Computing at Least One of Two Roots of a
Polynomial is, in General, not Algorithmic

Vladik Kreinovich
Department of Computer Science
University of Texas, El Paso, TX 79968
vladik@utep.edu

Abstract

In our previous work, we provided a theoretical explanation for an
empirical fact that it is easier to find a unique root than the multiple
roots. In this short note, we strengthen that explanation by showing that
finding one of many roots is also difficult.

Background. The main objective of interval mathematics is to produce guar-
anteed (verified) results. Before we start designing an algorithm that would
produce such results for some class of problems, it is desirable to know whether
a general algorithm is indeed possible for this class.

Among these problems are solving systems of equations (in particular, equa-
tions), finding optima of a given function on a given box, etc.

It is known that there exists an algorithm which is applicable to every system
filzr,...;xn) =0, ..., fm(21,...,2,) = 0 with computable functions f; which
has exactly one solution on a given box x; X ... X X,, and which computes this
solution — i.e., produces, for every ¢ > 0, an e-approximation to this solution
[5, 6, 7].

It is also known that no algorithm is possible which is applicable to every
computable system which has exactly two solutions and which would return
both solutions [7]. The proof shows that such an algorithm is not possible even
for computable polynomial equations.

Mathematical comment. This algorithmic impossibility is due to the fact that
we allow computable polynomials; for polynomials with rational (or even al-
gebraic) coefficients, solution problems are algorithmically decidable; see, e.g.,
[1, 7,9, 10].

Practical comment. This result is in good accordance with the empirical fact
that in general, it is easier to find a point (z1,...,,), in which a given system
of equations has a unique solution than when this system has several solutions;
see, e.g., [4].

Formulation of the problem. A natural question is: since in the general
two-roots case, we cannot return both roots, maybe we can return at least one
of them?

Comment. This is actually possible in the example from [7].

What was known. It is known that no such algorithm is possible for general
computable functions [5, 6]. This construction requires a computable function
which is more complex than a polynomial.

What we plan to do. In this paper, we show that already for computable
polynomial equations, it is impossible to compute even one of the roots.

In this proof, we will use the polynomials with the smallest possible number
of variables and of the smallest possible degree. We also prove a similar result
for optimization problems.

Definitions. In order to precisely formulate this result, we need to recall
the definition of a computable number. Crudely speaking, a real number is
computable if it can be computed with an arbitrary accuracy.

Definition 1. (see, e.g., [3, 7]) A real number x is called computable if there
exists an algorithm that, given an integer k, returns a rational number r for
which |z —ry| <27F.

By a computable polynomial, we mean a polynomial with computable coeffi-
cients.

According to our promise, we will prove this result for the case of the smallest
possible number of variables: one.

Proposition 1. No algorithm is possible that is applicable to any computable
polynomial function f(x) with exactly two roots, and returns one of these roots.

Proof. Our proof will use the known fact that no algorithm is possible for
detecting whether a given constructive real number « is non-negative or non-
positive [3, 8].

For every computable real number «, we can form a polynomial f,(z) =
[(x —1)2 4+ a] - [(z + 1)? — a]. This polynomial is equal to 0 if one of the two
factors is equal to 0.

e When « = 0, this polynomial f,(x) has exactly two roots: 1 and —1.

e When « > 0, the first factor is positive, so fo(z) = 0 if and only if
(x +1)? = a, hence z + 1 = £/a. So, for such «, the polynomial f,(z)
has exactly two roots © = —1 £ v/«

e Similarly, when « < 0, the polynomial f,(z) has exactly two roots z =
1+ +/]al.

If we could compute one of roots, then by computing this root with enough
accuracy and comparing it with 1, we could tell whether this root is close to 1
or to —1. According to our description of the roots, if this root is close to 1,
then a < 05 if this root is close to —1, then o < 0. Since, as we have mentioned,
we cannot check whether o > 0 or @ < 0, we thus cannot return one of the
roots. The proposition is proven.

Comment. In the proof, we used a 4th degree polynomial. Let us give reasons
why we cannot use a polynomial of a lower degree. Since we need polynomials
with two roots, we must use polynomials of degree at least 2. If a quadratic
polynomial has exactly 2 roots, then we can find these rules by using a standard
formula, so these roots are easy to compute.

For a cubic polynomial f(x), the only way to have exactly two real roots is
to have one double root. At this root, the derivative f'(x) is equal to 0 — and
the solution to the quadratic equation f’(z) =0 can be easily found.

Proposition 2. No algorithm is possible which is applicable to any computable
polynomial f(x) that attains its minimum at exactly two points, and returns one
of these points.

Proof. It is sufficient to consider f2(x), where f,(x) is the polynomial from
the previous proof; this new polynomial is always non-negative, and it attains
its minimum 0 if and only f,(z) = 0.

Acknowledgments. This work was supported in part by the Max Planck
Institut fiir Mathematik, by the NSF grants EAR-0225670 and ETA-0080940,
by Texas Department of Transportation grant No. 0-5453, and by the Japan
Advanced Institute of Science and Technology (JAIST) International Joint Re-
search Grant 2006-08.

The author is thankful to Michael Beeson for the formulation of the prob-
lem and stimulating advice, and to the participants of the Conference on the
Methods of Proof Theory in Mathematics, Bonn, June 4-10, 2007, for valuable
discussions.

References

[1] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in real algebraic geometry,
Springer-Verlag, Berlin, 2006.

[2] M. Beeson, “Some relations between classical and constructive mathemat-
ics”, Journal of Symbolic Logic, 1978, Vol. 43, pp. 228-246.

3]

[4]

[5]

[6]

[7]

M. Beeson, Foundations of Constructive Mathematics: Metamathematical
Studies, Springer, Berlin/Heidelberg/New York, 1985.

R. B. Kearfott, Rigorous global search: continuous problems, Kluwer, Dor-
drecht, 1996.

V. Kreinovich, “Uniqueness implies algorithmic computability”, Proceed-
ings of the 4th Student Mathematical Conference, Leningrad University,
Leningrad, 1975, pp. 19-21 (in Russian).

V. Kreinovich, Categories of space-time models, Ph.D. dissertation, Novosi-
birsk, Soviet Academy of Sciences, Siberian Branch, Institute of Mathemat-
ics, 1979, (in Russian).

V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complez-
ity and feasibility of data processing and interval computations, Kluwer,
Dordrecht, 1998.

B. A. Kushner, Lectures on constructive mathematical analysis, Amer.
Math. Soc., Providence, RI, 1985.

B. Mishra, “Computational real algebraic geometry”, in: Handbook on Dis-
creet and Computational Geometry, CRC Press, 1997.

A. Tarski, A decision method for elementary algebra and geometry, 2nd ed.,
Berkeley and Los Angeles, 1951.

