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Abstract�In practice, it is often necessary to make a decision
under uncertainty.

In the case of interval uncertainty, for each alternative i, instead
of the exact value vi of the objective function, we only have
an interval vi = [vi, vi] of possible values. In this case, it is
reasonable to assume that each value vi is uniformly distributed
on the corresponding interval [vi, vi], and to take the probability
that vi is the largest as the probability of selecting the i-th
alternative.

In some practical situations, we have fuzzy uncertainty, i.e.,
for every alternative i, we have a fuzzy number Vi describing
the value of the objective function. Then, for every degree α,
we have an interval Vi(α), the α-cut of the corresponding fuzzy
number. For each α, we can assume the uniform distributions
on the corresponding α-cuts and get a probability Pi(α) that vi

will be selected for this α. From the practical viewpoint, it is
desirable to combine these probabilities into a single probability
corresponding to fuzzy uncertainty.

In deriving the appropriate combination, we use the fact
that fuzzy values are not uniquely de�ned, different procedures
can lead to differently scaled values. It turns out that the only
scaling-invariant distribution on the set of all the degrees α is
a uniform distribution. So, we justify the choice of

∫
Pi(α) dα

as the probability that under fuzzy uncertainty, an alternative i
will be selected.

I. MAKING A DECISION

Let us assume that we want to select an alternative with
the largest possible value of a certain quantity. If for two
alternatives a1 and a2, we know the exact values v1 and
v2 of the corresponding quantity, then the question of which
alternative to select is simple:
• we select a1 if v1 > v2,
• we select a2 if v2 > v1, and
• we can select any of these alternatives if v1 = v2.

II. DECISION MAKING UNDER UNCERTAINTY

In many practical situations, we do not know the exact
values of the desired quantity. In some situations, we only
know the bounds vi and vi for the (unknown) actual value vi,
i.e., our only information about vi is that vi belongs to the
interval vi = [vi, vi].

In other situations, our only information about vi comes
from an expert estimate described by a term from natural

language. In this case, a natural description of this information
is by using a fuzzy number.

If we only know, e.g., intervals [v1, v1] and [v2, v2] of
possible values of vi, and these intervals share several common
points, then:
• it may be that v1 > v2 and
• it may be that v2 > v1.

Thus, some decision makers will prefer v1 and some may
prefer v2. In this case, it is reasonable to predict the probability
of selecting v1.

III. DECISION MAKING UNDER INTERVAL UNCERTAINTY:
FORMULAS ARE KNOWN

For decision making under interval uncertainty, there exist
reasonable formulas for the probability of selecting v1. For
example, we can assume that v1 is uniformly distributed
within the interval [v1, v1], v2 is uniformly distributed within
the interval [v2, v2], and that v1 and v2 are independent
random variables. Under these assumptions, we can compute
the probability P1 that v1 ≥ v2 as

P1 =
I1 + I2 + I3

(v1 − v1) · (v2 − v2)
,

where

I1
def=

1
2
·max(0, min(v1, v2)−max(v1, v2))

2,

I2
def= (v2 − v2) ·max(0, v1 − v2),

I3
def= (v1 − v1) ·max(0, v1 − v2);

see, e.g., [6], [10], [12], [13].

Comment. Under interval uncertainty, similar formulas can be
described for the case when we have several alternatives; see,
e.g., [5]. For reader's convenience, these formulas are also
given in the Appendix.



IV. DECISION MAKING UNDER FUZZY UNCERTAINTY: A
PROBLEM

In the fuzzy case, each value vi is represented by a fuzzy
number Vi. A fuzzy number can be equivalently represented
by a nested family of intervals Vi(α) (α-cuts) corresponding
to different values α ∈ [0, 1].

For each α, we can use the corresponding intervals V1(α)
and V2(α) to compute the probability P1(α) that v1 ≥ v2. The
question is: how to combine these probabilities P1(α) into a
single probability for selecting v1?

V. IDEA

A fuzzy number means, crudely speaking, that we do not
know which interval Vi(α) actually describes the range. The
actual value vi is always within the range Vi(0), sometimes it
is within the range Vi(1). We do not know the corresponding
value α beforehand, but once we learn the actual value vi, we
can then �nd the largest αm of all the values α for which this
actual value is contained in the interval Vi(α).

In principle, we can gather statistics of such values αm.
Once we know the probability corresponding to different
values αm, then we can estimate the desired probability of
selecting v1 as the expected value of the probability P1(α)
with respect to this probability distribution.

VI. WHAT WE DO IN THIS PAPER: MAIN IDEA

In deriving the appropriate combination, we use the fact that
fuzzy values are not uniquely de�ned, different procedures can
lead to differently scaled values.

In this paper, we analyze these re-scalings and prove that
the only scaling-invariant distribution on the set of all the
degrees α is a uniform distribution. So, we justify the choice
of

∫
Pi(α) dα as the probability that under fuzzy uncertainty,

an alternative i will be selected.

VII. DIFFERENT ELICITATION METHODS CAN LEAD TO
DIFFERENT FUZZY VALUES

Polling: a natural way to assign fuzzy value. One of the
natural methods to ascribe the degree of con�dence d(A) to
a statement A is to take several (N ) experts, and ask each of
them whether he or she believes that A is true.

If N(A) of them answer �yes�, we take d(A) = N(A)/N
as the desired certainty value; see, e.g., [7], [8], [9].

Polling: examples.
• If all the experts believe in A, then this value is 1 (=

100%).
• If half of them believe in A, then d(A) = 0.5 (50%),
• etc.

To get more accurate polling results, we should ask
as many experts as possible. Knowledge engineers want
the system to include the knowledge of the entire scienti�c
community, so they ask as many experts as possible.

Problem with asking too many experts. Asking too many
experts leads to the following negative phenomenon: when the

opinion of the most respected professors, Nobel-prize winners,
etc., is known, some less self-con�dent experts will not be
brave enough to express their own opinions, so they will:
• either say nothing,
• or follow the opinion of the majority.

The effect of additional experts on the degree of con�dence.
How does their presence in�uence the resulting uncertainty
value? In line with the above description, let us consider three
cases:
• adding shy experts (who do not answer anything);
• adding conformist experts; and
• adding experts of both type.

First case: adding shy experts. Let N denote the initial
number of experts, N(A) the number of those of them who
believe in A, and M the number of shy experts added.

Initially, d(A) = N(A)/N . After we add M experts who
do not answer anything when asked about A, the number of
experts who believe in A is still N(A), but the total number of
experts is bigger (M +N ). So the new value of the uncertainty
ratio is

d′(A) =
N(A)

N + M
= c · d(A),

where we denoted c = N/(M + N).
Second case: adding adding conformist experts. When we
add experts who give the same answers as the majority of N
renowned experts, then, for the case when d(A) > 1/2, we
get N(A) + M experts saying that A is true.

So, the new uncertainty value is

d′(A) =
N(A) + M

N + M
=

N · d(A) + M

N + M
.

General case: adding both shy and conformist experts. If
we add M �silent� experts and M ′ �conformists� (who vote
as the majority), then we get a transformation

d(A) → N · d(A) + M ′

N + M + M ′ .

Mathematical observation. In all these cases, the transforma-
tion from an old scale d(A) to a new scale d′(A) is a linear
function d(A) → a · d(A)b for some constants a and b; in the
most general case

a =
N

N + M + M ′

and
b =

M ′

N + M + M ′ .

By selecting appropriate values of N , M , and M ′, we can
get arbitrary linear functions with positive linear coef�cients.
Thus, we arrive at the following conclusion.
Conclusion. Fuzzy degree of con�dence d(A) is de�ned
modulo an arbitrary linear re-scaling transformation.



VIII. PROBABILITY DISTRIBUTIONS ON [0, 1] WHICH ARE
CONDITIONALLY INVARIANT UNDER ARBITRARY

RE-SCALINGS

Formulation of the problem. Since fuzzy values are de�ned
modulo a re-scaling (linear transformation), it is reasonable
to require that the corresponding probability measure on the
interval [0, 1] be conditionally invariant with respect to these
re-scalings.

In other words, we require that after each linear re-
scaling, the conditional probabilities should not change. Since
a conditional probability P (A |B) is de�ned as ratio of two
probabilities

P (A |B) =
P (A &B)

P (B)
,

this means that the ratios of probabilities must be preserved
� i.e., that the probabilities must be invariant modulo some
additive constant.

Towards a description of probability measures. In order
to describe all probability measures which are conditionally
invariant under re-scalings, let us �rst recall how probability
measures can be described.

A continuous probability distribution can be described by
its probability density function ρ(x).

Comment. More general distributions can also be described in
similar terms, if we allow �generalized� functions (distribu-
tions) ρ(x) � such as the delta-function δ(x) which is only
equal to 0 for x = 0 and for which

∫
δ(x) dx = 1.

To avoid mathematical complications, we can simply con-
sider such functions as limits of �normal� functions. For
example, the delta-function can be viewed as a limit of
functions δε(x) for which:

• δε(s) =
1
2ε

for x ∈ [−ε, ε], and
• δε(s) = 0 for all other x.

How to describe probability measures which are condi-
tionally invariant under re-scalings. Conditional invariance
means that the probabilities may change by a multiplicative
constant. If probabilities change by a multiplicative constant,
this means that the corresponding probability densities also
change by a constant. Thus, we arrive at the following de�ni-
tions.

De�nition. We say that a function ρ(x) ≥ 0 is conditionally
invariant under re-scalings if for every two real numbers λ > 0
and s, there exists a constant C(λ, s) such that

ρ(λ · x + s) = C(λ, s) · ρ(x)

for all x.

Comment. One can easily check that a constant function
ρ(x) = const (corresponding to the uniform distribution)
is conditionally invariant under re-scalings. It turns out that
constant functions are the only functions with this invariance
property:

Main result. If a function ρ(x) is conditionally invariant under
re-scalings, then it is a constant function.
Proof.
1◦. Let us �rst prove that the function ρ(x) is either always
equal to 0, or always positive. In other words, we prove that
if ρ(x) = 0 for some x, then ρ(x′) = 0 for all real values x′.

Indeed, let us assume that for some x, we have ρ(x) = 0.
Every real number x′ can be represented as x + (x′− x), i.e.,
as λ ·x+s, where λ = −1 and s = x′−x. Thus, we conclude
that

ρ(x′) = C(1, x′ − x) · ρ(x).

Since ρ(x) = 0, we get ρ(x′) = 0.
2◦. If ρ(x) = 0 for all x, then the function ρ(x) is clearly a
constant.

So, to complete the proof, in the remaining part of the proof,
we will consider only the remaining case, when all the values
of the function ρ(x) are positive.
3◦. Let us now prove that in this remaining case, the value
C(λ, s) does not depend on λ, i.e., that C(λ, s) = C(s) for
some function C(s).

Indeed, for x = 0, the formula that describes conditional
invariance takes the form

ρ(s) = C(λ, s) · ρ(0).

Since ρ(x) > 0 for all x, we have ρ(0) > 0. Dividing both
sides of the above equality by a positive number ρ(0), we
conclude that

C(λ, s) =
ρ(s)
ρ(0)

.

The right-hand side of this equality does not depend on λ, so
we indeed conclude that C(λ, s) only depends on s.
4◦. In view of the statement from Part 3 of this proof, we have

ρ(λ · x + s) = C(s) · ρ(x)

for all λ, s, and x. Let us prove that under this condition, ρ(x)
is a constant function.

Indeed, let us take x = 1 and s = 0. Then, the above
formula means that

ρ(λ) = C(0) · ρ(1)

for all real values λ. The right-hand side of this equality does
not depend on λ, so the function ρ(x) is indeed constant.

The proposition is proven.
Comment. Solutions to similar functional equations are well-
known; see, e.g., [1]; the above derivation is similar to the one
from [4].

IX. CONCLUSION

We conclude that such a distribution should be uniform on
the interval [0, 1], so the resulting probability of selecting the
alternative v1 under fuzzy uncertainty is

∫ 1

0
P1(α) dα.
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APPENDIX

Formulation of the problem. We have n alternatives. For
each i from 1 to n, we assume that the (unknown) actual
value vi is uniformly distributed in the known interval [vi, vi],
and that different values vi are independent random variables.

Based on these intervals and corresponding distributions, we
want to compute the probability Pi that vi is the largest of n
values v1, . . . , vn.

Problem: how to compute Pi for large n? As we have
mentioned, for n = 2, there are explicit formulas for Pi.

In general, since the distribution is uniform, the desired
probability Pi is equal to the ratio Vi/V , where

V = (v1 − v1) · . . . · (vn − vn)

is the (n-dimensional) volume of the box, and Vi is the volume
of the part of which box for which vi is larger than the values
of all other values vj .

In principle, we can compute the volume Vi by computing
the corresponding n-dimensional integral. However, comput-
ing n-dimensional integrals with a given accuracy ε > 0 means
that we have to consider a grid of size ∼ ε along each axis
� i.e., consider ∼ 1

ε
points along each axis and ∼ 1

εn
points

overall.
For large n, this computation time is too high to be

practically useful. It is therefore desirable to come up with
more ef�cient algorithms for computing Pi.

First idea: Monte-Carlo Simulations. A natural idea is to
use Monte-Carlo simulations; see, e.g., [11]. Speci�cally, we
select a number N , and then N times, we simulate each vi

as a uniformly distributed random variable. After that, we
take Ni/N as an estimate for Pi, where Ni is the number
of simulations in which vi was the largest value.

It is known that the accuracy of the Monte-Carlo simulation
is 1/

√
N . So, to get 10% accuracy in computing Pi, it is

suf�cient to take N ≈ 100 simulations.

Limitations of Monte-Carlo simulations. The main limita-
tion of this approach is that if we want accurate estimates,
with accuracy ε ¿ 1, we need a large number of simulations
N ≈ 1

ε2
. This number is not impossible (as for direct

integration) but still large. It is therefore desirable to design
an algorithm for computing Pi exactly.

Towards ef�cient algorithm for exact computations. We
will describe an ef�cient (O(n2)) algorithm for computing Pi.
Without losing generality, we can assume that i = 1, i.e., that
we need to compute the probability P1 that v1 is the largest
of n values vi. The outline of this section is as follows:
• First, we will describe the main idea behind this algo-

rithm.
• Then, we will show how this idea translates into an actual

O(n2) algorithm.
• Finally, we will explicitly describe the resulting algo-

rithm.

Main idea behind the new algorithm. Our idea is to �rst
describe, for each given v1, the conditional probability p1(v1)
that this v1 is the largest � under the condition that v1

is the actual value. Then, due to the Bayes formula, the
overall probability P1 that v1 is the largest can be obtained
by integrating this conditional probability p1(v1) times the
probability density of v1:

Prob(v1 is the largest) =
∫

Prob(v1 is the largest | v1 is actual) · ρ1(v1) dv1.

The distribution of v1 is uniform on the interval [v1, v1], hence

P1 =
1

v1 − v1

·
∫

p1(v1) dv1.

How can we describe the expression for p1(v1)? Once v1

is �xed, the fact that v1 is the largest means that v2 ≤ v1,



v3 ≤ v1, etc. Since all the variables vi are independent, this
probability is equal to the product of n− 1 probabilities: the
probability that v2 ≤ v1, the probability that v3 ≤ v1, etc.

For each i, the probability that vi < v1 can be determined
as follows:
• If vi ≤ v1, then vi ≤ v1 with probability 1. This

probability does not change the product and can thus
simply be omitted.

• If v1 < vi, this means that vi ≤ v1 cannot happen at
all. The resulting probability is 0, so such terms can be
completely ignored.

• Finally, if vi ≤ v1 < vi, then, since the distribution of
vi is uniform on the interval [vi, vi], the probability that
vi ≤ v1 is equal to v1 − vi

vi − vi

.

Thus, the conditional probability p1(v1) is equal to

p1(v1) =
∏

i:v1≤vi

v1 − vi

vi − vi

,

if v1 ≥ vi for all i, and to 0 otherwise.
Transforming this idea into the actual algorithm. As we
see, the expression for p1(v1) depends on the relation between
v1 and the endpoints vi and vi of the intervals [vi, vi]. So, if
we sort these endpoints into an increasing sequence

v(1) ≤ v(2) ≤ . . . ≤ v(2n),

then, in each of the resulting 2n + 1 zones

z0 = (−∞, v(1)), z1 = [v(1), v(2)), . . . ,

zj = [v(j), v(j+1)), . . . , z2n = [v(2n),∞),

we will have the same analytical expression for p1(v1).
For each zone, the corresponding expression is a product of

≤ n linear terms. Multiplying these terms one by one, we get
a polynomial of degree ≤ n in ≤ n computational steps.

The integral
∫

p1(v1) dv1 can be computed as the sum of
integrals p1j over all the zones zj , j = 0, . . . , 2n. An integral
of a polynomial

a0 + a1 · v1 + . . . + ak · vk
1

is equal to

a0 · v1 +
a2

2
· v2

1 + . . . +
ak

k + 1
· vk+1

1 ,

i.e., it can be also computed coef�cient-by-coef�cient in linear
time. Since we have 2n zones, we thus need (2n+1) ·O(n) =
O(n2) time to compute all 2n+1 sub-integrals, and then 2n =
O(n) operations to add them and get

∫
p1(v1) dv1. Dividing

this integral by v1 − v1, we get P1. Thus, overall, we indeed
need quadratic time.
Resulting algorithm. At the �rst step of this algorithm, we
order all 2n endpoints vi and vi into an increasing sequence
v(1) ≤ v(2) ≤ . . . ≤ v(2n). As a result, we divide the real line
into 2n + 1 zones

z0 = (−∞, v(1)), z1 = [v(1), v(2)), . . . ,

zj = [v(j), v(j+1)), . . . , z2n = [v(2n),∞).

For the zones zj for which v(j) < v1, v(j+1) > v1, or
v(j+1) < vi for some i, the integral p1j is equal to 0.

For every other zone, we form the expression

p1(v1) =
∏

i:v(j+1)≤vi

v1 − vi

vi − vi

.

This expression is a product of ≤ n linear functions of
the unknown v1. By multiplying by these functions one
by one, we get an explicit expression for a polynomial in
v1. By processing the coef�cients of this polynomial one
by one, we can provide the explicit analytical expression
for the (inde�nite) integral P1j(v1) of this polynomial. The
desired integral p1j can then be computed as the difference
P1j(v(j+1))− P1j(v(j)).

Finally, the desired probability p1 is computed as

P1 =
1

v1 − v1

·
2n∑

j=0

p1j .

Comment. The idea of dividing the real line into zones
corresponding to sorted endpoints of the given intervals comes
from another situation where we need to combine probabilities
and intervals: namely, from the algorithms for algorithms for
computing population variance under interval uncertainty [2],
[3].


