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Abstract

Causality is one of the most fundamental notions of physics. It is
therefore important to be able to decide which statements about causality
are correct in different models of space-time. In this paper, we analyze
the computational complexity of the corresponding deciding problems. In
particular, we show that:

e for Minkowski space-time, the deciding problem is as difficult as the
Tarski’s problem of deciding elementary geometry, while

e for a natural model of primordial space-time, the corresponding de-
ciding problem is of the lowest possible complexity.

1 Introduction

Formulation of the problem. Causality is one of the most fundamental
notions of physics. It is usually described by a reflexive binary relation a < b
meaning that an event a can influence an event b. It is important to study
different properties of the causality relation.

From the logical viewpoint, a natural way to describe such properties is
to start with elementary statements of the type a < b, and to combine these
statements by using propositional connectives V (“or”), & (“and”), = (“not”),
and quantifiers Va and Ja over events. For each space-time model, i.e., for each
set of events F with a given causality relation <, the resulting statements form
a first order theory of this causality relation <.

We face two natural questions. The first is a fundamental question: is the
corresponding first order theory decidable? In other words, is there an algorithm
that, given a formula, decides whether this formula holds in the given space-time
model? For several reasonable space-time models, the corresponding theory
is, in principle, decidable, For such models, we face a second more practical
question: how difficult can this decision be? Or, in precise terms, what is the
computational complexity of the corresponding decision problem?



Our interest in this topic dates back to the 1970s paper co-authored by one
of us [13]. In that paper, we were mainly interested in the first fundamental
question: is the corresponding theory decidable? Since the 1970s, a lot of work
has been done about the computational complexity of different algorithms and
problems, so we decided to revisit the topic of that paper — this time from the
computational complexity viewpoint.

What we plan to do. In this paper, we start with the simplest physical model
of space-time — the Minkowski space-time. From the fundamental viewpoint, the
deciding problem is solvable: we can use, e.g., Tarski’s algorithm for deciding
formulas from elementary geometry (see descriptions below) — or, better yet,
modern faster algorithms for deciding these formulas. Our new (somewhat
unexpected) result is that deciding the first order theory of causality for the
Minkowski space-time is as difficult as solving the general deciding problem of
elementary geometry.

We then analyze the general case of abstract space-time models, and we
show that for every non-trivial space-time, the deciding problem is (at least)
PSPACE-hard.

We then turn to another extreme — possible models of “primordial” space-
time, i.e., space-time near the beginning of the Universe. We provide some ar-
guments that this space-time should be maximally symmetric, and we analyze
the computational complexity of deciding causality theories in this maximally
symmetric model. For this model, we describe an exponential-time deciding
algorithm — arguably the fastest possible among different causality-related de-
ciding algorithms (unless it turns out that P=NP).

Finally, we provide arguments showing, crudely speaking, that there should
not be any intermediate drastically different space-time models: a natural tran-
sition from the primordial space-time should lead us to causality models similar
to the Minkowski one.

2 Case Study: First Order Causality Theory for
Minkowski Space-Time

What is Minkowski space-time: reminder. Let us start with the simplest
model of space-time — Minkowski space-time, a 4-dimensional space E = R* with
the causality relation

a = (aop,a1,a2,a3) < b= (bg,b1,b2,b3) —

a:b\/bo—aoz\/(bl—a1)2+(b2—a2)2+(b3—a3)2.



*

a

Comment. In this formula, we assume that the units for measuring time and
space are selected in such a way that the speed of light ¢ is equal to 1. If we use
other units, then instead of by — ag > ... we should write ¢ (bg — ag) > ..
Reduction to Tarski’s elementary geometry. The above causality re-
lation can easily be described as a propositional combination of polynomial
equalities and inequalities:

(aozbo&al :bl&agzbg&ag,:bg)\/

(b() > ag & (b() — a0)2 > (bl — a1)2 + (bQ — CLQ)Q + (bg — a3)2).

Thus, all the formulas of the Minkowski causality first order theory can be
described in terms of the first order theory of real numbers, in which:

e objects are real numbers,

e clementary formulas are of the type x =y, x >0,z =y+2z,andz =y- 2,
and

e general formulas can be obtained by using propositional connectives and
quantifiers.

In principle, we can also add more general elementary formulas of the type
P > @, where P and @ are polynomials with integer coefficients. However,
this addition does not seriously change the expressive ability of this language.
Indeed, if we parse each polynomial, i.e., represent it as a sequence of elementary
arithmetic operations, we can describe such more complex formulas in terms of
simpler ones. For example, computing x; + 23 means that we first compute
z] = Tg - T2, and then y as y = x1 + z;. Thus, the formula y = 1 + a:% can be
reformulated as 3z1 (21 = @2 - z2 &y = 21 + 21).

In the late 1940s, A. Tarksi has proven that there exists an algorithm which
decides whether each formula from this first order theory of real numbers is
decidable; see, e.g., [28]. He called this theory elementary geometry because if
we represent each point by its coordinates, then practically all the problems of
elementary geometry can be described in this language.

Due to the reduction, Tarski’s algorithm also decides the first order
causality theory for Minkowski space-time. Since first order causality
formulas can be described in terms of elementary geometry, the existence of



Tarski’s algorithm solves the first (fundamental) problem for the Minkowski
space-time: namely, by using Tarski’s algorithm, we can decide whether a given
first order causality formula is true or not.

What is the computational complexity of this decision? The original
Tarksi’s algorithm is very inefficient: its worst-case time complexity grows faster
than an exponential function 2™ or than any iterations of this function, such as
2(2") 2(2(2n)), etc.

However, later, much more efficient algorithms have been produced; e.g., [8]
describes an algorithm which requires only doubly exponential time ~ 2(2"). In
[9], it was proven that the doubly exponential time is also a lower bound for
the general quantifier elimination problem, so exponential time is the worst-case
complexity for elementary geometry.

Overall, the algorithms have been improved not only in terms of “theoreti-
cal” (asymptotic) complexity, but also in the sense of practical implementations.
These efficiency improvements have led to numerous practical applications rang-
ing from control to transportations to epidemiology; see, e.g, [24] and references
therein.

For some subclasses of the class of all first order formulas, there are faster
algorithms: e.g., if we only have existential or only universal quantifiers, then
we can decide the truth of each formula is exponential time [25]. So, a natural
question is: if we only restrict ourselves to causality-related formulas, can we
have a more efficient decision algorithm than in the general case?

Our first result. Our first result is that the complexity of deciding causality
formulas is exactly the same as the complexity of deciding general formulas of
elementary geometry.

Specifically, we have already shown that there is a reduction from the first
order theory of Minkowski causality to elementary geometry. This reduction
requires time which is linear in the size of the original formula and increases the
size of the formula by a constant factor. It turns out that a similar reduction is
possible in the other direction:

Proposition 1. There exists a linear-time reduction from the first-order the-
ory of elementary geometry to the first-order theory of Minkowski causality re-
lation.

Conclusion. Thus, the computational complexity of deciding first order for-
mulas of the Minkowski causality relation is the same as for the elementary
geometry. As a corollary, we can conclude that for the Minkowski causality, the
deciding complezity is doubly exponential.



Proof.

1°. A theoretical possibility for this proof comes from the known fact that the
Minkowski causality uniquely determines a linear structure on the set of events.
Moreover, every mapping R* — R* which preserves causality is a superposition
of Lorentz transformations, rotations, shifts, and dilations (homotheties). This
was first proven by A. D. Alexandrov [1, 4] (see also [2, 3, 30]).

In [29], we have actually use this fact to provide a physical explanation for
standard arithmetic operations (addition, multiplication, etc.) on the numbers
field.

We cannot directly use the above proofs because these proofs use sets, i.e.,
second-order objects which go beyond the first-order descriptions. However, it
turns out that the main ideas of these proofs can be modified into a first-order
construction. This will enable us to describe formulas of elementary geometry
in causality terms.

Comment. In our proof, in addition to the original ideas from Alexandrov’s
papers, we will be also using ideas proposed by W. Benz [5, 6], J. A. Lester
[17, 18, 19, 20], and K. Svozil [26, 27].

2°. A physically important part of the future cone a™ def {b:a < b} of a given
event a is the boundary of this cone. From the physical viewpoint, the future
cone consists of all the events b which can be reached from a by transmissions
with speed c or less (where c is the speed of light). The boundary of this cone
corresponds to events which can be reached only by transmissions traveling
exactly with the speed of light. Let us denote the fact that b is at the boundary
of this cone by a<b.

This relation is a particular case of the causality relation. It can be distin-
guished by the general causality relation by the following fact:

e when a<b, then the interval {d:a < d<b} is linearly ordered:

a

e when a < b and —(a<b), then the corresponding interval is not linearly
ordered:



a

Thus, we can describe the relation a<b by an equivalent first-order causality
formula:

a<b&Vdve((a<d<b&ka<e<b)— (d<eVe<d).

3°. Let a<b and a # b. A straight line which goes through the points a and b
is called a null line because along this line, the proper time

V(b — ag)? — (b1 — a1)? — (b2 — a2)® — (bs — a3)?

is equal to 0.

We can describe the fact that an event d € R* is on the same null line ab
as the events a and b as follows: all three events must be in < relation to each
other, i.e.,

(a<d Vv d<a) & (b<d V d<b).
Let us denote this formula by d € ab.

4°. Now, let a<b and b # a. We can now describe what it means for a point d
to be in a null hyper-plane — a tangent hyper-plane to the cone a™ which passes
through the line ab. Geometrically, this means that d is either on the line ab,
or on no null cone starting at any point e from the null line ab.

Indeed, any point on top of this tangent hyper-plane is covered by the bound-
ary of e for some e, while points below this hyper-plane are covered by the
boundary of e~ for some e.

In first order terms, the condition that d is on this hyper-plane can be
described as follows:

(3e (e € ab& (e<d Vv d<e)) — d € ab.
We will denote this condition by d € H(ab).

5°. In the 4-D space, a null hyper-plane H(ab) is 3-dimensional (i.e., of co-
dimension 1). Thus, the intersection of two null hyper-planes H (ab) and H (ab’),
with b ¢ ab, is of dimension 2. Similarly, the intersection of three null hyper-
planes H(ab), H(ab’), and H(ab"), with V' & ab, V" & ab, and b" & al, is a
straight line. Once can check that:
e this straight line is space-like (i.e., on this line, no two points are related
by the causality relation), and

e an arbitrary space-like line can be thus obtained.

So, we can define space-like lines in first order terms.



Comment. 1If, instead of the 4-D Minkowski space, we consider a space of a
different dimension d > 3, then we need an intersection of d — 1 such hyper-
planes.

6°. Now, let us fix three events a, b, and b’ such that a<b, a<b', and b’ & ab.

Since b’ ¢ ab, these three points define a (2-dimensional) plane. A point e
belongs to this plane if and only if there is a space-like line which contains e
and intersects with both null lines ab and ab’.

This can be easily described in first order terms, so we get a description of
this plane. In the following reduction, we will only use events from this plane.
(So, all the formulas obtained after reduction should start with Yavbvbd'.)

7°. To get a reduction, we need to describe:
e real numbers,
e the relation < on real numbers, and
e two arithmetic operations with these real numbers:

— addition and

— multiplication.

Once we have that, any formula from the first order theory of real numbers will
be interpreted in causality terms.

8°. Real numbers will be described by events from the line ab.

The event a represents 0, the event b represents 1, and an arbitrary number

a € R is represented by the corresponding point b(«) ota- (b—a)€ab. In

this representation, the standard order < between the real numbers corresponds
to the causality relation between the corresponding events:

a < f < bla) < b(B).




Because of this definition, every point d € ab represents a number — the number
« for which b(a) = d.

This number can given a geometric interpretation if we formally introduce
on R* an Euclidean metric p in which the distance between a and b is exactly 1:
p(a,b) = 1. In this metric, the number « corresponding to the event d is simply
equal to the (signed) distance p(a,d) between the event d and the fixed point
a.

9°. To describe addition, we must be able to shift “intervals” along the null
line ab. This can be done as follows. By using two parallel null lines and two
parallel space-like lines, we can form parallelepipeds and thus, make sure that
on a parallel null line, we have an interval a’d’ which is of the same size as the
original interval ad:

¢
\//b / $
d/

JaN

Then, by using another parallelepiped, we can move the interval a’d’ back into
the original null line ab, this time into a different place, as a”d":

By using this construction, we can arbitrarily shift any interval along the null
line ab.

10°. Now, addition z = z+2’ can be described as follows. In our representation,
both real numbers z and 2’ are represented by points d € ab and d’ € ab for
which p(a,d) =z and p(a,d’) = '.

/

a z d
>
T

By using a construction described in Part 9 of this proof, we then shift an
interval ad’ onto the same null line ab in such a way that the shifted interval de
starts with the point d.



Since the length p(a,d) of the interval ad is equal to = and the length p(d, e)
of the interval de on the same line ab is equal to a’, the length p(a,e) of the
combined interval ae is thus equal to = + 2’.

x4+

N3

)

.
T d x’

So, the event e is the desired representation for the sum z + .

Comment. Strictly speaking, the above procedure only works for adding posi-
tive real numbers, so we need additional constructions corresponding to different
signs. The signs are easy to describe in first order terms, since:

e non-negative numbers are represented by events d > a, while

e non-positive numbers are represented by events d < a.

11°. To describe multiplication, we need:

e to have an alternative representation of real numbers, on the null line ab’,
and

e to be able to move numbers between the original and the new (alternative)
representations. representations.

In the alternative representation, we represent real numbers by points from the

null line ab’, with 0 represented by a, 1 represented by b, and an arbitrary
def

number a € R by a point V(o) = a+« - (V' —a) € ab'.

If we have a point d € ab (d # a) representing a real number, then we can
describe the corresponding point d’ € ab’ representing the same real number as
follows: it is the only point d’ € ab’ for which the space-like line dd’ is parallel to
the space-like line bb’ (since we restricted ourselves to the 2-dimensional plane,
parallel simply means no common points).



g
a
For an event b representing number 1, the corresponding point is a point b’, at

a distance pg def p(a,b’). In general:

o If we have an event d € ab which represent a number z = p(a,d), then
in the alternative representation, this same number is represented by an
event d’ € ab’ for which p(a,d’) =z - po.

e Vice versa, an arbitrary event d’ € ab’ represents a real number x =

.
M. In the original representation, this same number is represented
Po
d
by an event d for which p(a,d) =« = M.
Po

12°. We are now ready to show how multiplication can be described.

Similarly to addition, it is sufficient to describe multiplication of positive
real numbers; other cases can be handled in a similar manner. In the case of
positive real numbers, we need to multiply two given real numbers z > 0 and
2’ > 0. According to our representation of real numbers,

e the value x is represented by an event d for which the distance p(a,d) is
equal to z, and

e the value a’ is represented by an event d’ for which the distance p(a,d’) is
equal to z’.

By using the construction from Part 11 of this proof, we can find an event
d" € ab’ which represent the same number z’ as the event d’ € ab.

There exists a space-line line going through the points b and d”. We then find
a line which is parallel to bd” and which goes through d. This line intersects
with a null-line ab’ at some point ¢’.

10



Since the lines bd” and de’ are parallel, the triangles abd’ and ade’ are similar.
Thus, we have the following relation between the lengths of the corresponding

sides: )

plo.e) _ plasd)

pla,d")  p(a,b)
By our choice of metric, p(a,b) = 1. By our choice of d as a representation of
the value x, we have p(a,d) = x; so, the ratio in the right-hand side is equal to

/
x/1 = z. From % = x, we conclude that p(a,e’) =z - p(a,d").
pla,
The event d” represents the value z’ in the alternative representation, so
pla,d’) = 2’ - po. Thus, we conclude that p(a,e’) =z - (' - po) = (x - 2) - po.

By definition of the alternative representation, this event represents a number

!
p(a7e) :Qj'x/.
Po

By applying to the event ¢’ € ab’ the construction from Part 11, we get a point
e € ab which represents the same number z - 2’ in the original representation.

L

d/l

e

13°. Summarizing: we can represent real numbers, inequality between real
numbers, addition, and multiplication. We thus have the desired representation
of the elementary geometry in the first order theory of Minkowski causality. The
proposition is proven.

Comment. In our definition and in the proof, we mainly considered 4-

dimensional space-time. However, one can easily check that our proof applies
to the Minkowski space-time model of an arbitrary dimension > 3.

11



3 General Case

Discussion. In the previous section, we have shown that for the Minkowski
space-time, the deciding problem has double exponential complexity. A natural
question is: can this deciding problem be much easier for other space-time
models?

In this section, we will show that (unless PSPACE=P), the deciding problem
always requires at least exponential time. In the following section, we will
provide an example of a physically reasonable space-time model for which the
exponential time is sufficient.

PSPACE: reminder. It is well known that some algorithms are practically
useful, while some other algorithms are computationally useless: even for rea-
sonable size inputs, they require time which exceeds the number of particles in
the Universe. This distinction is very different to formalize. Usually:

e algorithms for which the computation time ¢4(x) is bounded by some
polynomial P(n) of the length n = len(z) of the input (e.g., linear-time,
quadratic-time, etc.) are practically useful, while

e for practically useless algorithms, the computation time grows with the
size of the input much faster than a polynomial.

In view of this empirical fact, in theoretical computer science, algorithms are
usually considered feasible if their running time is bounded by a polynomial of
n. The class of problems which can be solved in polynomial time is usually
denoted by P; see, e.g., [22].

Not all practically useful problems can be solved in polynomial time. To
describe such problems, researchers have defined several more general classes of
problems. One of the most well known classes is the class NP. By definition,
this class consists of all the problems which can be solved in non-deterministic
polynomial time — meaning that if we have a guess, we can check, in polynomial
time, whether this guess is a solution to our problem.

Most computer scientists believe that NP#P, i.e., that some problems from
the class NP cannot be solved in polynomial time. However, this inequality
has not been proven, it is still an open problem. What ¢s known is that some
problems are NP-hard, i.e., any problem from the class NP can be reduced to
each of these problems in polynomial time. One of such NP-hard problems is
the problem SAT of propositional satisfiability: given a propositional formula F',

i.e., a formula obtained from Boolean (yes-no) variables x1,...,z, by using &,
V, and -, check whether there exist values 1, ..., x, which make this formula
true.

NP-hardness of SAT means that if NP#P (i.e., if at least one problem from
the class NP cannot be solved in polynomial time), then SAT also cannot be
solved in polynomial time. In other words, SAT is the hardest of the problems
from this class.

12



It is known that all the problems from the class NP can be solved in expo-
nential time. Indeed, for a problem of size n, there are < a™ possible guesses,
where a is the size of the corresponding alphabet, so we can simply try all these
guesses one by one.

This sequential testing requires only a polynomial amount of space. There
is a larger class of problems PSPACE, the class of all the problems which can
be solved by using polynomially many computer cells. Problems from the class
PSPACE can also be solved in exponential time.

In the class PSPACE, there are also problems (called PSPACE-hard) to
which all other problems from this class can be reduced in polynomial time. So,
if a problem is proven to be PSPACE-hard, this means that — unless PSPACE
is equal to P (or to some sub-exponential class) — we cannot solve this problem
is less than exponential time.

One example of such PSPACE-hard problems is quantified satisfiability
(QSAT). In QSAT, we consider formulas which are obtained from the Boolean
variables by using propositional connectives and quantifiers Vo and Jz over
possible values of the corresponding Boolean variables [22].

Our second result. In view of the above reminder, proving that a problem
is PSPACE-hard means, in effect, that it cannot be solved faster than in ex-
ponential time. The following simple result shows that for every non-trivial
space-time model, the causality deciding problem is PSPACE-hard — and thus,
in effect, cannot be solved faster than in exponential time.

Definition 1. We call a space-time model non-trivial if there exist two events
a and b for which a £ b.

Comment. The only space-time models which we exclude are the ones for which
a < b for all @ and b. For such models, deciding is trivial.

Proposition 2. For every non-trivial space-time model (E, <), the deciding

problem from the first order causality theory of the corresponding relation < is
PSPACE-hard.

Proof. To prove that this causality-related problem is PSPACE-hard, we will
reduce QSAT (a known PSPACE-hard problem) to this problem. By definition,
the fact that QSAT is PSPACE-hard means that every problem from the class
PSPACE can be reduced to QSAT; since, as well will show, QSAT can be
reduced to the causality problem, this means that every problem from the class
PSPACE can be reduced to the causality problem — i.e., that the causality
problem is indeed PSPACE-hard.

In the desired reduction of QSAT to the causality problem, we assign, to
each Boolean variable z;, a pair of event-valued variables a; and b;. In the
formula F' from QSAT,

13



e each occurrence of the Boolean variable x; is then replaced with the for-
mula a; < b;,

e propositional connectives remain intact, and

e each quantifier Vx; is replaced with Va;Vb;, and each quantifier Jx; is
replaced with Ja;3b;.

For every space-time model, we can select b; = a; and get x; df (a; < b;) to
be true. Since we assumed that the space-time is non-trivial, there also exist
values a; and b; for which a; £ b;. Thus, each of the corresponding variables x;
can take exactly two possible values: “true” and “false”.

So, the resulting formula of the causality theory is true if and only if the
original formula from QSAT was true. The proposition is proven.

4 Second Case Study: A Reasonable Model of
Primordial Space-Time

Main physical idea. In this section, we go to the other extreme: from the
Minkowski space-time which reasonably describes current space-time (at least
locally), we go to the attempts to describe space-time near the beginning of the
Universe.

In our analysis of such primordial space-times, we will follow ideas from [21].
Since we are only interested in applying these ideas to one specific issue: deter-
mining the structure of primordial space-time, it will be sufficient to describe a
simplified version of these ideas.

These ideas start with the observation that in classical (non-quantum)
physics, only some states are possible and others are impossible. In quantum
physics, in principle, all (consistent) states are possible — i.e., have non-zero
probability. In normal physical situations, most of the states have very low
probability, so unusual states practically never occur. This can be partly ex-
plained by the fact that according to statistical physics, a configuration with

energy F occurs with a probability proportional to exp | — ), where k is a

kT
constant and T is the temperature.

For normal temperatures T', this expression makes states in which energy is
much higher (than in the usual states) highly improbable. However, if we trace
our Universe back to its beginning, the temperature starts growing and it gets
to 0o as we approach the singularity point. When 7' — oo, the above expression
tends to 1. This means that as we approach singularity, all possible states of
the world become not only theoretically possible, they become equally probable.

In other words, if something does not violate the laws of physics, it must
actually occur in that primordial space-time.

14



Application of the above physical idea to the structure of primordial
space-time. Let us analyze what this idea can teach us about the structure
of primordial space-time.

Informally, this means that if we have a finite set of events aq, ..., a4, and in
principle, from the viewpoint of general causality theory, it is possible to have a
new event a which a certain relation to a; (e.g., a < a1, a £ as, etc.), then such
a “theoretically possible” event a actually exists in the primordial space-time.

Here, “theoretically possible” means that there exists another space-time
model in which there are points a; which are related to each other in the same
way as the points a;, and in which there is another point a’ with the desired
relation to a;.

Similarly, if it is possible to have two events a and b related to a; and to
each other in a certain way, then such events must happen in the primordial
space-time.

Let us describe this idea in precise terms. In this description, we will assume
that the causal relation < is a partial order.

Definition 2.

o A 1-1 onto mapping f : S — S’ between partially ordered sets is called a
isomorphism if for every a,b € S, we have a < b« f(a) < f(b).

e We say that an partially ordered set (E, <) is universal if for every finite
subset S C E and for every finite partially ordered set F', if S is iso-
morphic to a set S" C F', then this isomorphism can be extended to an
isomorphism between the whole set F' and some superset F O S of the
set S.

Before we analyze the existence and the main properties of such universal
partially ordered sets, let us make one auxiliary comment.

Auxiliary comment: we can safely assume that the space-time is
countable. From the physical viewpoint, by any given moment of time, we
can can only observe (directly or indirectly) finitely many different events. Thus,
even if the civilization continues forever and we get a better and better under-
standing of the past events, still overall we will be able to only observe countably
many of them. Thus, from the physical viewpoint, we can safely assume that
the set E of events is countable.

For example, in the regular space-time, we can consider only point with
rational coefficients. Indeed, measurements are never 100% accurate. As a
result of each measurement, we do not get the ezact value z of the corresponding
coordinate, we only get an approximate values T which holds with a certain
inaccuracy A. So, after this measurement, the only information we have about
the (unknown) actual value x is that this value belongs to the interval

- AF+ A
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Each such non-degenerate interval contains a rational point, so every measure-
ment result is consistent with the observation that all the coordinates are ratio-
nal.

Discussion. It is worth mentioning that this observation does not mean that
the actual space-time is necessarily countable: it simply means that all obser-
vations are consistent with this countability and thus, for our analysis, we can
safely assume that the space-time is countable.

A similar argument can be used to show that the same observations are
also consistent with the assumption that the space-time is not countable. So,
if necessary, we can safely make the non-countability assumption as well. This
possibility is in good accordance with working physics. For example, it is well
known that a solid body consists of finitely many molecules; for some physical
problems, it is important to take this molecular structure into account. How-
ever, for many other properties, it is much more computationally convenient to
treat this body as a continuous substance whose properties are described by the
corresponding partial differential equations.

Description of the resulting primordial space-time model. It is known
(see, e.g., [11, 12, 14]) that there exists a countable universal partially ordered
set. It is also known that all such sets are isomorphic, and that these sets have
a large symmetry groups: every isomorphism f : S — S’ between two subsets
of E can be extended to an isomorphism of the entire space F.

This means, in particular, that for every two events a,a’ € F, there exists
an isomorphism which maps a into a’, i.e., that this space-time model is ho-
mogeneous. This also means that if a1 < ag and a} < ab, then there exists an
isomorphism of F which maps a; into ¢} and as into a, etc.

Comment. A similar universal construction for discrete space-time models has
been described by M. Droste [10].

Computational complexity of the deciding problem for the primordial
space-time. In the previous section, we have proven that for every non-trivial
space-time model, the corresponding deciding problem is PSPACE-hard, and we
have mentioned that, in effect, this means that we cannot solve this problem
faster than in exponential time.

We have also shown that for a seemingly simple Minkowski space-time, the
deciding problem is much more difficult: it requires doubly exponential time.
Let us now that for the (seemingly less trivial) primordial space-time, the decid-
ing problem can be actually solved in exponential time — i.e., as fast as possible.

A possible explanation lies in the high symmetry of the primordial space-
time: usually, symmetry helps in computations, and here we have as much
symmetry as potentially possible.
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Proposition 3. There exists a polynomial P(n) and an O (P(n) : 2"2) time

algorithm which, given a first order causality formula Fy, decides whether this
formula holds in the universal (primordial) space-time model.

Proof.

1°. By definition, every formula from the first order causality theory is obtained
from the basic formulas of the type a < b by using propositional connectives
and quantifiers. For each given formula Fj, we can thus trace its construction
to the basic formulas and thus, get a sequence of (sub)formulas such that

e the first subformulas are elementary formulas of the type a < b;

e cach of the following subformulas is obtained from the previous one(s) by
using a propositional connective or a quantifier; and

e at the end, we get the desired formula.

At the end, we get a closed formula (without free variables), i.e., a formula which
can be true or false. On the intermediate steps of this construction, however,
we can have formulas like a < b which contain free variables. Such formulas are
true or false depending on the values of these variables.

2°. In our algorithm, to determine whether the final formula holds or not in
the universal partially ordered set E, we will follow the corresponding sequence
of subformulas. We will show that for each of these subformulas F(aq,...,ax),
its truth in E depends only on the <-relation between the values a;. Thus, all
the information about the truth of each such subformula for different elements
ai,...,a, € E, can be completely determined by listing all the (partial) orders
on the k-element set {a1,...,ax} for which this formula is true in E.

This listing can be equivalently described by a propositional formula of the
type

((a1 Sag)&(ag ﬁal)& )\/()\/

in which each conjunction (a; < az) & (a2 € a1) & ... corresponds to one such
partial order.

In our algorithm, we follow the construction of the formula Fj step by step,
and along the way, construct the corresponding lists for all the subformulas F'.

e If the corresponding subformula Flis closed, then we will simply generate
the information on whether it is true or not in the set F.

e If the subformula F(as,...,ax) has free variables ay, ..., ax, then we will
construct a list of all partial orders on the k-element set {ay,...,a} for
which this subformula is true in E.

At the end of this construction, when we get to the original closed formula, we
will have its truth value.
Let us show how this works.
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3°. For the elementary formula a; < ag, we simply construct the set consisting
of two partial orders:

e an order in which a; < as and as £ a1; and

e an order in which a1 < as and as < ay.

4°. Let us first consider the case when the next formula F(aq,...,ax) is the

negation of the previous one: F(ay,...,ax) dof -G(ay,...,ax). In this case, for

the formula G(as, ..., a) with k free variables for which we already have a list
of all partial orders on the set {as,...,ar} for which this formula G is true in
b

We need to construct a similar list for the negation —-G(ay,...,a). For
that, we simply generate all the possible partial orders of the set {a1,...,a;}
and then dismiss those from the given list (i.e., those for which G is true).

5°. Before we explain how to proceed with other propositional formulas and
quantifiers, let us describe the following auxiliary operation.

In this auxiliary operation, we add a “dummy” variable a;y; to the formula
F(aq,...,ar). In other words, we simply add this new variable to the list of
variables, but the truth value of the formula F(ai,...,ax) is not affected by
this new variable.

From the viewpoint of logic, adding a dummy variable is a trivial construc-
tion, because it does not change any truth values. However, from the viewpoint
of our proof, it is non-trivial:

e for the original formula, we have a list of all the partial orders on the
k-element set {aq,...,ax} which satisfy the property F(a1,...,a);

e for the new formula with a dummy variable added, we need the list of all
partial orders on the (k + 1)-element set {a1,...,ax, ars+1} which satisfy
the property F(a,...,ag).

This new list can be constructed as follows:

e we consider all possible partial orders on the (k + 1)-element set
{a1,. .., ak, ars1};

e for each of these orders, we delete agy1; if the resulting order on the k-
element set is in the originally given list, we add the corresponding order
on the (k + 1)-element set to the new list.

In this manner, we can add any number of such dummy variables.

6°. Let us now describe how we can handle the case of a propositional connective
F=G&Hor F=GVH.

We assume that we already have lists corresponding to the subformulas G
and H, and we need to construct a new list corresponding to the formula F'.
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First, if G has free variables which are not in H, then we add these variables
to H as dummy variables. Similarly, if H has free variables which are not in G,
then we add these variables to G' as dummy variables.

As a result, we can assume that the formulas G and H have the exact same
set of variables. Then, we proceed as follows:

e The formula G & H is true for a partial order if and only if both formulas G
and H are true. Thus, the list corresponding to G & H is the intersection
of the lists corresponding to G and H.

e Similarly, the formula GV H is true for a partial order if and only if one
of the formulas G and H are true. Thus, the list corresponding to G V H
is the union of the lists corresponding to G and H.

7°.  To complete the description of our construction, we need to cover
the quantifiers case, when the subformula F(aq,...,ar) has the form
Jag+1 G(a, ..., ak, ap+1) or Yagr1 G(ag, ..., ak, Ggt1)-

Due to de Morgan’s duality, the universal quantifier can be described in
terms of the existential one:

Vagi1 G(a, ..., ag, axg1) < ~Jaggr G(ay, . .., ag, apy1)-

Since we already know how to handle the negation, it is sufficient to describe
the construction for the existential quantifier.

We assume that we already have a list of all the partial orders on the (k+1)-
element set {a1,...,a, ar+1} for which the property G(as,...,ak, agt1) is true
in F.

As we have mentioned earlier, the existence of such a list means, in effect,
that the formula G(aq,...,ak,ar+1) is equivalent to a propositional formula

G(as,...,ar,ar+1) of the type
(a1 <a2)&(as La)& ... )V (...)V...

which describes all the corresponding partial orders.

According to the above definition of the universal partially ordered set, if
there is an element ayy1 with the desired relation G(ay,...,ak, ak11) in some
partial ordered set, then such an element can be found in this universal set E
as well. _

Thus, the formula Jagyi G(ai,...,ak,ax+1) holds for the elements
(a1,...,ax) € F if and only if there exists a partial order on a (k+1)-element set
{ai,...,a,ar+1} which extends the given partial order on the set {ay,...,ar}
and for which the formula G(as, ... ,ax) holds.

So, to construct the desired list for the formula Jay+1 G(a1, ..., ak, ar41), it
is sufficient to consider all partial orders of the (k+1)-order set {a1, ..., ax, ag+1}
from the G-list, and delete the element a4 from each of these orders.

8°. We have shown that the above construction indeed leads to the desired lists
— hence, at the end, this construction leads to the truth value of the original
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formula Fj. To complete the proof, we must show that this algorithm indeed
finishes its computations in time O (P(n) : 2”2) for some polynomial P(n).

Indeed, for each subformula F', the most time-consuming part is the enu-
meration of all the partial orders on a k-element set {ay,...,ar}. To describe
each such partial order, we must know, for each pair (i,7) with ¢ = 1,2,...,k
and j = 1,2,...,k, where a; < a; or not. There are k? such pairs, so we need k?
bits to describe an arbitrary order. Enumerating all such orders thus requires
as many steps as there are sequences with k2 bits, i.e., pLE steps.

For each such sequence of bits, we also need to check whether the resulting
relation is a partial order; this requires polynomial number of steps, so overall,
we need < p(k) - 2 steps for some polynomial p(k).

For our algorithm, the input is the formula F{, for which we want to know
whether this formula holds or not. So, the length n of the input is the length
of the given formula Fj. On each intermediate step, the number of variables k
is bounded by the length n of the formula: k£ < n. Thus, the computational
complexity of each subformula is bounded by p(n) - 27"

The number of subformulas is also bounded by the length n of the input, so

the overall computation time is bounded by n-p(n)-2"", where P(n) e -p(n)
is a polynomial. The proposition is proven.

5 Discussion: Is There Anything in Between?

Formulation of the problem. In the previous sections, we have analyzed
two space-time models:

e the Minkowski space-time which (reasonably accurately) describes the cur-
rent space-time, and

e the primordial space-time which seems to provide a reasonable description
of the causality relation at the very beginning of the Universe.

A natural question is: is there anything radically different in between?
In this short section, we will provide an argument that probably we should
not expect anything drastically different.

Symmetry violation as a physically natural way from the primordial
space-time to current (locally Minkowski-like) one. From the physical
viewpoint, one of the important features of different physical processes is their
symmetries.

We have already mentioned that the universal partially ordered set has a lot
of symmetries. These symmetries can be described in the following way.

Definition 3. A mapping f: M — M’ between ordered sets is called a homo-
morphism if for every a,b € M for which a < b, we have f(a) < f(b).
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Definition 4. [15] Let n > 0 be an integer. We say that an ordered set (M, <)
is n— structurally homogeneous if for every isomorphism f : S — S’ between two
subsets S, S’ C M with n or fewer elements, and for every m ¢ S, there exists
an element m' ¢ S’ such that a mapping f, extended to S U {m} by setting
f'(m) =m', is a homomorphism f':SU{m} — S U{m'}.

The universal partially order set is n-structurally homogeneous for every n.
Since our real space-time is different, this means that these symmetries become
violated, i.e., that, instead of n-homogeneity for all n, we only have structural
homogeneity for some n.

In [15], we have shown that, in effect, the standard axioms for causality as
presented in [7, 16, 23], crudely speaking, correspond to 3-structural homogene-
ity.

Is there anything in between? To answer this questions, let us first briefly
summarized what we have just discussed.

e The primordial space-time is n-structurally homogeneous for all n.

e After a while, these symmetries are violated, so we only have n-structural
homogeneity for some n.

e The current space-time corresponds to n = 3.

According to this logic, we can, in principle, have intermediate stages corre-
sponding to n > 3, e.g., to n = 4, n = 5, etc. Let us show that, in some
reasonable sense, homogeneity for n = 4 implies homogeneity for all larger n.
Thus, there is indeed nothing drastically different in between.

To explain this result in precise terms, we first need to clarify our brief
description of the main result from [15].

First clarification: we restrict ourselves to kinematic causality. The
first clarification is related to the fact that in the definition of a universal partial
ordered set, we only considered countably many events. The justification for
the possibility to restrict ourselves to countably many events came from the
fact that measurements are never 100% accurate. So, a countable dense set of
events is sufficient to describe all possible measurement results.

Therefore, to make a reasonable comparison between our space-time and
this primordial space-time, we must restrict ourselves to a countable dense set
of events for our space-time as well. In general, if we pick kind of “random’;
dense set, then for each even a, the “probability” to pick another events exactly
on the boundary of the future cone of a is 0. So, in the general case, for this
dense set, the boundary of each future cone is empty, and the causality relation
coincides with the interior of the future cone.

From the physical viewpoint, this interior corresponds to kinematic causality,
i.e., causality via regular particles (which can be at rest). Descriptions from
[7, 16, 23] explicitly require this type of causality.
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Second clarification: we restrict ourselves to positive properties of
causality. The properties which form n-structural homogeneity mean that if

some events ai,...,ay are related to each other in some reasonable way, then
there exists a new element a which is related to these elements a; in a known
way.

Each relation between the original events a; and a; and each relation between
a new event a and the old events a; can be either positive (i.e., of the type
a; < a;) or negative (i.e., of the type a; £ a;). In [15], it was shown that for
the properties formed from the positive relations, 3-structural homogeneity is
indeed naturally equivalent to their standard formulation in [7, 16, 23], while
for negative properties, we had to add additional postulates.

we had to explicitly postulate conclusions related to negative relations, but
we had a good correspondence for the positive ones.

Thus, it is reasonable to restrict ourselves only to positive relations, in which
a causally follows some events a; and causally precedes some other events b;.
Of course, for this to be possible, we must make sure that every “lower bound”
a; causally precedes every “upper bound” b;. The resulting properties can be
classified depending on how many lower bounds and how many upper bounds
we have. The property corresponding to £ lower bounds and u upper bounds
will be described as an (¢, u)-property.

For example:

e a (1,1)-property means that if a1 < by, then there exists an event a such
that a1 < a < by;

e a (0,2)-property means that for every b; and b, there exists an event a
such that a < b1 and a < by; and

e a (2,0)-property means that for every a; and as, there exists an event a
such that a1 <1 and as < a.

Let us describe this in precise terms.

Definition 5. Let !l and u be given natural numbers. We say that a par-
tially ordered set E has a (£,u)-property if for every two tuples ay,...,a; and
bi,...,by for which a; < b; for all i and j, there exists an element a for which
a; < a<b; foralli and j.

Definition 6. Let n be a positive integer. We say that a partially ordered set
E is positively n-homogeneous if it has the (¢,u)-property for all ¢ and u for
which £ +u < n.

Proposition 4. If a partially ordered set E is positively 4-homogeneous, then
it 1s positively n-homogeneous for all integers n.
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Proof.

1°. Since E is positively 4-homogeneous, it has, in particular, the following
three properties:

e it has the (0,2)-property, according to which for every b; and bs, there
exists an event a such that a < by and a < bs;

e it has the (1,2)-property, according to which for every aj, by, and bs for
which a1 < by and a1 < b, there exists an a for which a1 < a, a < by,
and a < by; and

e it has the (2,2)-property: for every four events a1, as, b1, and by for which
a; < b; for each ¢ and j, there exists an a for which a; < a < b; for all 7
and j.

Let us show that from these three properties, we can deduce an (¢, u)-property
for all possible natural numbers ¢ and u.

2°. Let us first prove that for every ¢ < 2, the (¢, u)-property holds for all w.
To prove this property, we must show that if we have elements a1, ..., ay,
b1,...,b, for which a; < b; for all ¢ and j, then there exists an element a for
which a; < a < b; for all i and j.
We will prove this by induction over w.

2.1°. The induction base is straightforward: For u = 2, the existence of the
desired element comes directly from the (0,2)-, (1,2)-, and (2,2)-properties.

2.2°. Let us prove the induction step. Let us assume that we have already
proven the (¢, u)-property; based on this, we will prove the (¢, u + 1)-property.

Indeed, let a1, ..., ag, b1, ..., by, byt1 be any given elements for which a; < b;
for all  and j. By the (¢, u)-property, there exists an element a’ for which a; < o’
for all 7, and o’ < by, @’ <bg, ..., ad < b,.

Now, for a,...,as, a’ and b,11, we have a; < o’ and a; < by11. So, due
to the (¢,2)-property, there exists an element a for which a; < a, a < @’ and
a < byy1. Since a < @’ and @’ < b; for all j < w, by transitivity, we conclude
that a < b; for all j < u; we also know that a < byy1. Thus, a; < a < b; for all
7 and j.

The induction step is proven, and so is the statement.
3°. Now, for every u, we can use a similar induction — this time over ¢ — to
prove that for every ¢, we have a (¢, u)-property.

3.1°. The induction base is straightforward: For ¢ < 2, the existence of the
desired element a was proven in Part 2 of this proof.

3.2°. Let us prove the induction step. Let us assume that we have already
proven the (¢, u)-property; based on this, we will prove the (¢4 1, u)-property.

Indeed, let a1, ..., a¢, aet1, b1, .. ., by, be any given elements for which a; < b;
for all ¢ and j. By the (¢,u)-property, there exists an element a’ for which
a1 <dad,...,a <da and o <b; for all j.
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Now, for @', ags1, b1,. .., by, we have a’ < b; and as11 < b;. Thus, due to the
(2, u)-property, there exists an element a for which a’ < a, a1 < a, and a < b;
for all j. Since @’ < a and a; < o’ for all i < ¢, by transitivity, we conclude that
a; < a for all 7 < £; we also know that a,11 < a. Thus, a; < a < b; for all 4 and
j.

The induction step is proven, and so is the statement. The proposition is
proven.
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