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Abstract

The standard 4-dimensional space-time of special relativity is based on

the 3-dimensional Euclidean metric. In 1967, H. Busemann showed that

similar space-time models can be based on an arbitrary metric space. In

this paper, we search for the broadest possible generalization of a metric

under which Einstein’s construction leads to a physically reasonable space-

time model. It turns out that this broadest possible generalization is

related to the known notion of a quasi-pseudometric.

1 Space-Time of General Relativity and Its Nat-

ural Generalization

Space-time of special relativity. Before Einstein, it was usually assumed
that in principle, we can have arbitrarily fast physical processes. This assump-
tion led to the following simple description of causality between events. Each
event (t, x) can be described by its time t and its location x. So, if an event (s, y)
corresponds to a later moment of time s > t, then, in principle (irrespective of
how far the corresponding spatial points x and y are from each other), the event
(t, x) can causally influence the event (s, y); we will denote causal relation by
(t, x) � (s, y).
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In other words, in pre-Einstein Newtonian physics, the causality relation �
can be described as follows: (t, x) � (s, y) if and only if either t < s, or t = s
and x = y.

In his 1905 Special Relativity Theory, Einstein postulated that the velocities
of all physical processes are limited by the speed of light c. As a result of this
limitation, for an event (t, x) to be able to influence the event (s, y), we must
have not only t ≤ s, we must also make sure that during the time s − t the
influence can indeed cover the distance between the spatial points x and y, i.e.,

that s − t ≥ d(x, y)

c
.

This condition can be described in an even simpler form if we change the
units for measuring space and/or time in such a way that in the new units, the
speed of light is equal to 1. For example, as theoretical physicists often do, we
can use “light seconds” to measure distance, or use the time 1 m/c (during which
the light covers 1 meter) as a new unit of time. In such units, since c = 1, the
causality relation of special relativity takes the simplified form: s − t ≥ d(x, y).

Let us describe this relation in precise terms.
Before we give an exact definition, we should mention that at the time

of the Special Relativity, for Einstein, d(x, y) meant the standard Euclidean
distance. However, later Einstein himself started considering curved (non-
Euclidean) spaces and curved space-times – which eventually led to his General
Relativity Theory. With this in mind, let us present Einstein’s causality in its
most general form.

In the following text, IR will denote the set of all real numbers, and IR+
0 will

denote the set of all non-negative real numbers.

Definition 1 Let X be a set, and let d : X × X → IR be a function. By
a causality relation, we mean the following relation � between points of the
Cartesian product IR × X:

(t, x) � (s, y) ↔ s − t ≥ d(x, y). (1)

Possible generalizations. Einstein considered this definition for X = IR3

and Euclidean metric d. In 1967, Busemann analyzed the case when X is a
general metric space with a metric d [1]; see also [9, 13].

A natural question is: what are the conditions on the functions d under
which the above causality relation � is physically reasonable, e.g., is a (partial)
pre-order (= reflexive and transitive relation)?

Main result. Let us provide the full characterization of such functions d.

Proposition 1 For a set X and a function d : X × X → IR, the following two
statements are equivalent to each other:

• the causality relation (1) is a pre-order;

• the function d satisfies the following two conditions:
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(a) d(x, x) = 0 for all x;

(b) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, and z.

Comments. These conditions are similar to the conditions that define a metric,
but with two differences:

• first, in contrast to metric, d(x, y) = 0 does not necessarily imply x = y;

• second, unlike metric, the function d(x, y) does not have to be symmetric.

If we add symmetry, then the above conditions would automatically imply that
d(x, y) ≥ 0 for all x and y: indeed, we would have 0 = d(x, x) ≤ d(x, y) +
d(y, x) = 2d(x, y). Without symmetry, we can only conclude that d(x, y) +
d(y, x) ≥ 0, but the function d is not necessarily non-negative.

Non-negative functions d which satisfy the properties (a) and (b) are well-
known: they are called quasi-pseudometrics; see, e.g., [3, 5, 11, 12, 14]. These
functions are used as a natural asymmetric generalization of metrics in opti-
mization problems, when we must describe, e.g., a cost (or time) d(x, y) of
going from x to y. For example, if x is downhill from y, the cost d(x, y) of going
from x to y is different from the cost d(y, x) from going from y to x.

We can formulate the following Corollary to the above Proposition:

Corollary 1 The causality relation generated by a non-negative function d is a
pre-order if and only if d is a quasi-pseudometric.

This corollary reveals the importance of quasi-pseudometric spaces in space-
time geometry.

Comments. We use quasi-pseudometrics on the proper space. This use gener-
alizes the use of a standard metric on a 3-dimensional proper space to describe
the causality structure of a 4-dimensional space-time of Special Relativity. It is
worth mentioning that in [4, 6, 7], another use of quasi-pseudometrics in space-
time geometry has been proposed: to describe the topology of the space-time as
a whole.

In several recent investigations belonging to the computational theory of
(generalized) metric spaces the poset of formal balls plays an important role
(see e.g. [8] and [10]). We recall here that a formal ball of a metric space (X, d)
is a pair (r, x) with r ∈ IR+

0 and x ∈ X , and that the set of all formal balls
of X is partially ordered by (r, x) v (s, y) ⇔ d(x, y) ≤ r − s. Obviously these
concepts are closely related to our definition of a causality relation given above.

Proof of Proposition 1.

1◦. Let us first show that if � is a pre-order, then d satisfies the conditions (a)
and (b).

We first prove the triangle inequality (b). Let us take any points x, y, and
z, and prove that d(x, z) ≤ d(x, y) + d(y, z). For that, we take t = d(x, y) and
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s = d(y, z). Then, by the formula (1), we conclude that (0, x) � (t, y), and
(t, y) � (t + s, z). Due to transitivity, we have (0, x) � (t + s, z), i.e., due to the
formula (1), d(x, z) ≤ t + s. By definition of t and s, this leads to the desired
inequality d(x, z) ≤ d(x, y) + d(y, z).

Let us now prove the condition (a). By using the triangle inequality for
x = y = z, we conclude that d(x, x) ≤ d(x, x)+d(x, x), hence d(x, x) ≥ 0. Now,
the reflexivity condition means that (t, x) � (t, x) for every t and every x, i.e.,
in view of the formula (1), that t − t = 0 ≥ d(x, x). Since d(x, x) ≥ 0 and
d(x, x) ≤ 0, we conclude that d(x, x) = 0.

2◦. Conversely, let us now show that if d satisfies the conditions (a) and (b),
then (1) is a pre-order.

Indeed, for every t and x, we have d(x, x) = 0, hence t − t ≥ d(x, x) and
(t, x) � (t, x).

Let us now prove transitivity. We assume that (t, x) � (s, y) � (q, z). By
definition (1), this means that s − t ≥ d(x, y) and q − s ≥ d(y, z). By adding
these two inequalities, we conclude that q − t ≥ d(x, y) + d(y, z). Since d
satisfies the triangle inequality d(x, y) + d(y, z) ≥ d(x, z), hence q − t ≥ d(x, z)
and (t, x) � (q, z).

The proposition is proven.

What if we require causality to be an order, not just a pre-order?

If we require the causality relation (1) to be a (partial) order, i.e., to satisfy
the additional property that e � e′ and e′ � e imply e = e′, then we get the
following result:

Proposition 2 For a set X and a function d : X × X → IR, the following two
statements are equivalent to each other:

• the causality relation (1) is an order;

• the function d satisfies the following three conditions:

(a) d(x, x) = 0 for all x;

(b) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, and z;

(c) if d(x, y) + d(y, x) = 0, then x = y.

Comment. In theoretical computer science, non-negative functions d which
satisfy these properties are usually called quasi-metrics. It is worth mention-
ing that in mathematics, a “quasi-metric” is often assumed also to satisfy a
condition stronger than (c), namely that d(x, y) = 0 implies that x = y.

Proof. Let us first show that the order requirement leads to the condition (c).
Indeed, if d(x, y)+d(y, x) = 0, then we get (0, x) � (d(x, y), y) and (d(x, y), y) �

(0, x), hence (0, x) = (d(x, y), y) and, therefore, x = y.
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Conversely, let us assume that the condition (c) is satisfied; we then prove
that the relation � is indeed an order. Indeed, let (t, x) � (s, y) and (s, y) �
(t, x). Let us prove that then t = s and x = y.

By definition (1), this means that s − t ≥ d(x, y) and t − s ≥ d(y, x). By
adding these two inequalities, we conclude that 0 ≥ d(x, y) + d(y, x). On the
other hand, from the triangle inequality (b), we conclude that 0 = d(x, x) ≤
d(x, y) + d(y, x), hence d(x, y) + d(y, x) = 0. Due to property (c), we thus get
x = y. Hence d(x, y) = d(y, x) ≥ 0 and t = s. The proposition is proven.

2 Symmetries Naturally Lead to the Correspond-

ing Space-Times

In the previous section, we described a class of space-times that we obtained as a
result of a rather mathematically sounding generalization. Let us show that this
class of space-times has a direct physical meaning. Indeed, in a space-time model
IR × X with the causal relation (1), a temporal shift Tt0 : (t, x) → (t + t0, x)
preserves causality. Such shifts form a 1-parametric symmetry group, in the
sense that T0 is an identity map, and Tt ◦ Ts = Tt+s for all t and s, where ◦
denotes the composition of the two maps.

We will show that, conversely, under reasonable assumptions, every space-
time that allows a 1-parametric group of “temporal shifts” can be represented
in a form (1).

Definition 2 Let (E,�) be a pre-ordered set. The set E is called a space-time,
its elements are called events, and the relation � is called causality relation (or
simply causality, for short).

• We say that a map T : E → E is causality-preserving if for every two
events e and e′, e � e′ if and only if T (e) � T (e′).

• We say that a map T : E → E is a positive temporal shift if e � T (e)
and T (e) 6� e for all events e.

• We say that a map T : E → E is a negative temporal shift if T (e) � e
and e 6� T (e) for all events e.

Let us assume that for every real number t ∈ IR, there is a map Tt : E → E.

• We say that the maps Tt form a 1-parametric group if

– T0 is an identity map, i.e., T0(e) = e for all e ∈ E, and

– for every t and s, Tt ◦ Ts = Tt+s.

• We say that the space-time E is closed under Tt when the following prop-
erty holds for every two events e and e′:

– if tn → t and for every n, e � Ttn
(e′), then e � Tt(e

′).
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• We say that the space-time E is connected under the group Tt if for every
e, e′ ∈ E, there exists a t for which e � Tt(e

′).

Proposition 3 Let (E,�) be a pre-ordered set, and let Tt be a 1-parametric
group of causality-preserving transformations such that:

• for every t > 0, the transformation Tt is a positive temporal shift, and

• the space-time E is closed and connected under Tt.

Then, there exist a set X and a function d : X × X → IR that satisfies the
conditions (a)–(b) such that the pre-ordered set (E,�) is isomorphic to the
Cartesian product IR × X with the order (1).

Comment. For ordered sets, a similar proposition holds, with a function d
satisfying the additional condition (c).

Proof.

1◦. Let us first define the set X .
Since the maps Tt form a group, the relation e ∼ e′

def
= ∃t (Tt(e) = e′) is

an equivalence relation (meaning that e and e′ belong to the same orbit of this
group). Indeed:

• The property e ∼ e holds for t = 0.

• If e ∼ e′, then Tt(e) = e′ for some t, hence T−t(e
′) = e hence e′ ∼ e.

• Finally, if e ∼ e′ and e′ ∼ e′′, this means that e′ = Tt(e) and Ts(e
′) = e′′

for some t and s, hence Ts(Tt(e)) = Tt+s(e) = e′′ and e ∼ e′′.

As the set X , we will take the factor-set E/ ∼, i.e., the set of all equivalence
classes with respect to the equivalence relation ∼.

2◦. Let us now define the function d. To do that, in each equivalence class
x ∈ E/ ∼, we select an element; we will denote an element corresponding to the
class x by x̄. Now, we can define d(x, y) as follows:

d(x, y)
def
= inf{t : x̄ � Tt(ȳ)}.

3◦. Let us prove that the value d(x, y) is finite for all x and y, and that d(x, y)
indeed satisfies conditions (a)-(b).

3.1◦. We first prove that for every x and y, the above-defined value d(x, y) is
finite.

Indeed, since E is connected, there exists a number t for which x̄ � Tt(ȳ),
hence the set {t : x̄ � Tt(ȳ)} is non-empty, and d(x, y) < +∞.

On the other hand, due to the same connectedness, there exists a real number
s for which ȳ � Ts(x̄). Since T−s is a causality-preserving map, we conclude
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that T−s(ȳ) � T−s(Ts(x̄)) = x̄. So, if t < −s, we cannot have x̄ � Tt(ȳ) because
otherwise we would have T−s(ȳ) � x̄ � Tt(ȳ) and T−s(ȳ) � Tt(ȳ). Thus, for

e
def
= Tt(ȳ), we would have T−s−t(e) � e with (−s) − t > 0 – which contradicts

to our assumption that transformations Tτ with τ > 0 are positive temporal
shifts. Thus, the set {t : x̄ � Tt(ȳ)} cannot contain any values smaller than −s;
so for its infimum d(x, y), we get d(x, y) ≥ −s > −∞.

Thus, the value d(x, y) is always finite.

3.2◦. Let us now prove that d(x, x) = 0 for all x.
Indeed, for t = 0, we have x̄ � T0(x̄) = x̄, hence the set {t : x̄ � Tt(x̄)}

contains 0.
On the other hand, for every negative t, i.e., for every t = −s for some s > 0,

the map Ts is a positive temporal shift, hence Ts(x̄) 6� x̄. Since Tt = T−s is a
causality-preserving transformation, we conclude that x̄ = Tt(Ts(x̄)) 6� Tt(x̄).
Thus, the set {t : x̄ � Tt(x̄)} cannot contain any negative numbers.

Since the set {t : x̄ � Tt(x̄)} contains only non-negative numbers and con-
tains 0, 0 is clearly its infimum, so d(x, x) = 0.

3.3◦. Let us now prove that d(x, z) ≤ d(x, y) + d(y, z) for all x, y, and z.
Indeed, by definition of an infimum, for every ε > 0, there exists a number

t ≤ d(x, y) + ε for which x̄ � Tt(ȳ). Similarly, there exists a number s ≤
d(y, z)+ε for which ȳ � Ts(z̄). Since Tt is a causality-preserving transformation,
we conclude that Tt(ȳ) � Tt(Ts(z̄)) = Tt+s(z̄) and, by transitivity of pre-order,
that x̄ � Tt+s(z̄). Hence, the infimum d(x, z) of the set {u : x̄ � Tu(z̄)} cannot
exceed t+s: d(x, z) ≤ t+s. Since t ≤ d(x, y)+ε and s ≤ d(y, z)+ε, we conclude
that d(x, z) ≤ d(x, y) + d(y, z) + 2ε. This is true for every ε > 0, hence in the
limit ε → 0, we get the desired triangle inequality d(x, z) ≤ d(x, y) + d(y, z).

4◦. We have proven that X indeed satisfies conditions (a) and (b). Let us now
prove that E is indeed isomorphic to the Cartesian product IR × X with the
pre-order (1).

Specifically, we will prove that the map (t, x) → Tt(x̄) is the desired isometry.

4.1◦. First, we will prove that this map is an injection, i.e., that different pairs
(t, x) 6= (s, y) get mapped into different events Tt(x̄) 6= Ts(ȳ).

By definition of the relation ∼, for each t, the event Tt(x̄) belongs to the
same equivalence class as x̄, i.e., to the equivalence class x. So, if x 6= y, this
means that x and y are different equivalence classes, and thus, Tt(x̄) ∈ x cannot
be equal to Ts(ȳ) ∈ y.

To complete the proof of injectivity, it is therefore sufficient to consider the
case when x = y and t 6= s. Without losing generality, we can assume that
t < s. In this case, Ts(x̄) = Ts−t(Tt(x̄)); since Ts−t is a positive temporal shift,
we conclude that Ts(x̄) 6� Tt(x̄), in particular, that Ts(x̄) 6= Tt(x̄). Injectivity is
proven.

4.2◦. Let us now prove that the map (t, x) → Tt(x̄) is surjective, i.e., that for
every e ∈ E, there exist t and x for which e = Tt(x̄).
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Indeed, let x be the equivalence class that contains the event e. Since x̄
denotes the selected event from this equivalence class, we have e ∼ x̄. By
definition of the relation ∼, this means that e = Tt(x̄) for some real number t.
Surjectivity is proven.

4.3◦. To complete the proof, we must show that the original causality relation
on the space-time E coincides with the relation (1), i.e., that Tx(x̄) � Ts(ȳ) if
and only if s − t ≥ d(x, y).

4.3.1◦. Let us first prove that if Tt(x̄) � Ts(ȳ), then s − t ≥ d(x, y).
Indeed, let Tt(x̄) � Ts(ȳ). Since T−t is a causality-preserving transformation,

we conclude that T−t(Tt(x̄)) � T−t(Ts(ȳ)), i.e., that x̄ � Ts−t(ȳ). By definition
of d(x, y) as the infimum of the set {u : x̄ � Tu(ȳ)}, this means that d(x, y) ≤
s − t.

4.3.2◦. Let us now prove that if s − t ≥ d(x, y), then Tt(x̄) � Ts(ȳ).
Indeed, by definition of d(x, y) as the infimum, for every n, there exists a

value τn such that d(x, y) ≤ τn ≤ d(x, y) + 1/n and x̄ � Tτn
(ȳ). Since Tt is a

causality-preserving transformation, we conclude that Tt(x̄) � Tt+τn
(ȳ). When

n → ∞, we have τn → d(x, y) hence t + τn → t + d(x, y). Due to the closedness
of the space-time E, we thus conclude that Tt(x̄) � Tt+d(x,y)(ȳ).

If s − t = d(x, y), then t + d(x, y) = s and we have the desired causality

relation. If s− t > d(x, y), i.e., if ∆
def
= s− t− d(x, y) > 0, then T∆ is a positive

temporal shift hence Tt+d(x,y)(ȳ) � T∆(Tt+d(x,y)(ȳ)) = T∆+t+d(x,y)(ȳ) = Ts(ȳ).
By transitivity, we thus get Tt(x̄) � Ts(ȳ).

The isomorphism is proven, hence the proposition is proven.

Comments.

• In the above proof, the definition of the function d(x, y) depended on
the selection of an element x̄ in each corresponding class x. If we select
a different element x̄′ in each class, then, in general, we end up with a
different function d′(x, y). How are these functions related?

Since for every class x, elements x̄ and x̄′ belong to the same equivalence
class, there exists a value t(x) depending on x for which Tt(x)(x̄) = x̄′. Sim-
ilarly to the above proof, we can conclude that this value t(x) is uniquely
determined. From Tt(x)(x̄) = x̄′, Tt(y)(ȳ) = ȳ′, and the fact that the
maps Tt form a group of causality-preserving maps, we can conclude that
x̄ � Tt(ȳ) is equivalent to

x̄′ = Tt(x)(x̄) � Tt(x)(Tt(ȳ)) = Tt(x)+t(T−t(y)(ȳ
′)) = Tt+t(x)−t(y)(ȳ

′).

Thus, from the definition of d, we now conclude that

d′(x, y) = d(x, y) + t(x) − t(y).

Vice versa, for every function t(x), we can select new elements Tt(x)(x̄) =
x̄′ in each class, and for this selection, the resulting function d′ will have
the above form.
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If one of these functions d is symmetric, that is d(x, y) = d(y, x), then
d′(x, y) = d(x, y) + t(x) − t(y) is only symmetric for t(x) = const; in this
case, d′(x, y) = d(x, y). Thus, in contrast to the general case, where a
function d is not uniquely determined, a symmetric function d is deter-
mined uniquely.

• If we do not assume that the space-time is connected, then we get similar
results but with a function d(x, y) that can attain infinite values.

3 From Causality to Kinematic Metric

Einstein did not just provide the description of the causality relation �. For
the case when (t, x) � (s, y), he also explained how we can quantify the amount
of proper time that it takes for an inertial particle starting at the spatial point
x at moment t to reach the point y at moment s > t. The corresponding
value τ((t, x), (s, y)) – sometimes called kinematic metric – is described by the
well-known formula:

τ((t, x), (s, y)) =
√

(s − t)2 − d2(x, y). (2)

This proper time satisfies the following “anti-triangle” inequality:

if e � e′ � e′′, then τ(e, e′′) ≥ τ(e, e′) + τ(e′, e′′). (3)

This inequality makes perfect physical sense. Indeed, it is known that, ac-
cording to special relativity, the time slows down when we travel with a large
speed; the closer this speed to the speed of light, the slower the time. Thus, we
can reach e′′ from e in almost 0 proper time if we travel with a speed close to
the speed of light. The longest time is when we do not travel at all, i.e., if we
keep an inertial motion without any accelerations and decelerations. In other
words, if we follow a single inertial path, the resulting proper time τ(e, e′′) is
longer than (or equal to) the time τ(e, e′) + τ(e′, e′′) needed for a two-segment
path e → e′ → e′′.

Busemann has shown [1] that this anti-triangle inequality holds for an arbi-
trary metric d(x, y); moreover, it holds for a more general formula

τ((t, x), (s, y)) = α

√

(s − t)α − dα(x, y), (4)

where α ≥ 1 is a fixed real number. It is natural to ask whether this inequality
holds for (non-negative) quasi-pseudometrics as well. The answer is “yes”:

Proposition 4 For every quasi-pseudometric d and for every α ≥ 1, the kine-
matic metric (4) satisfies the anti-triangle inequality (3).

This result provides one more argument that quasi-pseudometrics are im-
portant in the analysis of space-time models.
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Proof. This proof is similar to the proof given in [1]. Let (t1, x1) � (t2, x2) �
(t3, x3). Let us denote d1

def
= d(x1, x2), d2

def
= d(x2, x3), d

def
= d(x1, x3), τ1

def
=

α

√

(t2 − t1)α − dα
1 , τ2

def
= α

√

(t3 − t2)α − dα
2 , and τ

def
= α

√

(t3 − t1)α − dα. From

these definitions, we conclude that t2−t1 = α

√

τα
1 + dα

1 and t3−t2 = α

√

τα
2 + dα

2 .
By adding these two equalities, we get

t3 − t1 = α

√

τα
1 + dα

1 + α

√

τα
2 + dα

2 . (5)

We know that for every α ≥ 1, the lp-expression ‖(τ, d)‖ def
= α

√
τα + dα is a

norm, i.e., ‖(τ1 + τ2, d1 + d2)‖ ≤ ‖(τ1, d1)‖ + ‖(τ2, d2)‖, or, equivalently,

α

√

(τ1 + τ2)α + (d1 + d2)α ≤ α

√

τα
1 + dα

1 + α

√

τα
2 + dα

2 . (6)

Combining (5) and (6), we conclude that

t3 − t1 ≥ α

√

(τ1 + τ2)α + (d1 + d2)α. (7)

Raising both sides of this inequality to the power α, we get

(t3 − t1)
α ≥ (τ1 + τ2)

α + (d1 + d2)
α.

By moving (d1 + d2)
α to the left-hand side, we get

(t3 − t1)
α − (d1 + d2)

α ≥ (τ1 + τ2)
α. (8)

Due to the triangle inequality, d
def
= d(x1, x3) ≤ d(x1, x2) + d(x2, x3) = d1 + d2,

hence dα ≤ (d1 + d2)
α. So, from the equation (8), we conclude that

(t3 − t1)
α − dα ≥ (τ1 + τ2)

α.

By taking the α-th root of both sides, we conclude that

α

√

(t3 − t1)α − dα ≥ τ1 + τ2,

i.e., that τ ≥ τ1 + τ2 – the desired anti-triangle inequality.
The proposition is proven.

This result can be further generalized. Namely, H. Busemann, in [1], general-
izes the construction (4) from the case when the first component of the Cartesian
product is the real line to the more general case when this first component is
an arbitrary space-time. Let us describe this construction in detail.

Let (E,�) be a pre-ordered set, and let τ(e, e′) be a function that is defined
for all pairs (e, e′) for which e � e′, and that satisfies the property (3). Let
(X, d) be a metric space. Then, on the Cartesian product E ×X , we can define
a pre-order relation as follows:

(e, x) � (e′, x′) ↔ e � e′ & (x = x′ ∨ (x 6= x′ & τ(e, e′) ≥ d(x, x′))). (9)
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For this relation, for every α ≥ 1, the expression

τα((e, x), (e′, x′)) = α

√

τα(e, e′) − dα(x, x′) (10)

also satisfies the anti-triangle inequality (3).
Let us prove that this result can be extended to the case when d is a quasi-

pseudometric.

Proposition 5 Let (E,�) be a pre-ordered set, and let τ(e, e′) be a non-negative
function that is defined for all pairs (e, e′) for which e � e′, and that satisfies the
property (3). Let (X, d) be a quasi-pseudometric space. Then, on the Cartesian
product E × X, the formula (9) defines a pre-order, and the expression (10)
satisfies the anti-triangle inequality (3).

Proof.

1◦. Let us first prove that the formula (9) indeed defines a pre-order.
Indeed, (e, x) � (e, x) is true. Let us now prove transitivity. Let (e, x) �

(e′, x′) and (e′, x′) � (e′′, x′′); this means, in particular, that e � e′ and e′ � e′′.
Since � is a pre-order, we conclude that e � e′′. We need to prove that (e, x) �
(e′′, x′′). Let us consider all possible situations.

1.1◦. We first consider the case when x = x′ and x′ = x′′.
In this case, x = x′′, so, by the definition (9), we get (e, x) � (e′′, x′′).

1.2◦. Let us now consider the case when x = x′ and x′ 6= x′′.
In this case, x = x′ 6= x′′. From (e′, x′) � (e′′, x′′) and x′ 6= x′′, we conclude

that
τ(e′, e′′) ≥ d(x′, x′′). (11)

Since e � e′ � e′′, from the anti-triangle inequality we get τ(e, e′′) ≥ τ(e, e′) +
τ(e′, e′′). Since τ is a non-negative function, we conclude that τ(e, e′′) ≥
τ(e′, e′′). Using (11), we now get τ(e, e′′) ≥ d(x′, x′′) = d(x, x′′) and x 6= x′′,
i.e., (e, x) � (e′′, x′′).

1.3◦. Let us consider the case when x 6= x′ and x′ = x′′.
In this case, x 6= x′ = x′′, so x 6= x′′. From (e, x) � (e′, x′) and x 6= x′, we

conclude that
τ(e, e′) ≥ d(x, x′). (12)

Since e � e′ � e′′, from the anti-triangle inequality, we get τ(e, e′′) ≥ τ(e, e′) +
τ(e′, e′′). Since τ is a non-negative function, we conclude that τ(e, e′′) ≥ τ(e, e′).
Using (12), we now get τ(e, e′′) ≥ d(x, x′) = d(x, x′′) and x 6= x′′, i.e., (e, x) �
(e′′, x′′).

1.4◦. Finally, let us consider the case when x 6= x′ and x′ 6= x′′.
Since x 6= x′, the assumption (e, x) � (e′, x′) implies

τ(e, e′) ≥ d(x, x′). (13)
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Similarly, since x′ 6= x′′, the assumption (e′, x′) � (e′′, x′′) implies

τ(e′, e′′) ≥ d(x′, x′′). (14)

In this case, either x = x′′ – in which case e � e′′ implies (e, x) � (e′′, x′′),
or x 6= x′′. But then from e � e′ � e′′ and the anti-triangle inequality, we
conclude that τ(e, e′′) ≥ τ(e, e′) + τ(e′, e′′). From (13) and (14), we can now
get τ(e, e′′) ≥ d(x, x′) + d(x′, x′′). By applying the triangle inequality d(x, x′) +
d(x′, x′′) ≥ d(x, x′′), we get the desired inequality τ(e, e′′) ≥ d(x, x′′).

So, the formula (9) indeed defines a pre-order.

2◦. Let us now prove that the expression (10) satisfies the anti-triangle inequal-
ity, i.e., that if (e, x) � (e′, x′) and (e′, x′) � (e′′, x′′), then

τα((e, x), (e′, x′)) ≥ τα((e, x), (e′, x′)) + τα((e′, x′), (e′′, x′′)). (15)

According to (9), if (e, x) � (e′, x′), then either x = x′ or τ(e, e′) ≥ d(x, x′).
In the case x = x′, we have d(x, x′) = 0 and, since τ is a non-negative function,
we also have τ(e, e′) ≥ d(x, x′); so, the latter inequality follows from (e, x) �
(e′, x′).

Similarly as above, let us denote d1
def
= d(x, x′), d2

def
= d(x′, x′′), d

def
= d(x, x′′),

τ1
def
= α

√

τα(e, e′) − dα
1 , τ2

def
= α

√

τα(e′, e′′) − dα
2 , and τ

def
= α

√

τα(e, e′′) − dα.

From these definitions, we conclude that τ(e, e′) = α

√

τα
1 + dα

1 and τ(e′, e′′) =
α

√

τα
2 + dα

2 .
By adding these two equalities, we get

τ(e, e′) + τ(e′, e′′) = α

√

τα
1 + dα

1 + α

√

τα
2 + dα

2 . (16)

We know that for every α ≥ 1, the lp-expression ‖(τ, d)‖ def
= α

√
τα + dα is a

norm, i.e., ‖(τ1 + τ2, d1 + d2)‖ ≤ ‖(τ1, d1)‖ + ‖(τ2, d2)‖, or, equivalently,

α

√

(τ1 + τ2)α + (d1 + d2)α ≤ α

√

τα
1 + dα

1 + α

√

τα
2 + dα

2 . (17)

Combining (16) and (17), we conclude that

τ(e, e′) + τ(e′, e′′) ≥ α

√

(τ1 + τ2)α + (d1 + d2)α. (18)

From the anti-triangle inequality τ(e, e′′) ≥ τ(e, e′) + τ(e′, e′′) for τ , we deduce
that

τ(e, e′′) ≥ α

√

(τ1 + τ2)α + (d1 + d2)α. (19)

Raising both sides of this inequality to the power α, we get

τα(e, e′′) ≥ (τ1 + τ2)
α + (d1 + d2)

α.

By moving (d1 + d2)
α to the left-hand side, we get

τα(e, e′′) − (d1 + d2)
α ≥ (τ1 + τ2)

α. (20)
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Due to the triangle inequality, d
def
= d(x, x′′) ≤ d(x, x′) + d(x′, x′′) = d1 + d2,

hence dα ≤ (d1 + d2)
α. So, from the equation (20), we deduce that

τα(e, e′′) − dα ≥ (τ1 + τ2)
α.

By taking the α-th root of both sides, we conclude that

α

√

τα(e, e′′) − dα ≥ τ1 + τ2,

i.e., that τ ≥ τ1 + τ2 – the desired anti-triangle inequality.
The proposition is proven.

Acknowledgements. This work was supported in part by the US National
Science Foundations grants EAR-0225670 and DMS-0532645, by the Texas De-
partment of Transportation grant No. 0-5453, and by the South African Re-
search Foundation under grant FA2006022300009.

The authors are thankful to the organizers of the Dagstuhl Seminar 06341
“Computational Structures for Modelling Space, Time and Causality” (August
20–25, 2006) for the wonderful collaboration opportunity.

References

[1] H. Busemann, Timelike spaces, PWN, Warszawa, 1967.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, Cambridge, Massachusetts, and McGraw-Hill,
New York, 2001.

[3] R. Z. Domiaty, “Zur inneren Geometrie quasimetrischer Räume”, Mitt.
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