
Towards Optimal Scheduling for Global Computing
under Probabilistic, Interval, and Fuzzy Uncertainty,

with Potential Applications to Bioinformatics
Roberto Araiza, Michela Taufer
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA
{raraiza,mtaufer}@utep.edu

Ming-Ying Leung
Bioinformatics Program

University of Texas at El Paso
El Paso, TX 79968, USA

mleung@utep.edu

Abstract�In many practical situations, in particular in many
bioinformatics problems, the amount of required computations
is so huge that the only way to perform these computations in
reasonable time is to distribute them between multiple processors.
The more processors we engage, the faster the resulting computa-
tions; thus, in addition to processor exclusively dedicated to this
job, systems often use idle time on other processors. The use of
these otherwise engaged processors adds additional uncertainty
to computations.

How should we schedule the computational tasks so as to
achieve the best utilization of the computational resources?
Because of the presence of uncertainty, this scheduling problem
is very dif�cult not only to solve but even to formalize (i.e., to
describe in precise terms). In this paper, we provide the �rst
steps towards formalizing and solving this scheduling problem.

I. SUPERCOMPUTING

At present, most useful computations are performed on
individual computers. However, there are practical problems
which require orders of magnitude more computations than a
regular computer can perform. To perform such computations,
we need what is often called a �supercomputer�.

Such problems include processing DNA data and other
relevant bioinformatics data, weather prediction and climate
analysis, etc. For example, in bioinformatics, one of the most
time-consuming tasks is to look for known patterns in a long
DNA or RNA sequence.

II. SUPERCOMPUTING IN THE PAST

In this paper, we will analyze scheduling in global com-
puting. To explain the idea (and the necessity) of global
computing, it is important to explain how the concept of
supercomputing has evolved in the last decades.

In the past, the ability to use supercomputers to simulate
such things as nuclear weapons design was an important
part of military confrontation. As a result, special classi�ed
technology was used to design supercomputers, technology
that was not allowed on regular individual computers.

III. SUPERCOMPUTING AT PRESENT

Since the end of the Cold War, military restrictions no
longer serve as a serious limitation to the mass-produced

computer technology. As a result, the current PCs are almost
as fast as specially designed computer processors.

Hence, many existing supercomputers are designed by con-
necting regular off-the-shelf computer processors together.

IV. GLOBAL COMPUTING

Since regular computers are almost as powerful as any
processor within a supercomputer, a natural idea is to use idle
cycles of the regular computers to perform high-throughput
computations. This idea enables us, in effect, to build a
powerful supercomputer out of the existing computers � and
we do not even need to own them, it is enough to use their
idle cycles. Of course, due to communication time, this idea
may not always work for real-time computations where we
need, e.g., to predict the path of a upcoming dangerous storm.
However, in many scienti�c computations, a communications-
related delay of a day or two may be quite reasonable � as long
as we do eventually perform all the necessary computations.

This idea started in the 1990s with SETI@Home, where
global computing was used to process signals from radio
telescopes in search for messages from extra-terrestrial intelli-
gence. At present, this idea is actively used in mainstream
research. For example, our group has developed easy-to-
install web browser extension tools [2], [3], [14], [15], [17]
which, in effect, enable computers to work together. The
resulting networks are already being used for bioinformatics
applications [13], [16].

V. ONE OF THE MAIN PROBLEMS OF GLOBAL
COMPUTING: SCHEDULING UNDER UNCERTAINTY

A serious problem in global computing is scheduling; see,
e.g., [1], [5], [6], [10], [11], [12]. A similar problem occurs
when we combine several processors into a single supercom-
puter, but there, usually, all the processors are similar, and we
are in complete control of them. The corresponding scheduling
problem is computationally dif�cult, but it is well formulated,
without any serious uncertainty.

In contrast, in global computing, we are connecting comput-
ers of different types, some of which we own, some of which



we don't own (so we can only use their idle cycles). We do not
have an exact understanding of how the resulting collaboration
affects computation time, how much time is available as
idle cycles, etc. In other words, to make an ef�cient use of
resources in global computing, we must perform scheduling
under uncertainty. The existing scheduling tools for such
scheduling are still imperfect [1], [5], [6], [10], [11], [12].

VI. WE NEED ALL TYPES OF UNCERTAINTY

• In some cases, we have interval uncertainty: e.g., we may
know that a certain processing step takes between 5 and
10 minutes on a given computer.

• In other cases, we have probabilistic uncertainty: e.g.,
based on the past experience, we may know the mean
processing value � or we may even know the probability
distribution for computation time.

• We can also have expert estimates for computation time,
such as �the time is usually much faster than 10 minutes�
which are natural to describe in fuzzy terms.

In scheduling, we need to take into account all these three
types of uncertainty.

Let us show how the problem of selecting the optimal
schedule under these types of uncertainty can be described
in precise terms.

VII. WHICH SCHEDULE IS OPTIMAL: TOWARDS A
FORMAL DESCRIPTION OF THE APPROPRIATE OBJECTIVE

FUNCTION

Formalizing the main objective: �rst try. The need for
parallelization comes from the fact that computing the original
task on a sequential machine requires too long a time.

From this viewpoint, a reasonable objective of paralleliza-
tion is to minimize the overall computation time t.

Formalizing the main objective: complications caused
by uncertainty. In global computing, we use idle time of
otherwise engaged computers. This idle time depends on
whether (and to what extent) these computers are engaged
in other computations. Thus, for the same schedule, the actual
computation time t may differ from situation to situation.

So, we may get different computation times with different
probabilities.

Formalizing the main objective: second try. Due to uncer-
tainty, we cannot guarantee the exact value of the computation
time. Moreover, with some (hopefully small) probability, the
actual computation time may turn out be be very large.

If this probability is small enough, then the situation is quite
tolerable: indeed, for every computer (even a dedicated one),
there is always a probably of hardware failure which would
make the computations impossible.

It is therefore reasonable to select a tolerable probability of
failure ε, and to gauge each schedule by the time t0 during
which this schedule completes computation with probability
1− ε.

Then, we select the schedule for which this time t0 is the
smallest.

Formalizing the main objective: additional complications
caused by uncertainty. In the idealized case when we know
the probabilities of all possible engagements of different
computers, we can simulate the involved network of computers
and �nd the probability that the task will be performed in any
time period t. In such idealized situation, we can then �nd
the value t0 for which the probability of success is 1− ε, and
select the schedule for which the value is the smallest.

In reality, we do not have a full knowledge of the corre-
sponding probabilities. Because of this incomplete knowledge,
for a given schedule, we cannot uniquely predict the probabil-
ity that under schedule, the original task will be performed in
time t. The actual probability of success may depend on the
parameters which are unknown to us.

Formalizing the main objective: �nal idea. We have men-
tioned that we cannot exactly predict the actual probability
with which a given plan will succeed in time t. For differ-
ent possible probability distributions, we may have different
probabilities.

Our objective is to guarantee that the computations are done.
Thus, a reasonable measure of the schedule's quality is the
time t0 by which we can guarantee that the computations
�nish with the probability 1− ε.

Formalizing the main objective: resulting formalization.
We want to select the schedule for which the time t0 during
which computations are guaranteed to �nish with probability
≥ 1− ε.

Need to compute the time of guaranteed completion. In
view of this objective, to select the optimal schedule, we must
be able, for each schedule, to compute the time t0 during
which computations are guaranteed to �nish with probability
≥ 1− ε.

Let us now describe what information we can use to
compute this time, and how we can use this information.

VIII. HOW TO PREDICT THE GUARANTEED COMPUTATION
TIME

Need for such a prediction: reminder. We have argued
that a reasonable way to select a computation schedule is to
select a schedule for which the guaranteed (with probability
≥ 1−ε) computation time t0 is the smallest. Thus, to �nd the
optimal schedule, we must be able to compute this guaranteed
computation time.

What is a schedule. The main idea of parallelization is that
the original time-consuming task into jobs (subtasks) which
can be performed independently. A schedule describes how
exactly this parallelization is performed, i.e., how exactly the
original task is divided into subtasks, and which processor is
assigned which subtask.

Example from bioinformatics. As we have mentioned, in
bioinformatics, one of the most time-consuming tasks is to
look for known patterns in a long DNA or RNA sequence.
This task can be parallelized if:



• we divide the original sequence into pieces,
• assign each piece to a different computer, and
• ask the corresponding computer to search for the desired

pattern within its piece.
Of course, the pieces must overlap � otherwise this procedure
may miss the pattern if it happens that this pattern is split
between two neighboring pieces.

As soon as all the jobs are done, the original task is
performed.
An expression for the overall time in terms of times
of subtasks. The overall time required by the parallelized
procedure can be de�ned as t = te − ts, where:
• ts is the moment when the original task was submitted

by the user to the submit point, and
• tE is the moment when all the jobs (subtasks) have been

performed and their results have been returned to the
submit point.

For every job i, let ti denote the time from ts to the moment
when the results of this job are returned to the submit point.
The original task is done when the last of these jobs is
performed, the job which requires the largest amount of time.
Thus t = max

i
ti, where the maximum is taken over all the

jobs i.
For each task i, we need some time to send it off to a

currently idle processor, process it there, and then send the
results back. The overall time ti is therefore equal to the sum∑
j

tij of the times of these steps. The overall computation
time is thus equal to the longest of these times, i.e., to

t = max
i

∑

j

tij .

Comment. For bioinformatics problems, each subtask is per-
formed on a single processor, hence each job time ti is the sum
of the times tij corresponding to three above-described steps.
The possibility of using a single processor for each subtask is
due to the fact that each subtask is reasonably short, so the
probability that the auxiliary processor remains idle during
these computations remains high.

In other application areas, it may not be possible to sub-
divide the original task into parallelizable short subtasks;
the subtasks are much longer. In this case, there is a high
probability that a processor would stop being idle before the
subtask is completed, and the subtask will not be �nished. To
avoid this situation, it is reasonable to subdivide this subtask
into several sequential steps, and assign each step to a different
processor:
• the �rst processor performs the �rst step, then return the

results to the submit point;
• these results will then be sent to the second processor, to

perform the second step of the subtask, etc.
In this case, the overall time ti for computing the i-th job can
be described by a similar formula ti =

∑
j

tij , but now we can
have more than three steps j.

In view of this possibility, in the following text, we will
consider the general case of possibly > 3 steps j.

We only have partial information about the times tij . We
have described a formula that relates the desired computation
time t with the times tij of performing different steps.

If we knew the exact values of tij , then we could use
the above formula to compute the exact value of the overall
computation time. If we knew the probability distribution for
each of the times tij , then we could �nd the probabilities of
different values of t; in particular, we would be able to �nd
the probability that t is below the given value t0.

In reality, in most cases, we do not know the exact value
tij , and we only partial knowledge about the corresponding
probabilities.

What types of partial information about the times tij do
we have? We can safely assume that different values tij are
statistically independent.

For some times tij , we know the probability distribution.
For other times tij , we know the bounds tij ≤ tij ≤ tij

and the mean E[tij ].
In other cases, we have fuzzy information about the bounds

and means.
We would like to use this information to estimate the

guaranteed computation time.

IX. FROM THE COMPUTATIONAL VIEWPOINT, IT IS
SUFFICIENT TO CONSIDER INTERVAL UNCERTAINTY

In the fuzzy case, to describe the corresponding uncertainty
about tij , for each value t of the time tij , we describe the
degree µij(t) to which this value is possible.

For each degree of certainty α, we can determine the set
of values of tij that are possible with at least this degree of
certainty � the α-cut tij(α) def= {t |µij(t) ≥ α} of the original
fuzzy set. In many practical cases, this α-cut is an interval.

Vice versa, if we know α-cuts for every α, then, for each
value t, we can determine the degree of possibility that t
belongs to the original fuzzy set for tij [4], [7]. A fuzzy set
can be thus viewed as a nested family of its α-cuts.

A fuzzy number can be de�ned as a fuzzy set for which all
α-cuts are intervals.

So, if instead of an interval [tij , tij ] of possible values
of the time tij , we have a fuzzy number µij(t) of possible
values, then we can view this information as a family of nested
intervals tij(α) (α-cuts of the given fuzzy sets).

Our objective is then to compute the fuzzy number t0
corresponding to the desired time. In this case, for each level
α, the corresponding α-cut of the desired fuzzy number can
be computed based on the α-cuts tij(α) of the corresponding
input fuzzy sets. The resulting nested intervals form the fuzzy
number for the desired time t0.

So, e.g., if we want to describe 10 different levels of uncer-
tainty, then we must solve 10 interval computation problems.
Thus, from the computational viewpoint, it is suf�cient to
produce an ef�cient algorithm for the interval case.



X. TOWARDS A MATHEMATICAL FORMULATION OF THE
PROBLEM

Mathematical observation: properties of the dependence
of t on tij . Let us observe that the function t = max

i

∑
j

tij

which describes the dependence of the overall computation
time t on the times tij is non-negative and convex.

Let us recall that a function f : Rm → R is called convex
if

f(α · x + (1− α) · y) ≤ α · f(x) + (1− α) · f(y)

for every x, y ∈ Rm and for every α ∈ (0, 1). It is known
that the maximum of several linear functions is convex, so
our function is indeed convex.

Our objective. We want to �nd the smallest possible value
t0 such that for all possible distributions consistent with the
known information, we have t ≤ t0 with the probability ≥
1− ε (where ε > 0 is a given small probability).

What information we can use. We assume that different
values tij are statistically independent:
• About some of the variables tij , we know their exact

statistical characteristics.
• About some other variables tij , we only know their

interval ranges [tij , tij ] and their means Eij .

Additional property: the dependency is non-degenerate.
We only have partial information about the probability dis-
tribution of the variables tij . For each possible probability
distribution p, we can �nd the largest value tp for which,
for this distribution, t ≤ tp with probability ≥ 1 − ε. The
desired value t0 is the largest of the values tp corresponding
to different probability distributions p: t0 = sup

p∈P
tp, where

P denotes the class of probability distributions p which are
consistent with the known information.

If we learn some additional information about the distribu-
tion of tij � e.g., if we learn that tij actually belongs to a
proper subinterval of the original interval [tij , tij ] � we thus
decrease the class P of distributions p which are consistent
with this information, to a new class P ′ ⊂ P . Since the class
has decreased, the new value t′0 = sup

p∈P′
tp is the maximum

over a smaller set and thus, cannot be larger than the original
value t0: t′0 ≤ t0.

From the purely mathematical viewpoint, it is, in principle,
possible that the desired value t0 does not actually depend on
some of the variables tij . In this case, if we narrow down the
interval of possible values of the corresponding variable tij ,
this will not change the resulting value t0.

In our problem, however, it is reasonable to assume that the
dependence of t0 on tij is non-degenerate in the sense that
every time we narrow down one of the intervals [tij , tij ], the
resulting value t0 actually decreases: t′0 < t0.

As a result, we arrive at the following problem.

XI. FORMULATION OF THE PROBLEM AND THE MAIN
RESULT

GIVEN: • a �nite set of M pairs of integers (i, j), and its
subset F ;

• a real number ε > 0;
• a convex non-negative function

t = F (t11, t12, . . .);

• probability distributions for variables tij with
(i, j) ∈ F � e.g., given in the form of cumulative
distribution function (cdf) Fij(t);

• intervals tij = [tij , tij ] and values Eij corre-
sponding to (i, j) 6∈ F .

TAKE: all possible joint probability distributions on RM

for which:
• all N random variables tij are independent;
• for all (i, j) ∈ F , the variable tij has a given

distribution Fij(t);
• for each (i, j) 6∈ F , tij ∈ tij with probability 1

and the mean value of tij is equal to Eij .
FIND: �nd the smallest possible value t0 such that for all

possible distributions consistent with the known
information, we have t

def= F (t11, t12, . . .) ≤ t0
with probability ≥ 1− ε.

PROVIDED: that the problem is non-degenerate in the
sense that if we narrow down one of the intervals
tij , the value t0 decreases.

The following result explains how we can compute this
value t0.
Proposition. The desired value t0 is attained when for each
(i, j) 6∈ F , we use a 2-point distribution for tij , in which:

• tij = tij with probability p
ij

def=
tij − Eij

tij − tij
.

• tij = tij with probability pij
def=

Eij − tij
tij − tij

.

Comment. A similar proposition was �rst proven in [8], [9] for
a completely different computer-related application � to chip
design. For reader's convenience, the proof (adjusted to our
problem) is given in the special Appendix.

XII. RESULTING ALGORITHM FOR COMPUTING t0

Because of the above Proposition, we can compute the de-
sired value t0 by using the following Monte-Carlo simulation:
• We set each value tij , (i, j) 6∈ F , to be equal:

• to tij with probability pij and
• to the value tij with the probability tij .

• We simulate the values tij , (i, j) ∈ F , as random
variables distributed according to the distributions Fij(x).

• For each simulation s, 1 ≤ s ≤ Ni, we get the simulated
values t

(s)
ij , and then, a value t(s) = F (t(s)11 , t

(s)
12 , . . .). We

then sort the resulting Ni values t(s) into an increasing
sequence

t(1) ≤ t(2) ≤ . . . ≤ t(Ni),



and take, as t0, the Ni · (1− ε)-th term t(Ni·(1−ε)) in this
sorted sequence.

ACKNOWLEDGMENTS

This work was supported in part by the Texas Advanced
Research Program Grant No. 003661-0008-2006.

The authors are thankful to Vladik Kreinovich for his help
and to the anonymous referees for valuable suggestions.

REFERENCES

[1] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, and U. Nagashima,
�A performance evaluation model for effective job scheduling in global
computing systems�, Proceedings of the Seventh International IEEE
Symposium on High Performance Distributed Computing, July 28�31,
1998, pp. 352�353.

[2] K. Bhatia, B. Stearn, M. Taufer, R. Zamudio, and D. Catarino, �Extending
Grid Protocols onto the Desktop using the Mozilla Framework�, Proceed-
ings of the 2nd International Workshop on Grid Computing Environments
(GCE 2006), a workshop in conjunction with SuperComputing 2006
Conference, Tampa, Florida, November 2006.

[3] K. Bhatia, M. Taufer, B. Stearn, R. Zamudio, and D. Catarino, �Inte-
grate GridFTP into Firefox � Build grid protocols into Mozilla-based
tools�, IBM developerWorks, 10 Oct. 2006, available at http://www-
128.ibm.com/developerworks/grid/library/gr-�refoxftp/

[4] D. Dubois and H. Prade, �Operations on fuzzy numbers�, International
Journal of Systems Science, 1978, Vol. 9, pp. 613�626.

[5] J. Han and D. Park, �Scheduling proxy: enabling adaptive-grained
scheduling for global computing system�, Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing, November 8,
2004, pp. 415�420.

[6] D. Kondo, H. Casanova, E. Wing, and F. Berman, �Models and scheduling
mechanisms for global computing applications�, Proceedings of the
International IEEE Symposium on Parallel and Distributed Processing
IPDPS'2002, April 15�19, 2002, pp. 79�86.

[7] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, CRC
Press, Boca Raton, Florida, 2006.

[8] M. Orshansky, W.-S. Wang, Martine Ceberio, and G. Xiang, �Interval-
Based Robust Statistical Techniques for Non-Negative Convex Functions,
with Application to Timing Analysis of Computer Chips�, Proceedings
of the Symposium on Applied Computing SAC'06, Dijon, France, April
23�27, 2006, pp. 1645�1649.

[9] M. Orshansky, W.-S. Wang, G. Xiang, and V. Kreinovich, �Interval-Based
Robust Statistical Techniques for Non-Negative Convex Functions, with
Application to Timing Analysis of Computer Chips�, Proceedings of
the Second International Workshop on Reliable Engineering Computing,
Savannah, Georgia, February 22�24, 2006, pp. 197�212.

[10] G. Sun, B. Fan, G. Chen, and Y. Zhou, �Study on Scheduling Strategy
for Global Computing Application�, Proceedings of the Seventh IEEE
International Conference on Parallel and Distributed Computing, Appli-
cations and Technologies PDCAT'06, December 2006, pp. 368�372.

[11] G. Sun, J. Shan, and G. Chen, �Job Scheduling for Campus-scale
Global Computing with Machine Availability Constraints�, Proceedings
of the First International IEEE Multi-Symposiums on Computer and
Computational Sciences IMSCCS'06, June 20�24, 2006, Vol. 1, pp. 385�
388.

[12] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima,
�Overview of a performance evaluation system for global computing
scheduling algorithms�, Proceedings of the Eighth International IEEE
Symposium on High Performance Distributed Computing, August 3�6,
1999, pp. 97�104.

[13] M. Taufer, C. An, A. Kerstens, and C.L. Brooks III, �Predictor@Home:
A Protein Structure Prediction Supercomputer Based on Global Com-
puting�, IEEE Transactions on Parallel and Distributed Systems, 2006,
Vol. 17, No. 8, pp. 786�796.

[14] M. Taufer, A. Kerstens, T. Estrada, D. A. Flores, and P. J. Teller,
�SimBA: a Discrete Event Simulator for Performance Prediction of Vol-
unteer Computing Projects�, Proceedings of the International Workshop
on Principles of Advanced and Distributed Simulation 2007 PADS'07,
San Diego, California, June 2007 (to appear).

[15] M. Taufer, A. Kerstens, T. Estrada, D. A. Flores, R. Zamudio, P. J. Teller,
R. Armen, and C. L. Brooks III, �Moving Volunteer Computing towards
Knowledge-Constructed, Dynamically-Adaptive Modeling and Schedul-
ing�, Proceedings of the First Workshop on Large-Scale, Volatile Desktop
Grids PCGrid'07, in conjunction with IPDPS'07, Long Beach, California,
March 2007.

[16] M. Taufer, M.-Y. Leung, K. L. Johnson, and A. Licon, �RNAVLab: A
uni�ed environment for computational RNA structure analysis based on
grid computing technology�, 6th IEEE International Workshop on High
Performance Computational Biology HiCOMB'07, in conjunction with
IPDPS'07, Long Beach, California, March 2007.

[17] R. Zamudio, D. Catarino, M. Taufer, K. Bhatia, and B. Stearn, �Topaz:
Extending Firefox to Accommodate the GridFTP Protocol�, Proceedings
of the Fourth High-Performance Grid Computing Workshop HPGC'07,
in conjunction with IPDPS'07, Long Beach, California, March 2007.

APPENDIX: PROOF OF THE PROPOSITION

1◦. By de�nition, t0 is the largest value of tp over all possible
distributions p ∈ P . This means that for the given t0, for all
possible distributions p ∈ P , we have Prob(t ≤ t0) ≥ 1− ε.
Let p ∈ P be the �worst-case� distribution, i.e., the distribution
for which the probability Prob(t ≤ t0) is the smallest. Let
us show that this �worst case� occurs when all variables tij
with (i, j) 6∈ F have the 2-point distributions described in the
Proposition.
2◦. Let us �x a pair (i0, j0) 6∈ F and show that in the �worst
case�, ti0j0 indeed has the desired 2-point distribution.

Let us �x the distributions for all other tij , (i, j) 6∈ F
as in the worst case. Then, the fact that the probability
Prob(t ≤ t0) is the smallest means that if we replace the
worst-case distribution for ti0j0 with some other distribution,
we can only increase this probability. In other words, when we
correspondingly �x the distributions for tij , (i, j) 6= (i0, j0),
the probability Prob(t ≤ t0) attains the smallest possible value
at the desired distribution for ti0j0 .
3◦. The distribution for ti0j0 is located on an interval ti0j0 =
[ti0j0

, ti0j0 ], i.e., on a set with in�nitely many points. However,
with an arbitrary large value N (and thus, for an arbitrarily
small discretization error δ = (ti0j0 − ti0j0)/N ), we can
assume that all the distributions are located on a �nite grid
of values

v0
def= ti0j0

, v1
def= ti0j0

+δ, v2
def= ti0j0

+2δ, . . . , vN = ti0j0 .

The smaller δ, the better this approximation. Thus, without
losing generality, we can assume that the distribution of ti0j0

is located on �nitely many points vk.
4◦. In this approximation, the probability distribution for ti0j0

can be described by the probabilities qk
def= pi0j0(vk) of

different values vk.
5◦. The minimized probability Prob(t ≤ t0) can be described
as the sum of the probabilities of different combinations of tij
over all the combinations for which t = F (t11, t12, . . .) ≤ t0.
We assumed that all the variables tij are independent. Thus,
the probability of each combination of tij is equal to the prod-
uct of the corresponding probabilities p11(t11) · p12(t12) · . . .
Since the probability distributions for tij , (i, j) 6= (i0, j0), are
�xed, the minimized probability is thus a linear combination



of probabilities pi0j0(vk), i.e., of the probabilities qk. In other

words, the minimized probability has the form
N∑

k=0

ck · qk for
some coef�cients ck.
6◦. By describing the probability distribution on ti0j0 via the
probabilities qk = pi0j0(vk) of different values vk ∈ [tij , tij ],
we automatically restrict ourselves to distributions which are
located on this interval. The only restrictions that we have on
the probability distribution of ti0j0 is that:
• it is a probability distribution, i.e., qk ≥ 0 for all k and

N∑
k=0

qk = 1, and
• the mean value of this distribution is equal to Ei0j0 , i.e.,

N∑
k=0

qk · vk = Ei0j0 .

Thus, the worst-case distribution for ti0j0 is a solution to the
following linear programming problem:
Minimize

N∑

k=0

ck · qk

under the constraints
N∑

k=0

qk = 1,

N∑

k=0

qk · vk = Ei0j0 ,

qk ≥ 0, k = 0, 1, 2, . . . , N.

7◦. It is known that the solution to a linear programming
problem is always attained at a vertex of the corresponding
constraint set.

In other words, in the solution to the linear programming
problem with N + 1 unknowns q0, q1, . . . , qN , at least N + 1
constraints are equalities.

Since we already have 2 equality constraints, this means
that out of the remaining constraints qk ≥ 0, at least N − 1
are equalities. In other words, this means that in the optimal
distribution, all but two values of qk = pi0j0(vk) are equal to
0.

Thus, the �worst-case� distribution for ti0j0 is located on 2
points v and v′ within the interval [ti0j0 , ti0j0 ].
8◦. Let us prove, by reduction to a contradiction, that these two
points cannot be different from the endpoints of this interval.

Indeed, let us assume that they are different. Without losing
generality, we can assume that v ≤ v′. Then, this �worst-
case� distribution is actually located on the proper subinterval
[v, v′] ⊂ [ti0j0

, ti0j0 ] of the original interval ti0j0 .
Since the maximum t0 of tp is attained on this distribution,

replacing the original interval ti0j0 with its proper subinterval
[v, v′] would not change the value t0 � while our assumption of
non-degeneracy states that such a replacement would always
lead to a smaller value t0. This contradiction shows that the
values v and v′ � on which the worst-case distribution is
located � have to be endpoints of the interval [ti0j0

, ti0j0 ].

9◦. In other words, we conclude that the worst-case distribu-
tion is located at 2 points: ti0j0 and ti0j0 .

Such a distribution is uniquely determined by the proba-
bilities p

i0j0
and pi0j0 of these two points. Since the sum of

these probabilities is equal to 1, it is suf�cient to describe one
of these probabilities, e.g., pi0j0 ; then, p

i0j0
= 1− pi0j0 . The

condition that the mean of ti0j0 is Ei0j0 , i.e., that

p
i0j0

·ti0j0
+pi0j0 ·ti0j0 = (1−pi0j0)·ti0j0

+pi0j0 ·ti0j0 = Ei0j0 ,

uniquely determines pi0j0 (and hence p
i0j0

) � exactly by the
expression from the Proposition.

The Proposition is proven.


