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Abstract. In many practical situations, users select between n alterna-
tives a1, . . . , an, and the only information that we have about the utilities
vi of these alternatives are bounds vi ≤ vi ≤ vi. In such situations, it is
reasonable to assume that the values vi are independent and uniformly
distributed on the corresponding intervals [vi, vi]. Under this assumption,
we would like to estimate, for each i, the probability pi that the alterna-
tive ai will be selected. In this paper, we provide efficient algorithms for
computing these probabilities.

1 Decisions under Interval Uncertainty: Formulation of
the Problem

Making a decision when we know the exact values of the maximized quantity. Let
us assume that we want to select an alternative with the largest possible value
of a certain quantity. If for n alternatives a1, . . . , an, we know the exact values
v1, . . . , vn of the corresponding quantity, then the decision maker will select the
alternative ai for which the corresponding value vi is the largest.

How to predict this decision. When we know the values v1, . . . , vn, then predict-
ing a decision means computing the index in of the largest value vi.

This can be done in time O(n), by the following iterative process. At each
iteration k (k = 1, . . . , n), ik will be index of the largest of the first k values
v1, . . . , vk. In the first iteration k = 1, we naturally take i1 = 1. Once we got
ik, on the next (k + 1)-st iteration, we compare the largest-so-far value vik

with
the new value vk+1. If vk+1 > vik

, then we take ik+1 = k + 1 as the new index,
otherwise we take keep the old index, i.e., take ik+1 = ik.

Predicting decisions under interval uncertainty: a problem. In many practical
situations, we do not know the exact values of the desired quantity. In many
such situations, we only know the bounds vi and vi for the (unknown) actual
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value vi, i.e., our only information about vi is that vi belongs to the interval
[vi, vi].

If we only know the intervals [vi, vi] of possible values of vi, and these intervals
share several common points, then it may be that, e.g., v1 is the largest and it
may be that v2 is the largest. Thus, some decision makers will prefer v1, some
may prefer v2, etc. In this case, we cannot exactly predict which selection will
be made – but we can hopefully predict the probability pi of selecting vi.

2 Decision Making under Interval Uncertainty: Main
Idea and Related Computational Problem

Idea. A natural idea for computing the probability pi is as follows. For each
i, we assume that the (unknown) actual value vi is uniformly distributed in
the corresponding interval [vi, vi], and that different values vi are independent
random variables. Then, the desired probability pi is the probability that, under
this distribution, vi is the largest of n values v1, . . . , vn.

Comment. The above assumptions about the probability distributions corre-
spond, e.g., to the Maximum Entropy (MaxEnt) approach (see, e.g., [4]), in
which among all possible distributions ρ(v1, . . . , vn) on the given box [v1, v1] ×
. . .× [vn, vn], we select the one with the largest value of the entropy

−
∫

ρ(v1, . . . , vn) · log(ρ(v1, . . . , vn)) dv1 . . . dvn.

This MaxEnt distribution is uniform on the box, which is equivalent to assuming
that all values vi are independent and uniformly distributed.

For n = 2, there are explicit formulas for computing pi. For the case n = 2 of
two alternatives, p1 is the probability that v1 > v2. There exist explicit formulas
for this probability; see, e.g., [3, 6, 8–12]. So, for n = 2, we have an efficient
algorithm for computing the desired probabilities p1 and p2.

Problem: how to compute pi for large n? The case of n = 2 is a toy example.
In most practical decision problems, we have a large number of alternatives –
sometimes so large that we need high performance parallel computers to handle
these problems. How can we then compute the corresponding probabilities pi?

Since the distribution is uniform, the desired probability pi is equal to the
ratio Vi/V , where V = (v1 − v1) · . . . · (vn − vn) is the (n-dimensional) volume
of the box, and Vi is the volume of the part of which box for which vi is larger
than the values of all other values vj .

In principle, we can compute the volume Vi by computing the corresponding
n-dimensional integral. However, computing n-dimensional integrals with a given
accuracy ε > 0 means that we have to consider a grid of size ∼ ε along each axis

– i.e., consider ∼ 1
ε

points along each axis and ∼ 1
εn

points overall.
For large n, this computation time is too high to be practically useful. It is

therefore desirable to come up with more efficient algorithms for computing pi.
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3 Monte-Carlo Simulations as a Way to Approximate the
Desired Decision Probabilities

Idea. A natural idea is to use Monte-Carlo simulations; see, e.g., [7]. Specifically,
we select a number N , and then N times, we simulate each vi as a uniformly
distributed random variable. After that, we take Ni/N as an estimate for pi,
where Ni is the number of simulations in which vi was the largest value.

It is known that the accuracy of the Monte-Carlo simulation is 1/
√

N . So, to
get 10% accuracy in computing pi, it is sufficient to take N ≈ 100 simulations.

Limitations. The main limitation of this approach is that if we want accurate

estimates, with accuracy ε ¿ 1, we need a large number of simulations N ≈ 1
ε2

.

This number is not impossible (as for direct integration) but still large. It is
therefore desirable to design an algorithm for computing pi exactly.

4 Efficient Algorithm for Exact Computation of Decision
Probabilities

Let us describe an efficient (O(n2)) algorithm for computing pi. Without losing
generality, we can assume that i = 1, i.e., that we need to compute the prob-
ability p1 that v1 is the largest of n values vi. The outline of this section is as
follows:

– First, we will describe the main idea behind this algorithm.
– Then, we will show how this idea translates into an actual O(n2) algorithm.
– Finally, we will explicitly describe the resulting algorithm.

Main idea. Our idea is to first describe, for each given v1, the conditional proba-
bility p1(v1) that this v1 is the largest – under the condition that v1 is the actual
value. Then, due to the Bayes formula, the overall probability p1 that v1 is the
largest can be obtained by integrating this conditional probability p1(v1) times
the probability density of v1:

Prob(v1 is the largest) =
∫

Prob(v1 is the largest | v1 is actual) · ρ1(v1) dv1.

The distribution of v1 is uniform on the interval [v1, v1], hence

p1 =
1

v1 − v1

·
∫

p1(v1) dv1.

How can we describe the expression for p1(v1)? Once v1 is fixed, the fact that
v1 is the largest means that v2 ≤ v1, v3 ≤ v1, etc. Since all the variables vi are
independent, this probability is equal to the product of n− 1 probabilities: the
probability that v2 ≤ v1, the probability that v3 ≤ v1, etc.

For each i, the probability that vi < v1 can be determined as follows:
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– If vi ≤ v1, then vi ≤ v1 with probability 1. This probability does not change
the product and can thus simply be omitted.

– If v1 < vi, this means that vi ≤ v1 cannot happen at all. The resulting
probability is 0, so such terms can be completely ignored.

– Finally, if vi ≤ v1 < vi, then, since the distribution of vi is uniform on the

interval [vi, vi], the probability that vi ≤ v1 is equal to
v1 − vi

vi − vi

.

Thus, the conditional probability p1(v1) is equal to

p1(v1) =
∏

i:v1≤vi

v1 − vi

vi − vi

,

if v1 ≥ vi for all i, and to 0 otherwise.

Transforming this idea into the actual algorithm. As we see, the expression for
p1(v1) depends on the relation between v1 and the endpoints vi and vi of the
intervals [vi, vi]. So, if we sort these endpoints into an increasing sequence v(1) ≤
v(2) ≤ . . . ≤ v(2n), then, in each of the resulting 2n + 1 zones z0 = (−∞, v(1)),
z1 = [v(1), v(2)), . . . , zj = [v(j), v(j+1)), . . . , z2n = [v(2n),∞), we will have the
same analytical expression for p1(v1).

For each zone, the corresponding expression is a product of ≤ n linear terms.
Multiplying these terms one by one, we get a polynomial of degree ≤ n in ≤ n
computational steps.

The integral
∫

p1(v1) dv1 can be computed as the sum of integrals p1j over all
the zones zj , j = 0, . . . , 2n. An integral of a polynomial a0 +a1 · v1 + . . .+ak · vk

1

is equal to a0 · v1 +
a2

2
· v2

1 + . . . +
ak

k + 1
· vk+1

1 , i.e., it can be also computed

coefficient-by-coefficient in linear time. Since we have 2n zones, we thus need
(2n + 1) · O(n) = O(n2) time to compute all 2n + 1 sub-integrals, and then
2n = O(n) operations to add them and get

∫
p1(v1) dv1. Dividing this integral

by v1 − v1, we get p1. Thus, overall, we indeed need quadratic time.

Resulting algorithm. At the first step of this algorithm, we order all 2n endpoints
vi and vi into an increasing sequence v(1) ≤ v(2) ≤ . . . ≤ v(2n). As a result, we
divide the real line into 2n + 1 zones z0 = (−∞, v(1)), z1 = [v(1), v(2)), . . . ,
zj = [v(j), v(j+1)), . . . , z2n = [v(2n),∞).

For the zones zj for which v(j) < v1, v(j+1) > v1, or v(j+1) < vi for some i,
the integral p1j is equal to 0.

For every other zone, we form the expression

p1(v1) =
∏

i:v(j+1)≤vi

v1 − vi

vi − vi

.

This expression is a product of ≤ n linear functions of the unknown v1. By
multiplying by these functions one by one, we get an explicit expression for a
polynomial in v1. By processing the coefficients of this polynomial one by one,
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we can provide the explicit analytical expression for the (indefinite) integral
P1j(v1) of this polynomial. The desired integral p1j can then be computed as
the difference P1j(v(j+1))− P1j(v(j)).

Finally, the desired probability p1 is computed as

p1 =
1

v1 − v1

·
2n∑

j=0

p1j .

Comments.

– The idea of dividing the real line into zones corresponding to sorted endpoints
of the given intervals comes from another situation where we need to combine
probabilities and intervals: namely, from the algorithms for algorithms for
computing population variance under interval uncertainty [2].

– The above algorithm is based on the assumptions that we have a finite set
of alternatives, that decision makers know the exact values of vi, and that
the distributions are uniform. In the following sections, we consider discuss
what will happen if we do not make these assumptions.

5 First Observation: What If We Have Infinitely Many
Alternatives

Formulation of the problem. In many practical problem, we have infinitely many
alternatives. For example, an alternative is often characterized by a continuous
real-valued parameter a on a range [a, a] (or by several such parameters). In
such situations, for every a, we have an interval [v(a), v(a)] of possible values of
v(a). For example, we may know the approximate values ṽ(a), and we know the
bound ∆(a) > 0 on the approximation error; in this case, the (unknown) actual
value v(a) belongs to the interval [ṽ(a)−∆(a), ṽ(a) + ∆(a)].

It is usually reasonable to assume that both v(a) and v(a) are continuous
functions of a. Again, we assume that the values v(a) corresponding to different
a are independent random variables uniformly distributed on the corresponding
intervals [v(a), v(a)]. If a decision makers selects the action with the largest
possible value of a, what is the probability of selecting different values of a?

A minor complication here is that since there are infinitely many possible
alternatives a, the maximum may not necessarily be attained. In this case, it
is reasonable to fix some small value ε and select an alternative a(ε) for which
v(a(ε)) ≥ max

a
v(a)− ε. We will call such alternative ε-optimal.

A somewhat unexpected solution. Our result is that for every ε > 0, an ε-
optimal alternative corresponding to the random values v(a) is ε-optimal for the
function v(a).

In other words, with probability 1, the decision maker will select the solution
that maximizes the “optimistic” value v(a).
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Proof. Before we start discussing this result, let us first prove it. It is sufficient
to prove that max

a
v(a) = max

a
v(a). Indeed, from the fact that v(a) ≤ v(a),

we conclude that max
a

v(a) ≤ max
a

v(a). Let us now pick any number ε′ > 0

and show that max
a

v(a) ≥ max
a

v(a) − ε′; then in the limit ε′ → 0 we will get

max
a

v(a) ≤ max
a

v(a) and hence, max
a

v(a) = max
a

v(a).

Indeed, let am be a value at which the continuous function v(a) attains
its maximum. Since v(a) is continuous, there exists a value δ such that |am −
a′| ≤ δ implies that |v(a′) − v(am)| ≤ ε′/2, i.e., that v(a′) ≥ v(am) − ε′/2 =
max

a
v(a) − ε′/2. Let us prove that we cannot have max

a
v(a) < max

a
v(a) − ε′.

Indeed, that would imply that v(a′) < v(am)− ε′ for all (infinitely many) values
a′ for which |a′ − am| ≤ δ. This means that for all such a′, we have v(a′) 6∈
[v(a) − ε′/2, v(a)] – because for values from that subinterval, we have v(a) ≥
v(a)− ε′/2 ≥ (v(am)− ε′/2)− ε′/2 = v(am)− ε′. The probability of being not in
this interval is proportional to 1−(ε′/2)(v(a)−v(a)) and is hence ≤ 1−(ε′/2)/W ,
where W

def= max
a

(v(a)− v(a)). There are infinitely many such values a′, and all

variables v(a′) are independent; thus, the probability that v(a′) < v(am)− ε′ for
all a′ does not exceed (1− (ε′/2)/W )n for every n. When n →∞, we conclude
that this probability is 0. Thus, with probability 1, we have some value a′ for
which v(a′) ≥ v(am)− ε′. The statement is proven.

Discussion. The above counter-intuitive result follows from the assumption that
the values vi are independent and uniformly distributed. So, to avoid this con-
clusion, we must relax this assumption; in the last section of this paper, we will
start analyzing what will happen if relax this assumption.

6 Second Observation: What If Decision Makers Also
Only Know the Values of the Desired Quantity with
Interval Uncertainty

Formulation of the problem. In the previous text, we assumed that the decision
makers know the exact values vi of the desired quantity, and make their deci-
sions based on these exact values. Based on this assumption, we considered the
situation when we only know the intervals [vi, vi] for vi, and we estimated the
probability pi that for randomly selected values v1 ∈ [v1, v1], . . . , vn ∈ [vn, vn],
a decision maker will select the alternative vi.

In practice, decision makers may also know the values vi only approximately.
How does this approximate character affect the decisions?

Previous work. For the case of n = 2 alternatives, the case when decision makers
know vi with accuracy δ > 0 was considered in [11]; a case of general interval
bounds was analyzed in [8–10].

What we plan to do. In this section, we consider the simplest case of accuracy δ,
and we show how to modify the above algorithms to account for this uncertainty.
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What happens when decision makers only know the values vi with accuracy δ:
our assumption. When the decision maker knows the exact values of v1 and v2,
then the decision is straightforward:

– if v1 = v2, then both alternative are equally attractable, so any of them can
be selected;

– if v1 > v2, then the first alternative a1 is better, so it will be selected;
– if v1 < v2, then the second alternative is better, so a2 will be selected.

If we only know the approximate values v1 and v2, values which are only correct
within an accuracy δ, then we also have three options:

– It is possible that v1 − δ > v2 + δ (i.e., equivalently, v1 − v2 > ε, where
ε

def= 2δ). In this case, every value from the interval [v1 − δ, v1 + δ] is larger
than every value from the interval [v2− δ, v2 + δ]. Thus, we are sure that the
alternative a1 is larger, and we select it.

– It is also possible that v1 + δ < v2 − δ (i.e., equivalently, v1 − v2 < −ε). In
this case, every value from the interval [v1 − δ, v1 + δ] is smaller than every
value from the interval [v2− δ, v2 + δ]. Thus, we are sure that the alternative
a2 is larger, and we select it.

– It is also possible that the values v1 and v2 are so close that we cannot tell
whether a1 is larger or a2 is better; this case corresponds to |v1 − v2| ≤ ε.

Following [11], we assume that in the third case, both alternatives a1 and a2 are
equally attractable, so any of them can be selected.

What we would like to estimate. Under the above assumption, if the values v1

and v2 are close, then both a1 and a2 may be selected as the best – and we
cannot predict which of them will be selected.

So, for every i, instead of a single probability pi that the alternative ai will
be selected, we have two different probabilities:

– the probability p+
i that ai may be selected, and

– the probability p−i that ai will necessarily be selected.

Depending on the decision makers’ choice, the actual selection probability pi can
take any value from the interval [p−i , p+

i ].

How to estimate p−i and p+
i . According to the above description:

– p−i is the probability that vj < vi − ε for all j 6= i, and
– p+

i is the probability that vj ≤ vi + ε for all j 6= i.

The Monte-Carlo algorithm can be easily modified to compute p−i or p+
i : namely,

after we perform N simulations, we can estimate p−i as N−
i /N and p+

i as N+
i /N ,

where

– N−
i is the number of simulations in which vj < vi − ε for all j 6= i, and

– N+
i is the number of simulations in which vj ≤ vi + ε for all j 6= i.

The exact algorithm can be modified as follows:
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Towards an algorithm for computing p−i . For each i, the probability that vi+ε <
v1 can be determined as follows:

– If vi + ε < v1, then vi + ε < v1 with probability 1.
– If v1 ≤ vi +ε, this means that vi +ε < v1 cannot happen at all; the resulting

probability is 0.
– Finally, if vi + ε ≤ v1 ≤ vi + ε, then, since the distribution of vi is uniform

on the interval [vi + ε, vi + ε], the probability that vi + ε < v1 is equal to
v1 − (vi + ε)

vi − vi

.

Thus, we arrive at the following algorithm.

Algorithm for the exact computation of p−1 . At the first step of this algorithm,
we order those values vi+ε and vi+ε (i 6= 1) which are inside the interval [v1, v1]
into an increasing sequence v(1) ≤ v(2) ≤ . . . ≤ v(k) (k ≤ 2n− 2). As a result, we
divide the interval [v1, v1] into k + 1 zones z0 = [v1, v(1)), z1 = [v(1), v(2)), . . . ,
zj = [v(j), v(j+1)), . . . , zk = [v(k), v1].

For the zones zj for which v(j+1) ≤ vi + ε for some i, we set p−1j = 0.
For every other zone, we form the expression

p−1 (v1) =
∏

i:v(j+1)≤vi+ε

v1 − ε− vi

vi − vi

.

This expression is a product of ≤ n linear functions of the unknown v1. By
multiplying by these functions one by one, we get an explicit expression for a
polynomial in v1. By processing the coefficients of this polynomial one by one,
we can provide the explicit analytical expression for the (indefinite) integral
P−1j(v1) of this polynomial. The desired integral p−1j can then be computed as
the difference P−1j(v(j+1))− P−1j(v(j)).

Finally, the desired probability p−1 is computed as

p−1 =
1

v1 − v1

·
k∑

j=0

p−1j .

Algorithm for the exact computation of p+
1 . At the first step of this algorithm,

we order those values vi−ε and vi−ε (i 6= 1) which are inside the interval [v1, v1]
into an increasing sequence v(1) ≤ v(2) ≤ . . . ≤ v(k) (k ≤ 2n− 2). As a result, we
divide the interval [v1, v1] into k + 1 zones z0 = [v1, v(1)), z1 = [v(1), v(2)), . . . ,
zj = [v(j), v(j+1)), . . . , zk = [v(k), v1].

For the zones zj for which v(j+1) < vi − ε for some i, we set p1j = 0.
For every other zone, we form the expression

p+
1 (v1) =

∏

i:v(j+1)≤vi−ε

v1 + ε− vi

vi − vi

.
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This expression is a product of ≤ n linear functions of the unknown v1. By
multiplying by these functions one by one, we get an explicit expression for a
polynomial in v1. By processing the coefficients of this polynomial one by one,
we can provide the explicit analytical expression for the (indefinite) integral
P+

1j(v1) of this polynomial. The desired integral p+
1j can then be computed as

the difference P+
1j(v(j+1))− P+

1j(v(j)).
Finally, the desired probability p+

1 is computed as

p+
1 =

1
v1 − v1

·
k∑

j=0

p+
1j .

7 Third Observation: What If the Distributions are not
Uniform

Formulation of the problem. For the case of two alternatives, the uniform dis-
tribution can be justified by the requirement that the distribution be invariant
relative to arbitrary shifts v1 → v1 +a1, v2 → v2 +a2 and conditionally invariant
with respect to re-scalings v1 → λ1 · v1, v2 → λ2 · v2; see, e.g., [6]. To be more
precise, the corresponding (generalized) probability density function ρ(v1, v2) is
invariant relative to shift ρ(v1 +a1, v2 +a2) = ρ(v1, v2) and conditionally invari-
ant with respect to re-scalings: ρ(λ1 · v1, λ2 · v2) = a(λ1, λ2) · ρ(v1, v2) for some
function a(λ1, λ2).

From the measurement viewpoint, a shift means changing the starting point
for measuring a quantity, and a scaling means changing a unit in which we mea-
sure this quantity. These assumptions work well if vi are different quantities
which can be independently shifted or scaled. In some practical situations, how-
ever, values v1 and v2 represent the same quantity. We can only shift both values
by the same quantity a or scale both by the scale quantity λ. It is therefore de-
sirable to describe probability distributions which are invariant relative to such
shifts and scalings.

Formulation of the problem in precise terms. We want to find all symmetric
functions ρ(v1, v2) = ρ(v2, v1) for which ρ(v1 + a, v2 + a) = ρ(v1, v2) for all a,
and for some function a(λ), ρ(λ · v1, λ · v2) = a(λ) · ρ(v1, v2) for all λ.

Towards a solution. Shift-invariance with a = −v1 implies that ρ(v1, v2) =
ρ(0, v2 − v1), i.e., that ρ(v1, v2) = ρ0(v2 − v1) for an appropriate function ρ0(v).
Since we want a symmetric distribution ρ(v1, v2), we must have ρ0(−v) = ρ0(v),
i.e., ρ0(v) = ρ0(|v|).

In terms of this function ρ0(v), scale-invariance means that for all λ, we
have ρ0(λ · v) = a(λ) · ρ0(v). It is known (see, e.g., [1, 5]) that all measurable
solutions of this functional equation have the form ρ0(v) = A·v−α. Since we allow
generalized functions, we can also have terms proportional to the δ-function,
hence ρ0(v) = ε · δ(v) + A · v−α, and

ρ(v1, v2) = ε · δ(v1 − v2) + A · |v1 − v2|−α.
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Comment. When both intervals [vi, vi] are non-degenerate, for the uniform dis-
tribution, the probability that v1 = v2 is 0. In contrast, for ε > 0, this probability
is positive. This makes sense since degenerate situations (like v1 = v2) do occur
in practice.

Algorithm for computing p(v1 > v2). For the case of two alternatives with values
v1 ∈ [v1, v1] and v2 ∈ [v2, v2], we can use Monte-Carlo simulations to find
p(v1 > v2), p(v1 < v2), and p(v1 = v2).

Open question. How can we generalize these formulas to the general case of n ≥
alternatives?
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