
j to

(xj +h)2 = x2
j +2h ·xj + o(h). Thus, overall, σ2 is replaced

with σ2 +
2h

n
· (xj − xi) + o(h). We cannot have an increase

in σ � that would lead to an impossible decrease of r below
it smallest value. Thus, the new value of σ2 cannot be larger
than its original value. In other words, we must have

σ2 +
2h

n
· (xj − xi) + o(h) ≥ σ2.

Subtracting σ2 from both sides and dividing both sides by
h ≥ 0, we conclude that xj − xi + o(1) ≤ 0. In the limit
h → 0, we get the desired inequality xj ≤ xi.
3◦. So, in the optimal tuple, every value xi = xi must precede
every value xj = xj , and all the values xi = a0 ∈ (xi, xi)
must be in between. Due to monotonicity, we therefore con-
clude that �rst we have a sequence of several values xi, then
several values equal to a0, and after that, several values equal
to xj . This is exactly the type of solution we analyze in the
algorithm.

For each selection of n− and n+, we need to check whether
the value a0 is indeed contained in all the corresponding
intermediate intervals [xi, xi] for i = n− + 1, . . . , n+ − 1.
Since the sequence xi is increasing, it is suf�cient to check
the inequality a0 ≥ xi only for the largest of these bounds,
i.e., for the bound xn+−1. Similarly, since the sequence xi is
increasing, it is suf�cient to check the inequality a0 ≤ xi only
for the smallest of these bounds, i.e., for the bound xn−+1.
Thus, the algorithm is justi�ed.
4◦. To complete the proof, it is suf�cient to show that the
algorithm A3 require quadratic time. Indeed, in addition to
sorting (time O(n · log(n))) and linear time for computing the
sums

∑
xi,

∑
(xi)

2,
∑

xi,
∑

(xi)2, we need a constant time
for each of n2 pairs of indices � i.e., O(n2) computational
steps overall. The proposition is proven.


