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Abstract

In late 1970s and early 1980s, Yuri Matiyasevich actively used his
knowledge of engineering and physical phenomena to come up with paral-
lelized schemes for solving NP-hard problems in polynomial time. In this
paper, we describe one such scheme in which we use parallel computation
in curved spaces.

1 Introduction and Formulation of the Problem

Many practical problems are NP-hard. It is well known that many im-
portant practical problems are NP-hard; see, e.g., [7, 9, 22]. Under the usual
hypothesis that P#£NP, NP-hardness has the following intuitive meaning: every
algorithm which solves all the instances of the corresponding problem requires,
for some instances, non-realistic hyper-polynomial (probably exponential) time
on a Turing machine (and thus, on most known computational devices).

How can we solve NP-hard problems? Matiyasevich’s dream. The
difficulty with NP-hard practical problems is that their solution on the existing
computational devices requires an un-realistically large time.

Meanwhile, computers are getting faster and faster. The main reason for
this speed-up is that computer designers are constantly incorporating new en-
gineering and physical ideas. Is is therefore reasonable to look for engineering
and physical ideas which would enable us to solve NP-hard problems in feasible



(polynomial) time. After the main theory of NP-hardness was developed in the
early 1970s, several researchers have tried to find such ideas. One of the first
pioneers in this research direction was Yuri Matiyasevich.

In late 1970s and early 1980s, Matiyasevich actively used his knowledge of
engineering and physical phenomena to come up with parallelized schemes for
solving NP-hard problems in polynomial time. He presented several related
ideas in his talks and papers; see, e.g., [33, 34]. Some of the technical and phys-
ical ideas on which he has worked at that time (based on super-conductivity,
non-traditional chemical reactions, and other unusual physical and engineer-
ing phenomena) did not yet lead to promising breakthroughs; however, others
ideas can be viewed as early predecessors of such successful techniques as DNA
computing; see, e.g., [1, 2].

Overall, his actively pursued dream of solving NP-hard problems in reason-
able time has encouraged many researchers to come up with other ideas which
led to practically useful algorithms. For example, Matiyasevich’s pursuit of such
a speedup was one of the main inspirations behind psychology-motivated semi-
heuristic fast algorithms for solving NP-hard problems which were developed
by S. Maslov in the early 1980s and described in the above-cited book [33]; see
also [20].

In this paper, we will follow up on a different idea: the use of parallel
computation in curved spaces to speed up the solution of NP-hard problems.

Parallelism is not a panacea. When running an algorithm takes too much
time on a single computer, a natural idea is to run several computers in parallel.
At first glance, it may seem possible that adding very many processors can
enable us to run a previously non-feasible algorithm really fast. However, there
are geometric arguments (and we will present them right now) that although
we can drastically decrease the computation time by using parallel processors,
we cannot make a non-feasible algorithm feasible; see, e.g., [8, 35].

Indeed, according to modern physics, the fastest speed of any process is the
speed of light c¢. So, if a parallel computer finishes its computations in time
t and it contains a processor which is located at a distance r > ¢ -t from the
user, then this processor will not influence the result of the algorithm: even
when traveling with a speed of light, the signals from this processor will reach
the user only after the time r/c > t (i.e., after the computations are over).
Therefore, all processors that participate in this computation are located at a
distance r < ¢ -t from the user, i.e., inside a sphere of radius r = ¢ - t with a
center at the location L of the user.

On each technological level, there are lower bounds dy and Vj, correspond-
ingly, on the size and on volume of a processor. So, within a sphere of radius

r, we can fit no more than N &' V(r)/ Vo processors, where V(r) denotes the
volume of a sphere of radius r with the center at the point L. In the Euclidean
space, V(r) = (4/3) - 7 - r3, so, with r = ¢ - ¢, we can fit no more than C - ¢3
processors, where C' ef (4/3) -7 -c®. We can simulate this parallel computation
on a sequential machine moment-after-moment: first, we simulate what each of



N processors does in the first moment of time, then what they all do in the
second moment of time, etc.

To simulate each moment of time of a parallel machine, we thus need N
moments of time on a sequential machine. So, the algorithm that took time
t on a parallel machine with N processors, can be simulated on a sequential
machine in time 7 = N - t. Since N < C - t3, we thus have T < C - t*, hence
t>CLA T4,

So, if a problem requires exponential time T on a sequential computer, it
will still require exponential time ¢ (smaller bit still exponential) on a parallel
computer. Similarly, if a problem can be resolved in polynomial time ¢ on a
parallel computer, then it can also be solved in a polynomial time 7' (larger but
still polynomial) on a sequential computer.

In short, no matter how many processors we have, parallelism does not
automatically lead to a possibility of solving NP-hard problems in polynomial
time.

Space-time curvature can help to speed up parallel computations:
what is known. According to modern physics, real space-time in not Eu-
clidean, it is curved. Because of this curvature, the dependence V(r) of the
volume of the sphere on its radius r is, in general, different from the Euclidean
formula V (r) ~ r3.

In particular, in a hyperbolic (Lobachevsky) space, historically the first non-
Euclidean space, the volume V' (r) grows exponentially with the radius r; see,
e.g., [4]. A similar exponential growth happens for other more realistic physical
spaces; see, e.g., [35]. In our papers, we have shown that this exponential growth
can be actually used to speed up parallel computations. Namely, we can fit an
exponential number of processors within the given distance from the user and
thus, check exponential number of cases in feasible time. For example, to solve
a propositional satisfiability problem with n Boolean variables z1,...,z, (the
classical NP-hard problem), we can have 2™ processors each of which is assigned
an n-dimensional Boolean vector; these processors, in parallel, check whether a
given propositional formula F' holds for the corresponding vectors.

In [35], the resulting speed up was presented as a theoretical possibility,
based on the fact that, e.g., in a hyperbolic space, we can fit an exponentially
numbers (~ exp(« - 7)) of non-intersecting spheres of radius ry into a sphere of
radius 7. In that paper, we did not present any explicit scheme for placing the
Processors.

In [6, 10, 17, 23, 24, 25, 26, 27, 28, 29, 30, 31], explicit iterative geometric
schemes are described that enables us to naturally fill the hyperbolic sphere of
large radius r with exponentially many small spheres of radius rg.

Remaining problem. We have mentioned that there exist algorithms which
use processors in curved spaces to solve NP-hard problems in polynomial time.
These algorithms are based on the possibility to place exponentially many pro-
cessors within a sphere of a given radius.



However, these algorithms implicitly assume that these (exponentially many)
processors are already there. In principle, we can place these processors one by
one, but that placing would require exponential time. As a result, with such
sequential placing, the overall time for placing and computation will still be
exponential.

So, the problem is how to parallelize the placing of all these processors, so
that the resulting overall time will be polynomial.

What we plan to do. In this paper, we describe such a scheme for parallel
placing in polynomial time.

2 Towards Proposed Solution: Informal De-
scription of the Main Ideas

How to describe this problem in algorithmic terms: available tech-
niques. The original Turing machines and similar computational devices (im-
plicitly) assume that we already have infinitely many memory cells. It does not
allow for designing and placing of new cells and/or new processors.

Of course, we can always view an infinite tape of a Turing machine as only
potentially infinite, in the sense that at any given moment of time, we only
have finitely many cells on this tape, and new cells are added when necessary.
However, in this view, cells are added one by one — exactly what we wanted to
avoid.

There is, however, a known extension of Turing machines which was specif-
ically designed to take into account the possibility of adding new cells and/or
new processors. This extension was originally proposed by Kolmogorov and Us-
pensky in the 1950s [18, 19]; overviews of the resulting Kolmogorov-Uspensky
algorithms can be found, e.g., in [3, 12, 16, 40]. Such algorithms are known to
have several advantages over more traditional Turing machine-type definitions:
e.g., according to [3]: “Leonid Levin used a universal Kolmogorov machine to
construct his algorithm for NP problems that is optimal up to a multiplica-
tive constant [21]; see also [11]. The up-to-a-multiplicative-constant form is not
believed to be achievable for the multi-tape Turing machine model popular in
theoretical computer science.”

Kolmogorov-Uspensky algorithms served as a basis for an even more general
formalization of the abstract notion of computability: the notion of an Abstract
State Machine [5, 12, 13, 14, 15, 16, 37].

What needs to be modified. In principle, Kolmogorov-Uspensky algo-
rithms can be described in two versions:
e based on graphs in Euclidean space and

e based on abstract graphs.



The Euclidean space description is clearly not what we need.

In the abstract graph approach, we count each connection between vertices
as 1 computational step. For example, in this version, we can build a full graph
of size 2™ in which every node is connected to every other node, with connection
between every two nodes taking exactly 1 step. Of course, we can thus solve
satisfiability problem in linear number of steps — but, as have seen on the exam-
ple of Euclidean space the actual distance between the corresponding vertices
can be exponential and so, one “step” in this sense may mean exponential time.

What we need is a definition specifically tailored towards a given curved
space.

Difficulties. At first glance, it may look like a generalization of Kolmogorov-
Uspensky-type algorithms to curved spaces should be reasonably straightfor-
ward. From the purely mathematical viewpoint, it is indeed possible to provide
a generalization. However, our goal is to not simply to produce a mathematical
generalization, but to provide a generalization which will be physically mean-
ingful, a generalization is which 1 computational step indeed means a single
moment of time (or at least constant number of moments of time).

Let us enumerate some potential difficulties related to this goal. Let us
recall that what we want are processors which not only perform computations
but also actually manufacture new processors. In other words, what we want
are not simply processors, but rather intelligent robots.

Both difficulties are related to the fact that these robots need to communicate
with each other.

First difficulty: communicating at a large distance r may require
exponentially growing energy. In the Euclidean space, it is very reasonable
to assume that two robots can communicate at a distance < c¢-n. Indeed, a
signal sent by any source (in particular, a signal sent by a robot) spreads around.
By the time this signal reaches distance r, the energy of the original signal is
spread around the (surface of the) sphere of radius r, so its (average) energy
density is equal to Ey/S(r), where Ey is the original energy and S(r) is the
area of the sphere of radius r. (In these back-of-the-envelope computations, we
assume that the transmission is ideal and ignore possible signal decay; if we take
this decay into account, the difficulties only become worse.)

The signal is detectable at a distance r if its density exceeds a certain detec-
tion threshold po: Eo/S(r) > po. Thus, to be able to transmit information to a
a robot at distance r, we must generate the signal with the energy Fo > S(r)-po.

In the Euclidean space, S(r) ~ r2, so the required energy increases poly-
nomially with r — this is feasible to arrange, e.g., by combining a polynomial
number of energy sources. However, we are interested in spaces in which the
volume V(r) grows exponentially and thus, the area S(r) can also grow expo-
nentially. In such spaces, to propagate the signal through distance r, we may
need an energy which grows exponentially with r — i.e., an energy which is not
feasible to implement.



How to avoid this first difficulty. To avoid this difficulty, we will assume
that the robots can only communicate with each other when their distance is
bounded by some constant dj.

For this to be possible, we must make sure that by combining such bounded
communications, we can set up a link between arbitrarily distant points x and
z’. This is true in the Euclidean space, where we can connect z and z’ by a
straight line segment, and on that segment, set up points z1 = x, x2, ..., at
distance dg from other another so that d(x,z') = d(z1,x2) + ... + d(Tm-1,Tm)
and d(x;,x;41) < do. A similar construction works in the hyperbolic space as
well.

In our analysis, we will thus restrict ourselves to “dgp-connected” metric
spaces, in which such a connecting sequence of dy-close points exists for all x
and 2’. (A precise definition will be given in the next section.)

Second difficulty: number of communications can grow exponentially.
Even when we solve the difficulty related to the weakness of signals, we still face
the second difficulty: that there is a very large number of robots and thus, a
very large number of communications.

Namely, as we have mentioned, the main idea behind the desired speed up
is that all exponentially many processors perform computations in parallel, and
then they send their results to the user. In the Euclidean space, we have at
most polynomially many robots within a zone of polynomially growing radius,
and thus, we have at most polynomially many messages. We can process them
sequentially or we can place polynomially many receptors at the user’s location.

In a curved space, we may have exponentially many robots and thus, expo-
nentially many signals coming to the user. If we process these signals one by
one, we will need exponential time. If we place exponentially many receptors at
the user’s location, we will need exponentially large volume there — and we will
still face a problem of sending signals from these receptors to the user.

How to avoid the second difficulty. To avoid this difficulty, in our algo-
rithm, we will not send signals directly back to the user, we will try to collect
them in stages, tree-like: several robots send their messages to a boss-robot,
these boss-robots send to bosses of next level, etc., so that at each moment of
time, each robot received < M, message for some fixed constant Mj.

We will thus restrict ourselves to spaces in which every robot can have no
more than My neighboring computing robots. Let us describe these properties
in precise terms.

3 Proposed Solution: Definitions and the Main
Result

First, we need a formal definition of appropriate metric spaces



For computational purposes, it is sufficient to consider discrete spaces.
Physicists usually consider continuous spaces as models of physical reality. How-
ever, we are interested not in abstracts points in space, but rather in points at
which we can place computational devices. At a given technological level, every
computational device has a certain linear size ¢ > 0. This means that if we have
already placed a device at some point x, then we cannot place any other device
at a distance < ¢ from x.

Thus, from the viewpoint of placing computational devices, instead of con-
sidering all possible points, it is sufficient to consider only points whose distance
from each other exceeds € — e.g., points on a grid of size > €. Thus, we arrive
at the following definition.

Definition 1. Let € > 0 be a real number. We say that a metric space (X, d)
is e-discrete if for every two points x # x’, we have d(z,z') > €.

Comment. In the following text, we will only consider e-discrete metric spaces.
For such spaces, it is natural to define a volume of a set simply as its number
of elements.

Definition 2. Let (X,d) be a e-discrete metric space, and S C X be a subset
of this space. By a volume V(S) of this set S, we mean the number of elements
in the set S.

Comment. Our objective is to describe physical models in which we can per-
form exponentially many operations in polynomial time. For this to be possible,
we must make sure that the volume of a ball in this space grows exponentially
with radius.

Definition 3. We say that an e-discrete metric space (X, d) has exponential
growth if for some point xy and for some positive real numbers Ry, A, and k,
for every R > Ry, the volume V(Br(xo)) of a ball Br(xo) = {z : d(z,z0) < R}
of radius R satisfies the inequality V(Br(xg)) > A -exp(k - R).

Comment. In this definition, we assumed that the exponential growth property
occurs for one points zg. It is worth mentioning that that once this property
holds for one point xg, it is true for every other point z € X:

Proposition 1. Let (X,d) have exponential growth, then let x be a point in
this space. Then, for every point ' € X, there exist positive real numbers Ry,
A, and K, such that for every R > R{, the volume V(Bgr(x')) satisfies the
inequality V(Br(z')) > A" - exp(k' - R).



Proof of Proposition 1. According to the triangle inequality, for every point
x, we have d(z,z") < d(z, o) + d(zo,z’). Thus, for every radius r > 0, we have
By(20) € Brid(a’,z) (7). In particular, for every R > d(z',x0), we thus have
Br(2") 2 Br—d(2' z) (7). Since the volume is simply defined as the number of
points in a set, we have therefore have V(Bgr(xz')) 2 V(Br_q(a’,z0)(2"))-

If R—d(z',z9) > Ry, i.e,if R> R’ ef Ry + d(x,xp), then

V(Bgr(z")) 2 V(BR,d(I/,wO)(x/)) > A-exp(k-(R—d(2',z0)) = A" -exp(—k - R),

where A’ % A . exp(—k - d(z',xg)). So, the desired property indeed holds for
the above A’, R}, and k' = k. The proposition is proven.

Comment. To implement fast computations, it is not enough to know that
the metric space has exponential growth. Indeed, we may have a metric space
consisting of exponentially many points in which every two points have the
same distance d > . In this space, an arbitrary permutation preserves the
distance. Since every two points can be swapped by an appropriate permutation,
every two points in this space are equivalent to each other. So here, there are
exponentially many points, but it is not clear how to distribute the task between
all these points since they are all equivalent to each other. What helps for
hyperbolic space (and for similar spaces described in [35]) is that in this space,
neighborhoods of small radius are small, so in principle, we can cover them in
parallel without losing exponential speed-up. Let us formalize the notion of
such spaces.

Definition 4. Let dg > 0 be a real number. We say that two points x and x’
in a metric space (X, d) are dy-close (or dy-neighbors) if d(z,z") < dy.

Comment. In the following text, in some cases when the value dy will be clear
from the contents, we will simplify the text by simply writing “neighbors” and
“close”.

Definition 5. Let dy > 0 be a real number. We say that a metric space
(X,d) is C-connected if for every two points x,x’ € X, there is a sequence
T1 =X, 22, .+, Tm—1,Tm = &' such that for every i, x; and x;11 are do-neighbors
and

d(z,2') = d(z1,22) + d(x2,23) + ... + d(Tm_1,Tm)-

Definition 6. Let dy > 0 be a given real number and My > 0 be a given
integer. We say that a metric space (X, d) has Mo-bounded dy-neighborhoods
if every point x € X has no more than My dy-neighbors.



Definition 7. Let ¢ > 0 and dy > 0 be real numbers, and My > be
an integer. By an potentially (e,dy, My)-computation enhancing space (or
simply potentially computation-enhancing space, for short), we mean an e-
discrete dy-connected metric space with exponential growth and My-bounded dy-
neighborhoods.

In the following text, we assume that a computation-enhancing space (X, d)
is given, and that we also are given a point g in this space. This point will be
called the user’s location.

The corresponding “robotic computer” will consist of “computational
robots” located in different points of the potentially computation-enhancing
space X. Let us start our definition of a robotic computer by defining the
notion of a computing robot.

Definition 8. By a computing robot, we mean a regular computer (e.g., a
Turing machine or RAM, or a Java virtual machine) with a finite memory (se-
quence of bits) in which there are three additional commands: build, send for-
ward (with memory location as a parameter), and send backward (with memory
location as a parameter). The memory is divided into five parts:

e ¢ hardwired part which contains a program;

e o working memory part which can be used for computations in the usual
way;

e g tree ID memory part; it will be used for storing a special “tree ID” of a
Processor;

e ¢ regular ID memory part; it will be used for storing a special “regular
ID” of a processor;

e ¢ received memory part; this received part is divided into My subparts.

We assume that the tree ID memory consists of a single bit (called built) followed
by blocks of bit size 1 + B, where B % [logy(Mo)].

Comment. In a potentially computation-enhancing space (X, d), every location
has < My (do-)neighbors, so a B-bit long part of the block is sufficient to
differentiate between all the neighbors of a given location.

In the following definitions, we will explain how the new commands work. As
a result of the build command, the newly built robots will have a tree structure;
in terms of this structure:

e send forward means send to direct descendants, and

e send backward means receive from direct descendants.



In the following text, we will construct “polynomial-time” computing robots,
i.e., robots in which the computation time of the corresponding Turing machine
grows no more than polynomially with n, and in which the size of the memory
also grows no more than polynomially.

Definition 9. By a state of a computing robot, we mean the values of all the
bits from its memory. We say that in a given state, a given block of an ID tree
memory part is unused if it contains only zeros and used otherwise.

Definition 10.

e By a robotic computer, we mean a mapping in which there is a computing
robot assigned to (some or all) points from a potentially computation-
enhancing space X .

e By a state of the robotic computer, we mean the mapping which assigns
to every point, the state of the computing robot assigned to this point.

e In the initial state, there is only one computational robot located at the
user’s location xg; its tree ID (i.e., the contents of its tree ID memory)
consists of all zeros.

Comment. The fact in the initial state, the robot’s tree ID consists of all zeros
means that the value of the “built” bit is 0 (false), and that all the blocks of
the tree ID memory are unused.

To complete the description of a robotic computer, we must describe how the
new commands work.

Definition 10. As a result of a “build” command, each robot for which the
value of the “built” bit is 0, builds robots in all dg-neighboring points. These
robots are identical to the original robot, with the only exception of an ID num-
ber:

o All the used blocks of the tree ID of the old robot are copied into the ID
tree memory part of the new robot.

e In the first previously un-used block of the tree ID memory of each new
robot, we place 1 in the first bit (to indicate that the new block is used),
and assign different values to the next B bits (so that different robots built
by the same robot get different tree ID numbers).

After the new computing robots are built, the original robot changes the value of
its “built” bit to 1.

10



Comments.

e Every robot has < My neighbors, so it may have to build < My new
robots. Due to our choice of B as B = [logy(My)], B bits are sufficient
to distinguish between all these robots.

e If a new point is dy-close to two or more original robot locations, then
several robots want to build a new robot there. In this case, we do not care
how they resolve this problem, we simply assume that one (and exactly
one) of these robots is built: e.g., a parent robot with the smallest tree
number may have preference. (It is worth mentioning that there is a
relation between this problem and the problem of deleting duplicates in
geospatial databases; see, e.g., [38].)

Example. Let us assume that My = 3, i.e., that each point has no more than
3 neighbors. In this case, B = [log,(3)] = 2. So, a tree ID consists of a built
bit and blocks of bit size 1 + B = 3.

Initially, we have only one robot at the user’s location xy with a tree ID
consisting of all zeros: 0 000 000.

When the build command is issued, this robot has 0 value of the built variable,
so it start building new robots. Let us assume that the point o has exactly two
neighbors. For each of these neighbors, the first unused block is the first one;
its first 0 is replaced by 1, and it consequent 2 bits are replaced by, e.g., 00 and
11. Do, the two new robots have tree IDs 0 100 000 and 0 111 000. After the
initial robot finishes constructing these robots, it changes the value of its built
bit to 1 (“true”). So, now, its tree ID is 1 000 000.

If the build command is issued again, the first robot no longer does anything,
because its built variable now has the value 1 (“true”). However, the two new
robots have a 0-valued buwelt variable, so they both react to this command.

For example, the robot 0 100 000 creates 3 new robots, with tree IDs making
the second block used: e.g., 0 100 101, 0 100 110, and 0 100 111. The robot
0 111 000 creates 2 new robots, with tree IDs making the second block used:
e.g., 0 111 100 and 0 100 110.

Definition 11. Robots created by a given robot are called its direct descen-
dants.

Comment. A robot can easily find its direct parent — by deleting the last used
block in its tree ID (and ignoring the built bit). Thus, a robot can easily check
whether another robot is its direct descendant.

Definition 12. As a result of the send forward command, each robot sends
the values of the memory cells specified by this command. This information is
recetved by all its direct descendants and stored in the first part of their received
memory.

11



Definition 13. As a result of the send backward command, each robot sends
the values of the memory cells specified by this command. This information is
received by the direct parent of this robot. The information received by a robot
from different direct descendants is stored in the different subparts of this robot’s
received memory.

Clarifying comment. We are not specifying in which exactly part this infor-
mation is placed, this can be decided by an implementation. For example, each
descendant of a given robot can be a number, and then information sent by the
i-th descendant is placed in the i-th subpart of the received memory.

Comment. The above definition describes a SIMD (Single Instruction Multiple
Data) type parallel computer in which all the processors, in effect, perform the
same set of instructions. In principle, it is possible to extend our definition to
the case of MIMD (Multiple Instructions Multiple Data). We did not do this
here, since our objective is to describe, in the simplest possible terms, how to
solve NP-problems in polynomial time. This can be done already with SIMD-
devices only; the description is already somewhat complex, so the extension to
MIMD would have made it even more complex and much more difficult to read.

How can we count computation time? In the traditional analysis of the
algorithms’ computation time, we usually simply count the overall number of
elementary computation steps. Of course, this is not a perfect description of the
actual computation time, because, in general, different elementary computation
steps require somewhat different computation time. For example, multiplication
requires slightly longer time than addition, etc. However, these differences are
usually minor (less than an order of magnitude), so a simple count of elementary
operations provides a reasonable estimation for the actual computation time.
(Although, of course, when we need to select the fastest of two reasonable al-
gorithms, counting can be misleading: to make a realistic comparison, we must
assign different weights to different operations.)

The situation with computation on a robotic computer is drastically differ-
ent. Indeed, these computations consists of three types of steps:

e regular computation steps,
e steps in which we build new robots, and
e steps in which the robots send and receive information.

Here, sending a message takes orders of magnitude more time than performing
a regular computation step, and building a new robot takes even more time:
hours or days instead of nanoseconds.

So, to make a reasonable count of the overall computation time, we cannot
simply add the number N,. of the regular computational operations, the number

Ny of building operations, and the number Ny of send commands, and take

N df N, + Np+ N, as the computation time. We must define two real numbers

12



Cy > 0 (“building time”) and Cs > 0 (“sending time”), and then estimate the
overall computation time as t = N,. + Cp, - Ny + Cs - Ns.

Intuitively, the times C} and Cs are proportional only to the number of
robots in the neighborhood (the number of robots to build, or the number of
robots to send signals to), so the time needed for each of these longer operations
does not change with n; from the viewpoint of dependence on n, it is simply a
constant.

The problem is that we do not know these constants. Fortunately, all we
are interested in is whether the resulting computation time is polynomial (in
terms of th length of the input) or not. Since Cj, and Cs are constants, the sum
t = N+ Cy- Ny + Cs - Ng is polynomial if and only if all three components
N,, Ny, and N, depend polynomially on n — i.e., if and only if the simple sum
N = N, + Ny + N polynomially depends on n.

In other words, while the actual computation time depends on the values of
the (unknown) coefficients Cy, and Cj, the division of algorithms into polynomial-
time and not polynomial-time ones does not depend on the actual values of these
coefficients. So, we can simply define polynomial time as the case when the sum
N is bounded by the polynomial of n.

We are now ready for the main result.

Theorem 1. For every potentially computation-enhancing space, there exists
a robotic computer which solves the propositional satisfiability problem in poly-
nomial time.

Comment. In our definition, we called a space potentially computation-
enhancing if in this space, volume grows exponentially with time — thus provid-
ing a potential possibility to fit exponentially many processors within a finite
radius and thus, drastically parallelize NP-complete problems into polynomial
overall time.

The above theorem shows that this is not only a potential possibility: there is
an actual algorithmic way to fill such as pace with exponentially many computers
and thus, indeed enhance computations.

4 Proof of the Main Result

General structure of the algorithm. The desired algorithms consists of
the following five stages:

e first, we build a hierarchical network (tree) of 2™ robots;

e second, we assign, to each robot, a number from 0 to 2™ — 1 (i.e., equiva-
lently, an n-dimensional Boolean vector) in such a way that the numbers
assigned to this robot and to the robots eventually generated by the this
robot and its descendants form an interval in which this robot’s number
comes first;
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e third, we distribute the original propositional formula to all the robots;

e at the forth stage, each robot checks whether the formula F' holds at this
robot’s vector x,

e at the fifth stage, this information is sent backwards along the robot tree
until all the information is gathered at the original point — with an indi-
cation of whether the original propositional formula is solvable or not.

Building stage. Let us first describe the building stage. Initially, we have
only one robot in the user’s location zy. One build command creates robots in
all the points of distance < dy from zg; another build command creates robots
at all the points in locations which are < dy far away from these new locations,
ete.

Since the space is dg-connected, every point z is connected to zy by a chain
in which two next points are dg-connected; thus, if we issue one build command
after another, eventually, we will cover every point in the space X. How many
build commands do we need? For every point z at a distance R, we have a
chain of dg-close points for which R = d(x,x0) = d(z1,22) + ... + d(Tym—1,Tm)-
If in these chain, two points x; and z;4; are identical, we can delete the second
one. Thus, without losing generality, we can assume that all the points x; in the
chain are different: x; # x;41. Since the space is e-discrete, x; # x;41 implies
that d(x;,xiy1) > €, hence R = d(z1,z2) + ... + d(@m—1,2m) > (m —1) - .
Thus, m < 1 + R/e; this means that every point within the radius R can be
covered by 1+ | R/e] iterations of the build command.

What radius R should we choose? The larger the radius, the more robots we
will be able to build within this radius. We want to have at least 2" computing
robots. Since we are in a potentially computer-enhancing space, for sufficient
large R, the number of points at a distance < R from the user’s location z is at
least V' > A-exp(k- R). So, to have > 2™ robots, we must have (for sufficiently
large n) exp(k - R) > 2"/A, i.e.,, k- R > n-1In(2) — In(A4). Thus, it is sufficient
to have R = (In(2)/k) -n — (In(A)/k).

We have already shown that the number of build commands to cover all the
points within this radius grows linearly with R as 1 + R/e. Thus, the required
number of build commands grows linearly with n, as

So, the depth of the resulting tree grows linearly with n. (We need to make
sure that the ID tree memory part contains sufficiently many bits to cover that
many blocks.)

Second stage: assigning regular IDs to the robots. On the second stage,
we assign a number ID to each robot. This is done in two sub-stages. The
purpose of the first sub-stage is that each robot computes the number of its
descendants (including itself and its indirect descendants). At the end of this
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sub-stage, the initial robot will have the total number of robots in the whole
tree.

The first sub-stage consists of several conditional “send backward” com-
mands:

e the first command is only applicable to the robots of the last generation,
with the largest number of used blocks (there robots do not have any
direct descendants);

e the next command is applicable only to the robots of the next to last
generation,

e ctc.,

e finally, the last command is only applicable to the robots of the first gen-
eration, with exactly one used block in their tree IDs (i.e., robots built
directly by the initial robot).

At each command, each robot sends its tree ID number and its number of
descendants to its parent robot. The “leaf” robots (with no descendants) send
their tree ID number and the value 1. On every other step, a robot reads all
the values send by its direct descendants (read from the corresponding parts of
the receive part of its memory), adds them together, adds 1, and thus gets the
number to send back (to its parent robot).

Each addition of two numbers of size < 2" requires n binary steps; thus,
addition to < My such numbers requires linear time. Overall, we need const - n
commands each of which requires linear time — to the total of O(n?) time.

Now, we can distributed regular ID numbers by going forward, from each
robot to its direct descendants.This is done by performing a sequence of condi-
tional send forward commands.

e the first command is only applicable to the initial robot;

e the second command is only applicable to the robots of the first generation
(directly built by the initial robot);

e ctc.

e the last command is applicable only to the robots of the next to last
generation.

The initial robot have received values N1 + ...+ N,,; due to our choice of R,
we have 1 + Ny + ...+ N,, > 2". So, this first robot gets the ID number
0, and the interval [0,2"™ — 1]. The first direct descendant gets the interval
[1, V1], the second gets the interval [Ny + 1, N1 + Ns], the third gets the interval
[Nl + NQ + 17N1 + NQ + Ng], etc.

Computing each of these sums requires a constant number of additions; the
time of each addition is linear in the number of bits < n in each of these sums
< 2™ —1, so computation of these intervals requires linear time. All these < M
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intervals and the tree ID number of the direct descendants are then sent to all
direct descendant.

From this information, each direct descendant selects the interval [N, N]
corresponding to its tree ID. Then, this robot assigns the smallest value N to
itself, and divides the remaining interval [N + 1, N] between its own direct de-
scendants: if they sent the values nj ..., ns, then they are assigned the intervals
[M'F Lﬂ—knl], [ﬂ—i—nl +1,N +nq +TL2], etc.

At the end of these procedure, each robot is assigned an interval of ID values
of its descendants, and this robot’s own regular ID number is, as we desired,
the smallest value from this interval.

Comment. We may have > 2" robots, in which case value > 2" are not assigned
at all, so the last direct ancestor gets the interval [...,2"]. This means, in effect,
that we will not use all the robots in our computations, only 2™ of them.

Third stage: distributing the propositional formula. On the third
stage, the original propositional formula is distributed to all the robots. This is
done by applying several “send forward” commands:

e first, from the initial robot to its direct descendants,
e then to the second generation, etc.

We need as many iteration as the hight of the tree — i.e., linearly many.

Fourth stage: checking F(z) for every z. On the fourth step no one is
sending anything: every robot checks whether F'(z) holds for the propositional
vector z which is equal to the (binary representation of) its regular ID number.

For example, the initial robot has a regular ID number 0, so it will check
whether F' holds for the propositional vector 00 .. .0 consisting of all zeroes (i.e.,
if all the propositional variables are false). Similarly, the last (childless) robot
gets a number 2 — 1 whose binary representation is 11...1, so it will check
whether F' holds for the propositional vector 00...0 consisting of all ones (i.e.,
if all the propositional variables are true).

Final (fifth) stage: combining the checking results into a single answer
to the propositional satisfiability question. Before describing the fifth
stage in detail, let us make the following comment. In the original problem,
we do not ask for what x the formula is satisfied, we just asked whether it is
satisfied or not. So, in this case, it is sufficient to simply keep the information
“yes” (meaning that there is a satisfying vector). In the following text, we show
how to modify this problem if we are actually interested in finding the vector z
for which F(z) holds.

At the beginning of the fifth stage, each robot only has information whether
F(x) holds for the vector = corresponding to this robot. There are two possi-
bilities here:
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e The first possibility is that the answer to the question of checking F(z)
for this robot’s x is “yes”. In this case, the original problem is solved —
the formula is satisfiable.

e The second possibility is that F(z) is false. In this case, we keep the
information “no” meaning that F(x) is false for this x.

As we collect this information, at each robot location, we have two similar
possibilities:

e The first possibility is that for one of the values x from the corresponding
interval [z, ], we have F(z). In this case, we keep the value “yes”. Tt
means that the satisfiability problem is already solved; we only need to
make sure that this information is passed back and not lost.

e The second possibility is that F(z) is false for all the vectors = from the
interval [z, Z] assigned to the node. In this case, we keep the answer “no”.

After each robot collects the information from its direct descendants, it has
to merge the corresponding < My pieces of information with the information
coming from testing F'(x) for its own vector x.

e If one of the resulting < My + 1 pieces of information is “yes”, then this
“yes” (meaning that there exists a satisfying vector) is the result of the
information merger.

e If all of the merged information is “no”, this means that F'(x) is false for
all the vectors x from its interval, so the merged value is “no”.

(In other words, this merger is simply an “or” operation.)

Since we combine < My + 1 bits, this merger requires a constant number of
steps < Mo +1=0(1).

By the time we get to the original robot — the root of the robot tree — the
resulting value “yes” or “no” provide the answer to the original instance of the
propositional satisfiability problem.

So, the above-described robotic computer indeed solves the propositional
satisfiability problem.

Checking that the resulting algorithm requires polynomial time. To
complete the proof, it is now sufficient to show that it requires polynomial time.
Indeed:

e Building new computers requires time propositional to the depth of the
tree — which, for a potentially computation-enhancing space, grows linearly
with the size n.

e Send the information forward and backward to generate regular IDs re-
quires, as we have mentioned, quadratic time O(n?).
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e Then, checking whether F(z) holds for every z is done on all robots in
parallel; it requires polynomial time.

e Finally, merging also requires times which is proportional to the depth of
the tree, i.e., linear time.

Thus, the overall time is indeed polynomial.

The theorem is proven.

5 Auxiliary Results

5.1 First auxiliary result: producing satisfying vector in-
stead of checking its existence

We formulated the above algorithm for the deciding version of the propositional
satisfiability problem, where the objective is simply to check whether a given
propositional formula F' is satisfiable or not.

One can easily modify this algorithm so that it will serve a similar problem
in which we actually want to produce the propositional vector = for which F'(z)
holds. In this case, instead of reporting the single-bit piece of information “yes”
to the boss-robot, a robot should pass a vector = for which F(z) holds; if two
or more such vectors are passed to a boss-robot, this robot selects one of them
(e.g., the smallest).

5.2 General problems from the class NP

The known fact that propositional satisfiability is NP-hard means that every
problem from the class NP can be reduced, by a polynomial-time reduction, to
propositional satisfiability. Thus, we arrive at the following corollary:

Corollary. For every potentially computation-enhancing space and for every
problem from a class NP, an appropriate robotic computer can solve it in poly-
nomial time.

Proof of the Corollary. Indeed, we can:

e first use the central processor to perform the reduction to satisfiability
(this requires polynomial time), and then

e solve the resulting instance of the satisfiability problem in polynomial time
(as described in the proof of Theorem 1).

The overall time is thus polynomial. The Corollary is proven.
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Comment. In the above description, we make a simplifying assumption:
namely, we assume that each computing robot can store (and process) strings
proportional to the size n of the problem, but we still consider the size of the
processor to be fixed (independent of n).

In reality, the linear size ¢ of the processor should grow with n (e.g., linearly).
As a result, when we implement this scheme for a different n, we will need
robots separated by m times larger distances. & =~ m -e. In this case, each
communication step requires n times longer time.

Since the product of n and a polynomial of n is still a polynomial of n, this
increase keeps the overall time polynomial, so this simplifying assumption does
not change the main result.

5.3 Problems from the class PSPACE

Up to now, we have strengthened and generalized the result that in the hyper-
bolic space, we can solve NP-complete problems in polynomial time. However,
in the hyperbolic space, an even stronger result is known. Namely, it is known
that by using processors appropriately placed in a hyperbolic space, we can
solve, in polynomial time, not only problems from the class NP, but also prob-
lems from the more general class PSPACE (class of all the problem which can
be solved within polynomial space).

It turns out that a similar extension can be proven for the case of a general
potentially computation-enhancing space.

Theorem 2. For every potentially computation-enhancing space and for every
problem from a class PSPACE, an appropriate robotic computer can solve it in
polynomial time.

Proof of Theorem 2: Main idea. It isknown (see, e.g., [36]), that a problem
known as QSAT (it will be described later in this proof) is PSPACE-complete.
This means that every other problem from the class PSPACE can be reduced
to QSAT by a polynomial-time reduction. Thus, to prove that every PSPACE
problem can be solved in polynomial time on a robotic computer, it is sufficient
to prove that every problem from the class QSAT can be solved in polynomial
time on a robotic computer.

The QSAT problem is an extension of the propositional satisfiability problem
SAT, an extension which allows quantifiers over Boolean variables. To be more
precise, in SAT, the objective is to find a positional vector x = (z1,...,z,) for
which a propositional formula F(z1,...,z,) becomes true — or, in the decid-
ing version, to check whether such a propositional vector exists, i.e., whether
Jz F(x) holds. In QSAT, we must check whether a more general formula

JaVy ...z F(x,y,...,2)

holds.

19



QSAT is the “limit” of the corresponding formulas from the polynomial hi-
erarchy, which start with SAT-related formulas 3z F'(z) and their duals Vo F'(x)
and continue with more complex formulas Va3y F(x,y) (and JzVy F(z,y)), etc.,
until we reach QSAT.

Let us show, on the example of these next-step formulas Va3y F(z,y), how
we can modify the above proof so that it will be applicable to these formulas.
The same idea works for all further extensions all the way to QSAT.

In the above proof of Theorem 1, we ordered propositional vectors x in
lexicographic order and assigned to each processor an interval [z,T] of vectors,
i.e., all the vectors between two the given vectors z and T (“between” in the
sense of the lexicographic order). For the formula Vz3y F'(z,y), we also sort
the processors in lexicographic order by the order of a “long vector” zy (a
concatenation x1,...,Zn,Y1,...,Ym of the vectors z = (z1,...,z,) and y =
(y1,---,Ym)) and assign, to each processor, all the vectors (x,y) from some
interval (interval in the sense of this order).

The lexicographic ordering has the property that if the vectors 20...0 and
x1...1 belong to an interval, then all the vectors xy belong to the same interval.
Thus, in general, the interval in this order can be described as follows:

e for the smallest possible z from this interval, we have a subinterval of
possible values of y;

e for some (maybe empty) interval [z, Z] of possible values of z, we have all
the values zy with x € [z, T] and arbitrary y;

e finally, for the last x, we may have a subinterval of possible values of .

(In the degenerate case, we may have no intermediate interval, or no starting
interval, or no ending interval.)

By the time we gathered information from this xy-interval at a robotic com-
puter, we have already checked whether F'(x,y) holds for all (z,y) within this
interval, and have already collected this information.

For the values x from the intermediate a-interval [z, ], we thus already know
whether there exists y for which F'(z,y). If for one of these z, such y exists,
then the original problem (of checking whether JxVy F'(z,y) is true) is solved:
we just need to keep this information and make sure that it is not lost during
the transition to the boss-robots.

If no y was found for all these z, then we have an interval [z, T] of values for
which —VyF(z,y). So, we simply keep the endpoints of this interval.

Similarly, at each of the two borderline values z, if there is a y (among those
for which xy was checked) for which —F(x, y), then the resulting x can be simply
added to the intervals of xs for which —VyF(z,y). Otherwise, for each of these
two borderline values z, we keep an interval [y, 7] for which F'(x,y) holds for all
y within this interval. -

As a result, at each robot location, we keep one of the two following pieces
of information:

e first possibility is the information that the problem is already solved;
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e second possibility is that we keep

— the interval [z, ] of values z for which —=VyF(z,y), and

— for two borderline values z, interval of values [y, %] for which F(z,y)
holds for all y within these intervals.

At each robot point, we combine several (< My+1) such pieces of information
into one. If one of these pieces contains the solution, then we just pass this
information on without bothering with other piece of information. If none of
these pieces contain a solution, then first, for some borderline values =, we may
need to combine the y-intervals.

e It may be possible that we simply get a larger interval of possible values
of y.

e As a result of the combination, we may conclude that F'(x,y) holds for all
possible y — in which case we have a solution.

Since we combine < My + 1 pieces of information, there are < M, borderline
values to combine, so this merger can done in constant time.

This is the only modification that we need in the above proof to convert
from SAT to JaVy F(z,y).

For more complex formulas such as JaVy3z F(x,y, z), an interval in the
lexicographic order includes:

e an interval of possible values of x for which we have checked for all y and
z?

e two borderline values (z,y) for which we have checked for intervals of z,
etc.

The theorem is proven.
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