
Detecting Duplicates in Geoinformatics: from
Intervals and Fuzzy Numbers to General Multi-D

Uncertainty
Scott A. Starks

Department of Electrical and
Computer Engineering

University of Texas at El Paso
El Paso, TX 79968, USA

sstarks@utep.edu

Luc Longpré
Roberto Araiza

Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA

{longpre,raraiza,vladik}@utep.edu

Hung T. Nguyen
Department of Mathematical Sciences

New Mexico State University
Las Cruces, NM 88003, USA

hunguyen@nmsu.edu

Abstract�Geospatial databases generally consist of measure-
ments related to points (or pixels in the case of raster data), lines,
and polygons. In recent years, the size and complexity of these
databases have increased signi�cantly and they often contain
duplicate records, i.e., two or more close records representing
the same measurement result. In this paper, we address the
problem of detecting duplicates in a database consisting of point
measurements. As a test case, we use a database of measurements
of anomalies in the Earth's gravity �eld that we have compiled.

In our previous papers [4], [40], we have proposed a new
fast (O(n · log(n))) duplication deletion algorithm for the case
when closeness of two points (x1, y1) and (x2, y2) is described
as closeness of both coordinates. In this paper, we extend this
algorithm to the case when closeness is described by an arbitrary
metric.

Both algorithms have been successfully applied to gravity
databases.

I. CASE STUDY: GEOINFORMATICS MOTIVATION FOR THE
PROBLEM

Geospatial databases: general description. In many ap-
plication areas, researchers and practitioners have collected
a large amount of geospatial data. For example, geophysi-
cists measure values d of the gravity and magnetic �elds,
elevation, and re�ectivity of electromagnetic energy for a
broad range of wavelengths (visible, infrared, and radar) at
different geographical points (x, y); see, e.g., [36]. Each type
of data is usually stored in a large geospatial database that
contains corresponding records (xi, yi, di). Based on these
measurements, geophysicists generate maps and images and
derive geophysical models that �t these measurements.

Gravity measurements: case study. In particular, gravity
measurements are one of the most important sources of in-
formation about subsurface structure and physical conditions.
There are two reasons for this importance. First, in contrast
to more widely used geophysical data like remote sensing
images, that mainly re�ect the conditions of the Earth's sur-
face, gravitation comes from the whole Earth (e.g., [19], [20]).
Thus gravity data contain valuable information about much

deeper geophysical structures. Second, in contrast to many
types of geophysical data, which usually cover a reasonably
local area, gravity measurements cover broad areas and thus
provide important regional information.

The accumulated gravity measurement data are stored at
several research centers around the world. One of these data
storage centers is located at the University of Texas at El Paso
(UTEP). This center contains gravity measurements collected
throughout the United States and Mexico and parts of Africa.

The geophysical use of gravity database compiled at UTEP
is illustrated for a variety of scales in [1], [6], [13], [18], [22],
[23], [33], [37], [39].

Duplicates: where they come from. One of the main prob-
lems with the existing geospatial databases is that they are
known to contain many duplicate points (e.g., [16], [29], [35]).
The main reason why geospatial databases contain duplicates
is that the databases are rarely formed completely �from
scratch�, and instead are built by combining measurements
from numerous sources. Since some measurements are repre-
sented in the data from several of the sources, we get duplicate
records.

Why duplicates are a problem. Duplicate values can corrupt
the results of statistical data processing and analysis. For
example, when instead of a single (actual) measurement result,
we see several measurement results con�rming each other, and
we may get an erroneous impression that this measurement
result is more reliable than it actually is. Detecting and elimi-
nating duplicates is therefore an important part of assuring and
improving the quality of geospatial data, as recommended by
the US Federal Standard [12].

Simplest case: duplicates corresponding to interval un-
certainty. In the ideal case, when measurement results are
simply stored in their original form, duplicates are identical
records, so they are easy to detect and to delete. In reality,
however, different databases may use different formats and

units to store the same data: e.g., the latitude can be stored in
degrees (as 32.1345) or in degrees, minutes, and seconds. As a
result, when a record (xi, yi, di) is placed in a database, it is
transformed into this database's format. When we combine
databases, we may need to transform these records into a
new format � the format of the resulting database. Each
transformation is approximate, so the records representing
the same measurement in different formats get transformed
into values which correspond to close but not identical points
(xi, yi) 6= (xj , yj). Usually, geophysicists can produce a
threshold ε > 0 such that if the points (xi, yi) and (xj , yj)
are ε-close � i.e., if |xi − xj | ≤ ε and |yi − yj | ≤ ε � then
these two points are duplicates.

¡@

¡@

-¾ ε

6

?
ε

In other words, if a new point (xj , yj) is within a 2D interval
[xi−ε, xi +ε]× [yi−ε, yi +ε] centered at one of the existing
points (xi, yi), then this new point is a duplicate:

¡@

¡@

-¾ -¾

6

?

6

?

ε ε

ε

ε

From the practical viewpoint, it usually does not matter
which of the duplicate points we delete. If the two points are
duplicates, we should delete one of these two points from the
database. Since the difference between the two points is small,
it does not matter much which of the two points we delete.
In other words, we want to continue deleting duplicates until
we arrive at a �duplicate-free� database. There may be several
such duplicate-free databases, all we need is one of them.

To be more precise, we say that a subset of the original
database is obtained by a cleaning step if:
• it is obtained from the original database by selecting one

or several different pairs of duplicates and deleting one
duplicate from each pair, and

• from each duplicate chain ri ∼ rj ∼ . . . ∼ rk, at least
one record remains in the database after deletion.

A sequence of cleaning steps after which the resulting subset
is duplicate-free (i.e., does not contain any duplicates) is called
deleting duplicates.

The goal is to produce a (duplicate-free) subset of the
original database obtained by deleting duplicates.

Duplicates are not easy to detect and delete. At present, the
detection and deletion of duplicates is done mainly �by hand�,

by a professional geophysicist looking at the raw measurement
results (and at the preliminary results of processing these
raw data). This manual cleaning is very time-consuming. It is
therefore necessary to design automated methods for detecting
duplicates.

If the database was small, we could simply compare every
record with every other record. This comparison would require
n(n− 1)/2 ∼ n2/2 steps. Alas, real-life geospatial databases
are often large, they may contain up to 106 or more records;
for such databases, n2/2 steps is too long. We need faster
methods for deleting duplicates.
From interval to fuzzy uncertainty. Sometimes, instead of a
single threshold value ε, geophysicists provide us with several
possible threshold values ε1 < ε2 < . . . < εm that correspond
to decreasing levels of their certainty:
• if two measurements are within ε1 from each other, then

we are 100% certain that they are duplicates;
• if two measurements are within ε2 from each other, then

with some degree of certainty, we can claim them to be
duplicates,

• if two measurements are within ε2 from each other, then
with an even smaller degree of certainty, we can claim
them to be duplicates,

• etc.
In this case, we must eliminate certain duplicates, and mark
possible duplicates (about which we are not 100% certain)
with the corresponding degree of certainty.

In this case, for each of the coordinates x and y, instead of
a single interval [xi − ε, xi + ε], we have a nested family of
intervals [xi−εj , xi+εj] corresponding to different degrees of
certainty. Such a nested family of intervals is also called a fuzzy
set, because it turns out to be equivalent to a more traditional
de�nition of fuzzy set [3], [24], [30], [31] (if a traditional fuzzy
set is given, then different intervals from the nested family
can be viewed as α-cuts corresponding to different levels of
uncertainty α).

In these terms, in addition to detecting and deleting dupli-
cates under interval uncertainty, we must also detect and delete
them under fuzzy uncertainty.
Comment. In our speci�c problem of detecting and deleting
duplicates in geospatial databases, the only fuzziness that is
important to us is the simple fuzziness of the threshold, when
the threshold is a fuzzy number � or, equivalently, when
we have several different threshold values corresponding to
different levels of certainty.

It is worth mentioning that in other important geospatial
applications, other � more sophisticated � fuzzy models and
algorithms turned out to be very useful. There are numerous
papers on this topic, let us just give a few relevant examples:
• fuzzy numbers can be used to describe the uncertainty

of measurement results, e.g., the results of measuring
elevation; in this case, we face an interesting (and tech-
nically dif�cult) interpolation problem of reconstructing
the (fuzzy) surface from individual fuzzy measurement
results; see, e.g., [28], [34];

• fuzzy sets are much more adequate than crisp sets in
describing geographic entities such as biological species
habitats, forest regions, etc.; see, e.g., [14], [15];

• fuzzy sets are also useful in describing to what extent the
results of data processing are sensitive to the uncertainties
in raw data; see, e.g., [26], [27].

What we did in our previous work. In [4], [40], we
considered the case when ε-closeness of two points (xi, yi)
and (xj , yj) is described as ε-closeness of both coordinates.
In this de�nition, the set of all points which are ε-close to a
given point is a box. For this case, we described an ef�cient
algorithm for detecting and deleting outliers.

New result. In this paper, we extend this algorithm to the
case when ε-closeness is described by an arbitrary metric: e.g.,
Euclidean metric

d((xi, yi), (xj , yj)) =
√

(xi − xj)2 + (yi − yj)2

or lp-metric

d((xi, yi), (xj , yj)) = p

√
|xi − xj |p + |yi − yj |p.

II. GEOSPATIAL DATABASES: BRIEF INTRODUCTION

Geospatial databases: formal description. In accordance
with our description, a geospatial database can be described
as a �nite set of records r1, . . . , rn, each of which is a triple
ri = (xi, yi, di) consisting of two rational numbers xi and yi

that describe coordinates and some additional data di.

The need for sorting. One of the main objectives of a
geospatial database is to make it easy to �nd the information
corresponding to a given geographical area. In other words,
we must be able, given one or two coordinates (x and/or y) of
a geographical point (center of the area of interest), to easily
�nd the data corresponding to this point and its vicinity.

It is well known that if the records in a database are not
sorted by a parameter a, then in order to �nd a record with a
given value of a, there is no faster way than linear (exhaustive)
search, in which we check the records one by one until we
�nd the desired one. In the worst case, linear search requires
searching over all n records; on average, we need to search
through n/2 records. For a large database with thousands and
millions of records, this takes too much time.

To speed up the search, it is therefore desirable to sort the
records by the values of a, i.e., to reorder the records in such
a way that the corresponding values of a are increasing: a1 ≤
a2 ≤ . . . ≤ an.

Once the records are sorted, instead of the time-consuming
linear search, we can use a much faster binary search (also
known as bisection). At each step of the binary search, we
have an interval al ≤ a ≤ au. We start with l = 1 and
u = n. On each step, we take a midpoint m = b(l + u)/2c
and check whether a < am. If a < am, then we have a new
half-size interval [al, am−1]; otherwise, we have a half-size
interval [am, au] containing a. In log2(n) steps, we can thus
locates the record corresponding to the desired value of a.

How to sort: mergesort algorithm. Sorting can be done, e.g.,
by mergesort � an asymptotically optimal sorting algorithm
that sorts in O(n · log(n)) computational steps (see, e.g., [7]).

III. THE PROBLEM OF DELETING DUPLICATES: A
FORMAL DESCRIPTION

Formally, we say that a subset of the database is obtained
by a cleaning step if:
• it is obtained from the original database by selecting

one or several different pairs of duplicates ri ∼ rj and
deleting one duplicate from each pair, and

• from each duplicate chain ri ∼ rj ∼ . . . ∼ rk, at least
record remains in the database after deletion.

A sequence of cleaning steps after which the resulting subset
is duplicate-free (i.e., does not contain any duplicates) is called
deleting duplicates.

The goal is to produce a (duplicate-free) subset of the
original database obtained by deleting duplicates � and to
produce it sorted by xi.

IV. IDEAL CASE OF NO UNCERTAINTY

To come up with a general algorithm for detecting and
eliminating duplicates under uncertainty, let us �rst consider
an ideal case when there is no uncertainty, i.e., when duplicate
records ri = (xi, yi, di) and rj = (xj , yj , dj) mean that the
corresponding coordinates are equal: xi = xj and yi = yj .

In this case, to eliminate duplicates, we can do the follow-
ing. We �rst sort the records in lexicographic order, so that ri

goes before rj if either xi < xj , or (xi = xj and yi ≤ yj). In
this order, duplicates are next to each other.

So, we �rst compare r1 with r2. If coordinates in r2 are
identical to coordinates in r1, we eliminate r2 as a duplicate,
and compare r1 with r3, etc. After the next element is no
longer a duplicate, we take the next record after r1 and do the
same for it, etc.

After each comparison, we either eliminate a record as a
duplicate, or move to a next record. Since we only have n
records in the original database, we can move only n steps
to the right, and we can eliminate no more than n records.
Thus, totally, we need no more than 2n comparison steps to
complete our procedure.

Since 2n is asymptotically smaller than the time O(n ·
log(n)) needed to sort the record, the total time for sorting and
deleting duplicates is O(n·log(n))+2n = O(n·log(n)). Since
we want a sorted database as a result, and sorting requires
at least O(n · log(n)) steps, this algorithm is asymptotically
optimal.

Comment. It is important to mention that this process does not
have to be sequential: if we have several processors, then we
can eliminate records in parallel, we just need to make sure
that if two record are duplicates, e.g., r1 = r2, then when one
processor eliminates r1 the other one does not eliminate r2.

V. THE PROBLEM OF DELETING DUPLICATES:
MULTI-DIMENSIONAL CASE

Formulation of the problem. At present, the most important
case of duplicate detection is a 2-D case, when record are 2-
dimensional, i.e., of the type r = (x, y, d). What if we have
multi-D records of the type r = (x, . . . , y, d), and we de�ne
ri = (xi, . . . , yi, di) and rj = (xj , . . . , yj , dj) to be duplicates
if |xi−xj | ≤ ε, . . . , and |yi− yj | ≤ ε? For example, we may
have measurements of geospatial data not only at different
locations (x, y), but also at different depths z within each
location.
Related problems of computational geometry: intersec-
tion of hyper-rectangles. As we have mentioned in [40],
the problem of deleting duplicates is closely related to the
problem of intersection of hyper-rectangles in computational
geometry [5], [8], [10], [11], [17], [32], [38]. By using these
algorithms, we can �nd and delete all the duplicates in time
O(n · logm−1(n) + k), where k is the total number of pairs
that are duplicates to each other.
What was known before. In [4], [40], we have show that
if ε-closeness is understood as ε-closeness of all coordinates,
then, for all possible dimensions m, the duplicate elimination
problem can be solved in time O(n · log(n)) � much faster
than for the known computational geometry algorithms.
What we do. In this paper, we extend the above result to the
case of a general metric in Rm. This general metric can be
described as follows.
De�nition 1. By a metric, we mean a triple (S, c, C), where
S ⊆ Rm is a convex set that contains 0, and c > 0 and C > 0
are numbers such that S is symmetric (i.e., for every point r,
we have r ∈ S if and only if −r ∈ S) and

[−c, c]× . . .× [−c, c] ⊆ S ⊆ [−C,C]× . . .× [−C,C].

We say that points r and r′ are ε-close if r − r′

ε
∈ S.

Comments. The property of c means that S contains all points
close to 0. For the case of interval uncertainty, S is a cube:

S = [−1, 1]× . . .× [−1, 1].

Proposition 1. For every m ≥ 2 and for every metric, there
exists an algorithm that solves the duplicate deletion problem
in time O(n · log(n)).
Proof. This new algorithm starts with a database of records
ri = (xi, . . . , yi, di) and a number ε > 0.
Algorithm 1.

1. For each record, compute the indices
pi = bxi/(C · ε)c, . . . , qi = byi/(C · ε)c.

2. Sort the records in lexicographic order ≤ by their
index vector ~pi = (pi, . . . , qi). If several records have
the same index vector, check whether some are

duplicates of one another, and delete the duplicates.
As a result, we get an index-lexicographically ordered
list of records: r(1) ≤ . . . ≤ r(n0), where n0 ≤ n.

3. For i from 1 to n, we compare the record r(i) with
its ≤-following immediate neighbors; if one of the
following immediate neighbors is a duplicate to r(i),
then we delete this neighbor.

Let us describe this algorithm in more detail. By an immediate
neighbor to a record ri with an index vector (pi, . . . , qi), we
mean a record rj for which for the index vector ~pj 6= ~pi, for
each index, pj ∈ {pi − 1, pi, pi + 1}, . . . , and qj ∈ {qi −
1, qi, qi +1}. An immediate neighbor rj is called ≤-following
if ~pi ≤ ~pj .

It is easy to check that if two records are duplicates, then
indeed their indices can differ by no more than 1, i.e., the
differences ∆p

def= pj − pi, . . . , ∆q
def= qj − qi between

the indices can only take values −1, 0, and 1. Since there
are 3 possible values of each of 3 differences, we get 3m

possibilities; one of them is (0, . . . , 0) which corresponds
to this same �cell�, so each cell has ≤ 3m − 1 immediate
neighbors.

In Part 2, we start with the �rst record in the cell (i.e.,
the �rst record with the given index vector). Then, we check
whether the second record within this same cell is the duplicate
of the �rst one; if no, we add the second record; if yes, we
delete the second record. For every new record from this cell,
we check whether its a duplicate of one of the already added
records.

To describe all ≤-following immediate neighbors, during
Step 3, for each i and for each of ≤ 3m−1 difference vectors
~d = (∆p, . . . , ∆q), we keep the index j(~d, i) of the �rst record
r(j) for which ~p(j) ≥ ~p(i) + ~d (here, ≥ means lexicographic
order). Then:
• If ~p(j) = ~p(i) + ~d, then the corresponding record r(j)

(and records from the same cell) are indeed ≤-following
immediate neighbors of r(i), so must check whether it is
a duplicate.

• If ~p(j) > ~p(i) + ~d, then the corresponding record r(j)

is not a ≤-following immediate neighbor of r(i), so no
duplicate check is needed.

We start with j(~d, 0) = 1 corresponding to i = 0. When we
move from i-th iteration to the next (i + 1)-th iteration, then,
since the records r(k) are lexicographically ordered, for each
of ≤ 3m−1 vectors ~d, we have j(~d, i+1) ≥ j(~d, i). Therefore,
to �nd j(~d, i + 1), it is suf�cient to start with j(~d, i) and add
1 until we get the �rst record r(j) for which ~p(j) ≥ ~p(i+1) + ~d.

To complete the proof, we need to show that Algorithm 1
produces the results in time O(n·log(n)). Indeed, Algorithm 1
consists of a sorting (which takes O(n · log(n)) steps), Part 2,
and Part 3.

To estimate the time needed for Part 2, let us count how
many records we can have in each cell so that no two are
duplicates. Around each record ri = (xi, . . . , yi), we build a

small cube

Ci =
[
xi − c · ε

2
, xi +

c · ε
2

]
× . . .×

[
yi − c · ε

2
, yi +

c · ε
2

]

with a center at ri, of half-size (c·ε)/2 and volume v = (c·ε)m.
If two such small cubes intersect, i.e., if Ci∩Cj 3 r for some
point r, then for each coordinate of the corresponding points
ri = (x1, . . . , yi), rj = (xj , . . . , yj), and r = (x, . . . , y), we
have |xi − x| ≤ (c · ε)/2 and |xj − x| ≤ (c · ε)/2 hence

|xi − xj | ≤ |xi − x|+ |x− xj | ≤ c · ε.

Thus, ri − rj

ε
∈ S and the records ri and rj are duplicates.

So, if no two records ri and rj are duplicates, then the
corresponding small cubes Ci and Cj do not intersect. All
the small cubes Ci lie within the union of the cell of volume
(2C · ε)m and its 3m − 1 immediate neighbors, i.e., within a
zone of volume V = 3m · (2C · ε)m = (6C · ε)m. Within this
zone, we can have at most V/v non-intersecting small cubes
of volume v. Thus, the number of non-duplicate records is
bounded from above by the ratio V/v = (6C/c)m, which is
a constant independent on the number of points n. Thus, in
Part 2, we compare every record with ≤ V/v others. So, for
this part, we need time O(n).

During Part 3, for each of ≤ 3m − 1 vectors ~d, we move
the corresponding index j one by one from 1 to n0 ≤ n; for
each value of the index, we make ≤ (V/v) · (V/v) = const
comparisons between records in both cells. Thus, for each
vector ~d, we need O(n) comparisons.

For a given dimension m, there is a �xed number ≤ 3m−1
of vectors ~d, so we need the total of ≤ (3m−1)·O(n) = O(n)
computational steps. Thus, the total running time of Algo-
rithm 1 is O(n · log(n))+O(n)+O(n) = O(n · log(n)). The
proposition is proven.

Comment. Since our problem requires sorting, we cannot solve
it faster than in O(n · log(n)) steps that are needed for sorting
[7]. Thus, Algorithm 1 is asymptotically optimal.

VI. DELETING DUPLICATES UNDER FUZZY UNCERTAINTY

As we have mentioned, in some real-life situations, in
addition to the threshold ε that guarantees that ε-close data
are duplicates, the experts also provide us with additional
threshold values εi > ε for which εi-closeness of two data
points means that we can only conclude with a certain degree
of certainty that one of these data points is a duplicate. The
corresponding degree of certainty decreases as the value εi

increases.
In this case, in addition to deleting records that are ab-

solutely certainly duplicates, it is desirable to mark possible
duplicates � so that a professional geophysicist can make the
�nal decision on whether these records are indeed duplicates.

A natural way to do this is as follows:
• First, we use the above algorithm to delete all the certain

duplicates (corresponding to ε).
• Then, we use the same algorithm to the remaining records

and mark (but not actually delete) all the duplicates

corresponding to the next value ε2. The resulting marked
records are duplicates with the degree of con�dence
corresponding to ε2.

• After that, we apply the same algorithm with the value
ε3 to all unmarked records, and mark those which the al-
gorithm detects as duplicates with the degree of certainty
corresponding to ε3,

• etc.
In other words, to solve a fuzzy problem, we solve several
interval problems corresponding to different levels of uncer-
tainty. It is worth mentioning that this �interval� approach to
solving a fuzzy problem is in line with many other algorithms
for processing fuzzy data; see, e.g., [3], [24], [30], [31].

VII. POSSIBILITY OF PARALLELIZATION

If we have several processors that can work in parallel, we
can speed up computations:

Proposition 2. If we have at least n2/2 processors, then, if we
simply want to delete duplicates (and we do not want sorting),
we can delete duplicates in a single step.

Proof. For n records, we have n · (n− 1)/2 pairs to compare.
We can let each of ≥ n2/2 processors handle a different
pair, and, if elements of the pair (ri, rj) (i < j) turn out
to be duplicates, delete one of them � the one with the largest
number (i.e., rj). Thus, we indeed delete all duplicates in a
single step. The proposition is proven.

Comment. If we also want sorting, then we need to also spend
time O(log(n)) on sorting [21].

If we have fewer than n2/2 processors, we also get a speed
up:

Proposition 3. If we have at least n processors, then we can
delete duplicates in O(log(n)) time.

Proof. Let us show how Algorithm 1 can be implemented
in parallel. Its �rst stage is sorting, and we have already
mentioned that we can sort a list in parallel in time O(log(n)).

Then, we assign a processor to each of n points. For each
point, we �nd each of ≤ (3m − 1) indices by binary search
(it takes log(n) time), and check whether the corresponding
records are duplicates.

As a result, with n processors, we get duplicate elimination
in time O(log(n)). The proposition is proven.

Proposition 4. If we have p < n processors, then we can
delete duplicates in O((n/p) · log(n) + log(n)) time.

Proof. It is known that we can sort a list in parallel in time
O((n/p) · log(n) + log(n)); see, e.g., [21].

Then, we divide n points between p processors, i.e., we
assign, to each of p processors, n/p points. For each of these
points, we check whether each of its ≤ const · (3m − 1)
≤-following immediate neighbors is a duplicate � which
takes O(log(n)) time for each of these points. Thus, overall,
checking for duplicates is done in time O((n/p) · log(n)).

Hence, the overall time for this algorithm is

O((n/p) · log(n) + log(n)) + O((n/p) · log(n)) =

O((n/p) · log(n) + log(n))

� the same as for sorting. The proposition is proven.

Comment: relation to computational geometry. Similarly to the
sequential multi-dimensional case, we can solve the duplicate
deletion problem much faster than a similar problem of listing
all duplicate pairs (i.e., equivalently, all pairs of intersecting
hyper-rectangles Ri). Indeed, according to [2], [17], even on
the plane, such listing requires time O(log2(n) + k).

ACKNOWLEDGMENTS

This work was supported in part by NSF grant EAR-
0225670, by Texas Department of Transportation grant No.
0-5453, and by the Japan Advanced Institute of Science and
Technology (JAIST) International Joint Research Grant 2006-
08. We are very thankful to the anonymous referees for the
useful comments.

REFERENCES

[1] Adams, D.C., and Keller, G.R., 1996. Precambrian basement geology
of the Permian Basin region of West Texas and eastern New Mexico: A
geophysical perspective, American Association of Petroleum Geologists
Bulletin 80, 410�431.

[2] Akl, S.G., and Lyons, K.A., 1993. Parallel Computational Geometry,
Prentice Hall, Englewood Cliffs, New Jersey.

[3] Bojadziev, G., and Bojadziev, M., 1995. Fuzzy Sets, Fuzzy Logic,
Applications, World Scienti�c, Singapore.

[4] Campos, C., Keller, G.R., Kreinovich, V., Longpré, L., Modave, M.,
Starks, S.A., and Torres, R., 2003. The Use of Fuzzy Measures as
a Data Fusion Tool in Geographic Information Systems: Case Study,
Proceedings of the 22nd International Conference of the North American
Fuzzy Information Processing Society NAFIPS'2003, Chicago, Illinois,
July 24�26, 2003, 365�370.

[5] Chazelle, B.M., and Incerpi, J., 1983. Triangulating a polygon by
divide-and-conquer, Proc. 21st Allerton Conference on Communications,
Control, and Computation, 447�456.

[6] Cordell, L., and Keller, G.R., 1982. Bouguer Gravity Map of the Rio
Grande Rift, Colorado, New Mexico, and Texas Geophysical investiga-
tions series, U.S. Geological Survey.

[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., 2001.
Introduction to Algorithms, MIT Press, Cambridge, MA, and Mc-Graw
Hill Co., N.Y.

[8] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.,
1997. Computational Geometry: Algorithms and Applications, Springer-
Verlag, Berlin-Heidelberg.

[9] Edelsbrunner, E., 1980. Dynamic Data Structures for Orthogonal In-
tersection Queries, Report F59, Institute für Informationsverarbeitung,
Technical University of Graz.

[10] Edelsbrunner, E., 1983. A new approach to rectangle intersections, Part
II, Int'l Journal of Computer Mathematics 13, 221�229.

[11] Edelsbrunner, E., and Overmars, M.H., 1985. Batched dynamic solutions
to decomposable searching problems, Journal of Algorithms 6, 515�542.

[12] FGDC Federal Geographic Data Committee, 1998. FGDC-STD-
001-1998. Content standard for digital geospatial metadata (revised
June 1998), Federal Geographic Data Committee, Washington, D.C.,
http://www.fgdc.gov/metadata/contstan.html

[13] Fliedner, M.M., Ruppert, S.D., Malin, P.E., Park, S.K, Keller, G.R., and
Miller, K.C., 1996. Three-dimensional crustal structure of the southern
Sierra Nevada from seismic fan pro�les and gravity modeling, Geology
24, 367�370.

[14] Fonte, C.C., and Lodwick, W.A., 2001. Modeling and Processing
the Positional Uncertainty of Geographical Entities with Fuzzy Sets,
Technical Report 176, Center for Computational Mathematics Reports,
University of Colorado at Denver, August 2001.

[15] Fonte, C.C., and Lodwick, W.A., 2003. Areas of Fuzzy Geographical
Entities, Technical Report 196, Center for Computational Mathematics
Reports, University of Colorado at Denver, March 2003.

[16] Goodchild, M., and Gopal, S. (Eds.), 1989. Accuracy of Spatial
Databases, Taylor & Francis, London.

[17] Goodman, J.E., and O'Rourke, J., 1997. Handbook of Discrete and
Computational Geometry, CRC Press, Boca Raton, Florida.

[18] Grauch, V.J.S., Gillespie, C.L., and Keller, G.R., 1999. Discussion of
new gravity maps of the Albuquerque basin, New Mexico Geol. Soc.
Guidebook 50, 119�124.

[19] Heiskanen, W.A., and Meinesz, F.A., 1958. The Earth and its gravity
�eld, McGraw-Hill, New York.

[20] Heiskanen, W.A., and Moritz, H., 1967. Physical Geodesy, W.H. Free-
man and Company, San Francisco, California.

[21] Jájá, J., 1992. An Introduction to Parallel Algorithms, Addison-Wesley,
Reading, MA.

[22] Keller, G.R., 2001. Gravitational Imaging, In: The Encyclopedia of
Imaging Science and Technology, John Wiley, New York.

[23] Keller, G.R., et al., 2006. A community effort to construct a gravity
database for the United States and an associated Web portal, In: Sinha,
A.K. (ed.), Geoinformatics: Data to Knowledge, Geological Society of
America Publ., Boulder, Colorado, 21�34.

[24] Klir, G., and Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice Hall, Upper Saddle River, NJ.

[25] Laszlo, M.J., 1996. Computational Geometry and Computer Graphics
in C++, Prentice Hall, Upper Saddle River, New Jersey.

[26] Lodwick, W.A., 1989. Developing Con�dence Limits on Errors of
Suitability Analyses in Geographic Information Systems. In: Goodchild,
M., and Suchi, G. (Eds.), Accuracy of Spatial Databases, Taylor and
Francis, London, 69�78.

[27] Lodwick, W.A., Munson, W., and Svoboda, L., 1990. Attribute Error
and Sensitivity Analysis of Map Operations in Geographic Information
Systems: Suitability Analysis, The International Journal of Geographic
Information Systems 4(4), 413�428.

[28] Lodwick, W.A., and Santos, J., 2003. Constructing consistent fuzzy
surfaces from fuzzy data, Fuzzy Sets and Systems 135, 259�277.

[29] McCain, M., and William C., 1998. Integrating Quality Assurance
into the GIS Project Life Cycle, Proceedings of the 1998 ESRI Users
Conference. http://www.dogcreek.com/html/documents.html

[30] Nguyen, H.T., and Kreinovich, V., 1996. Nested Intervals and Sets:
Concepts, Relations to Fuzzy Sets, and Applications, In: Kearfott, R.B.,
et al, Applications of Interval Computations, Kluwer, Dordrecht, 245�
290.

[31] Nguyen, H.T., and Walker, E.A., 1999. First Course in Fuzzy Logic,
CRC Press, Boca Raton, FL.

[32] Preparata, F.P., and Shamos, M.I., 1989. Computational Geometry: An
Introduction, Springer-Verlag, New York.

[33] Rodriguez-Pineda, J.A., Pingitore, N.E., Keller, G.R., and Perez, A.,
1999. An integrated gravity and remote sensing assessment of basin
structure and hydrologic resources in the Chihuahua City region, Mex-
ico, Engineering and Environ. Geoscience 5, 73�85.

[34] Santos, J., Lodwick, W.A., and Neumaier, A., 2002, A New Approach
to Incorporate Uncertainty in Terrain Modeling. In: Egenhofer, M., and
Mark, D. (eds.), GIScience 2002, Springer-Verlag Lecture Notes in
Computer Science 2478, 291�299.

[35] Scott, L., 1994. Identi�cation of GIS Attribute Error Using Exploratory
Data Analysis, Professional Geographer 46(3), 378�386.

[36] Sharma, P., 1997. Environmental and Engineering Geophysics, Cam-
bridge University Press, Cambridge, U.K.

[37] Simiyu, S.M., and Keller, G.R., 1997. An integrated analysis of litho-
spheric structure across the East African Plateau based on gravity
anomalies and recent seismic studies, Tectonophysics 278, 291�313.

[38] Six, H.W., and Wood, D, 1982. Counting and reporting intersections of
d-ranges, IEEE Transactions on Computers C-31, 181�187.

[39] Tesha, A.L., Nyblade, A.A., Keller, G.R., and Doser, D.I., 1997. Rift
localization in suture-thickened crust: Evidence from Bouguer gravity
anomalies in northeastern Tanzania, East Africa, Tectonophysics, 278,
315�328.

[40] Torres, R., Keller, G.R., Kreinovich, V., Longpré, L., and Starks, S.A.,
2004. Eliminating Duplicates Under Interval and Fuzzy Uncertainty:
An Asymptotically Optimal Algorithm and Its Geospatial Applications,
Reliable Computing, 10(5), 401�422.

