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Abstract

In many real-life situations, we do not know the probability distri-
bution of measurement errors (∆x1, . . . , ∆xn), we only know the upper
bounds ∆i on these errors. In such situations, once we know the measure-
ment results x̃1, . . . , x̃n, we can only conclude that the actual (unknown)
values of the quantity xi belongs to the interval xi = [x̃i −∆i, x̃i + ∆i].
Based on this interval uncertainty, we want to find the range of possible
values of the desired quantity y = f(x1, . . . , xn). In general, computing
this range is an NP-hard problem, but in the linear approximation when

f = ỹ +
n∑

i=1

ci ∆xi, we have a linear time algorithm for computing the

range.
In other situations, we know the ellipsoid that contains the actual

values (∆x1, . . . , ∆xn); in the reasonable case of “independent” variables,

we have an ellipsoid E of the type
n∑

i=1

∆x2
i

σ2
i

≤ r2. In this case, we also have

a linear time algorithm for computing the range of a linear function f .
In some cases, however, we have a combination of interval and ellipsoid

uncertainty. In this case, the actual values (∆x1, . . . , ∆xn) belong to the
intersection of the box x1× . . .×xn and the ellipsoid. In general, estimat-
ing the range over the intersection enables us to get a narrower range for
f . In this paper, we provide two algorithms for estimating the range of a
linear function over an intersection in linear time: a simpler O(n log(n))
algorithm and a (somewhat more complex) linear time algorithm. Both
algorithms can be extended to the lp-case, when instead of an ellipsoid we

have a set
n∑

i=1

|∆xi|p
σp

i

≤ rp.
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1 Formulation of the Problem

Interval uncertainty: brief reminder. Measurements are never 100% ac-
curate; hence, the measurement result x̃i is, in general, different from the ac-
tual (unknown) value xi of the corresponding quantity. Traditional engineering
approach to processing measurement uncertainty assumes that we know the
probability distribution of measurement errors ∆xi := x̃i − xi.

In many practical situations, however, we do not know these probability
distributions. In particular, in many real-life situations, we only know the upper
bound ∆i on the (absolute value of the) measurement error: |∆xi| ≤ ∆i. In such
situations, the only information that we get about the actual (unknown) value
xi after the measurement is that xi belongs to the interval xi = [x̃i−∆i, x̃i+∆i];
see, e.g., [19].

Data processing under interval uncertainty: brief reminder. In addi-
tion to the values of the measured quantities x1, . . . , xn, we often need to know
the values of other quantities which are related to xi by a known dependence
y = f(x1, . . . , xn). When we know xi with interval uncertainty, i.e., when we
know that xi ∈ xi, then the only conclusion about y is that y belongs to the
range {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn} of the function f(x1, . . . , xn) over
the box x1 × . . .× xn.

Data processing: linear approximation. In general, computing this range
is NP-hard – even for quadratic functions f ; see, e.g., [12]. However, in many
practical situations, the measurement errors are small, thus, the intervals xi

are narrow, and so, on the box x1 × . . .× xn, we can safely replace the original
function f(x1, . . .) by the first two terms in its Taylor expansion: f(x1, . . . , xn) =

ỹ +
n∑

i=1

ci ∆xi, where y0 := f(x̃1, . . . , x̃n) and ci :=
∂f

∂xi
.

For such linear functions, the range is equal to [ỹ − ∆, ỹ + ∆], where ∆ =
n∑

i=1

|ci|∆i. The maximum value ∆ of the difference f− ỹ =
n∑

i=1

ci ∆xi is attained

when ∆xi = ∆i for ci ≥ 0 and ∆xi = −∆i for ci < 0; correspondingly, the
smallest value −∆ is attained when ∆xi = −∆i for ci ≥ 0 and ∆xi = ∆i for
ci < 0.

Once we know the derivatives ci and the bounds ∆i, the value ∆ describing
the desired range can be computed in linear time O(n).

Comment. To get a guaranteed enclosure for y, we must add to this linear
range an interval [−δ, δ] which bounds the second and higher order terms in the
Taylor expansion; this is, in effect, what is known in interval computations as
centered form; see, e.g., [11, 14, 15]. Asymptotically, δ = O(∆2

i ), so we get an
asymptotically exact enclosure for the range in linear time.
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Ellipsoid uncertainty: a brief reminder. In some cases, the information
about the values ∆x1, . . . , ∆xn comes not as a bound on the values ∆xi them-
selves, but rather as a bound z ≤ z0 on some quantity z = g(∆x1, . . . , ∆xn)
which depends on ∆xi.

When the measurement errors are small, we can expand the function g into
a Taylor series and keep only the lowest terms in this expansion. In particular,
if we keep quadratic terms, we get a quadratic zone g(∆x1, . . . , ∆xn) ≤ z0. If
this zone is a bounded set, then it describes an ellipsoid. In this case, the only
information about the tuple ∆x = (∆x1, . . . , ∆xn) is that it belongs to this
ellipsoid.

Another situation when we get such an ellipsoid uncertainty is when mea-
surement errors are independent normally distributed random variables, with
0 mean and standard deviation σi. In this case, the probability density is

described by the known formula ρ(∆x) = const exp
(
−

n∑
i=1

∆x2
i

2σ2
i

)
. This proba-

bility density ρ(∆x) is everywhere positive; thus, in principle, an arbitrary tuple
∆x is possible. In practical statistics, however, tuples with very low probability
density ρ(∆x) are considered impossible.

For example, in 1-dimensional case, we have a “three sigma” rule: values for
which |∆xi| > 3σi are considered to be impossible. In multi-dimensional case,
it is natural to choose some threshold t > 0, and consider only tuples for which
ρ(∆x) ≥ t as possible ones. This formula is equivalent to ln(ρ(∆x)) ≥ ln(t).

For Gaussian distribution, this equality takes the form
n∑

i=1

∆x2
i

σ2
i

≤ r2 for some

appropriate value r – i.e., the form of an ellipsoid. The sum is χ2(n) distributed,
with expectation n and standard deviation

√
n, so here, r2 = n + O(

√
n) is a

natural choice. In this paper, we will consider ellipsoids of this type.

Comment. If the measurement errors are small but not independent, then we
also have an ellipsoid, but with a general definite quadratic form in the left-hand
side of the inequality.

Ellipsoids are also known to be the optimal approximation sets for different
problems with respect to several reasonable optimality criteria; see, e.g., [8, 13].

Ellipsoid error estimates are actively used in different applications; see, e.g.,
[1, 3, 4, 7, 9, 16, 20, 21].

Data processing under ellipsoid uncertainty: linear approximation.

The range of a linear function
n∑

i=1

ci ∆xi over an ellipsoid can be easily computed

by using, e.g., the Lagrange multiplier method. First, one can easily check that
the maximum of a linear function is attained at the border of the ellipsoid,

i.e., when
n∑

i=1

∆x2
i

σ2
i

= r2. Maximizing the linear function
n∑

i=1

ci ∆xi under the
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above constraint is equivalent to solving the unconstrained optimization problem
n∑

i=1

ci ∆xi +λ
n∑

i=1

∆x2
i

σ2
i

, where λ is the Lagrange multiplier. Differentiating with

respect to ∆xi and equating derivatives to 0, we conclude that the maximum
value ∆ of the linear function is attained when ∆xi = α ciσ

2
i for some α. Here,

the parameter α is determined by the condition that
n∑

i=1

∆x2
i

σ2
i

= r2 – i.e., that

α2
n∑

i=1

c2
i σ2

i = r2 and α = r/
√∑

c2
i σ

2
i . The smallest possible value −∆ of this

function is attained when ∆xi = −α ciσ
2
i .

The corresponding value ∆ is equal to ∆ = r
√∑

c2
i σ

2
i . This value can also

be computed in linear time.

Need for combining interval and ellipsoid uncertainty. In some prac-
tical cases, we have a combination of interval and ellipsoid uncertainty. For
example, in the statistical case, we may have an ellipsoid bound and also the 3
sigma bound |∆xi| ≤ 3σi for each measurement error.

In this case, the actual values (∆x1, . . . , ∆xn) belong to the intersection of
the box x1 × . . .× xn and the ellipsoid.

In general, the smaller the set over which we estimate the range of a given
function, the narrower the resulting range. It is therefore desirable to be able

to estimate the range of a linear function
n∑

i=1

ci ∆xi over such an intersection.

What we do in this paper: main result. In this paper, we provide two
algorithms for estimating the range of a linear function over an intersection in
linear time: a simpler O(n log(n)) algorithm and a (somewhat more complex)
linear time algorithm.

From ellipsoids to generalized ellipsoids. We have mentioned that ellip-
soids correspond to normal distributions. In many practical cases, the distribu-
tion of the measurement errors is different from normal; see, e.g., [17, 18, 19].
In many such cases, we have a distribution of the type

ρ(∆xi) = const exp

(
−

n∑

i=1

|∆xi|p
kσp

i

)

for some value p 6= 2 [17]. For this distribution, the condition

ρ(∆x) = ρ1(∆x1) . . . ρn(∆xn) ≥ t

takes the form
n∑

i=1

|∆xi|p
σp

i

≤ rp for some value r.
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The corresponding lp-methods have been successfully used in data process-
ing; see, e.g., [6, 22].

It is therefore reasonable to consider such generalized ellipsoids as well. For
a generalized ellipsoid, the Lagrange approach to maximizing a linear function
n∑

i=1

ci ∆xi leads to
n∑

i=1

ci ∆xi + λ

n∑

i=1

|∆xi|p
σp

i

→ max,

ci + λp · sign(∆xi)
|∆xi|p−1

σp
i

= 0,

and hence, for p > 1, to

∆xi = α · sign(ci)|ci|1/(p−1)σ
p/(p−1)
i

for some constant α. Here, the parameter α is determined by the condition that
n∑

i=1

|∆xi|p
σp

i

= rp – i.e., that αp
n∑

i=1

|ci|p/(p−1)σ
p/(p−1)
i = rp and

α = r/ p

√∑
|ci|p/(p−1)σ

p/(p−1)
i .

The smallest possible value −∆ of this function is attained when

∆xi = −α · sign(ci)|ci|1/(p−1)σ
p/(p−1)
i .

The corresponding value ∆ is equal to

∆ = r

(
n∑

i=1

|ci|p/(p−1)σ
p/(p−1)
i

)(p−1)/p

.

This value can also be computed in linear time.

Need for combining interval and generalized ellipsoid uncertainty.
Similarly to the case p = 2, it is desirable to estimate the range of a linear

function
n∑

i=1

ci ∆xi over an intersection of a box and a generalized ellipsoid. In

this paper, we will consider this problem for p > 1.

2 Analysis of the Problem: General Form of the
Optimal Tuple

In the general case, we want to find the maximum and the minimum of a linear

function
n∑

i=1

ci ∆xi over an intersection of generalized ellipsoid and a box. In
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order to describe an algorithm for computing the maximum and minimum, let us
first describe the general properties of the tuples ∆x for which these maximum
and minimum are attained.

Definition 1 By a generalized ellipsoid E, we mean a set of all the tuples

∆x = (∆x1, . . . , ∆xn) which satisfy the inequality
n∑

i=1

|∆xi|p
σp

i

≤ rp, where p, r,

and σi are positive real numbers.

We want to find the maximum and the minimum of a linear function on the
intersection I = E ∩B of a generalized ellipsoid and a box

B = [−∆1, ∆1]× . . .× [−∆n, ∆n].

Without losing generality, we can assume that all the coefficients ci of a
linear function are non-negative. Indeed, if ci < 0 for some i, then we can
simply replace the original variable ∆xi with a new variable ∆x′i = −∆xi.
After this replacement, the expressions for the ellipsoid E and for the box B
remain the same, but the corresponding coefficient ci becomes positive.

Under this assumption, one can easily see that the maximum of a linear
function

∑
ci ∆xi with ci ≥ 0 is attained when ∆xi ≥ 0 for all i. We then get

the following result.

Proposition 1 The maximum of a linear function
n∑

i=1

ci ∆xi with ci ≥ 0 over

an intersection of a box B = [−∆1, ∆1] × . . . × [−∆n,∆n] and a generalized

ellipsoid
n∑

i=1

|∆xi|p
σp

i

≤ rp is attained, for some value α, at a tuple

∆xi = min(∆i, α c
1/(p−1)
i σ

p/(p−1)
i ).

Observation. This expression has an interesting relation to the corresponding
expressions for the box and for the generalized ellipsoid. Indeed, let us recall
that for the box, the maximum is attained for ∆xi = ∆i; for the generalized
ellipsoid, the maximum is attained when ∆xi = α c

1/(p−1)
i σ

p/(p−1)
i . According

to Proposition 1, for the intersection of the box and the generalized ellipsoid,
the optimal tuple can be, crudely speaking, obtained by taking a component-
wise minimum of the tuple maximizing the box and the tuple maximizing the
generalized ellipsoid.

Of course, this is not exactly the component-wise minimum because the value
α corresponding to maximizing the linear form over the intersection E ∩B may
be different from the value α corresponding to maximizing over the generalized
ellipsoid E.
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Comment. For general (not necessarily non-negative) coefficients ci, we get

∆xi = sign(ci) ·min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ).

Proof. Let ∆xi be an optimal (maximizing) tuple.
If there are indices i and j for which ∆xi < ∆i and ∆xj < ∆j , then, for

sufficiently small real numbers εi and εj , we can replace ∆xi with ∆xi + εi,
∆xj with ∆xj + εj , and still stay within the intervals [0,∆i] and [0, ∆j ] – i.e.,
within the box B. Let us select the changes εi and εj in such a way that the

sum s :=
|∆xi|p

σp
i

+
|∆xj |p

σp
j

remain unchanged – then we will stay within the

generalized ellipsoid as well.
For small εi and εj , we have

(∆xi + εi)p

σp
i

+
(∆xj + εj)p

σp
i

=

(∆xi)p

σp
i

+
(∆xj)p

σp
i

+
p εi ∆xp−1

i

σp
i

+
p εj ∆xp−1

j

σp
j

+ o(εi).

Thus, to make sure that s does not change, we must select εj for which

εi ∆xp−1
i

σp
i

+
εj ∆xp−1

j

σp
j

= o(εi),

i.e.,

εj = −εi
∆xp−1

i

∆xp−1
j

σp
j

σp
i

+ o(εi).

The resulting change in the maximized linear function is equal to ciεi + cjεj .
Substituting the expression for εj in terms of εi, we conclude that this change
is equal to

εi

(
ci − cj

∆xp−1
i

∆xp−1
j

σp
j

σp
i

)
+ o(εi).

If the coefficient at εi was positive, then we could take a small positive εi and
further increase the value of the linear function – which contradicts our selection
of the tuple ∆xi for which the maximum is attained. Similar, if the coefficient
at εi was negative, then we could take a small negative εi and further increase
the value of the linear function. Thus, this coefficient cannot be positive and
cannot be negative – hence it must be equal to 0. So,

ci − cj
∆xp−1

i

∆xp−1
j

σp
j

σp
i

= 0,
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or, equivalently,
∆xp−1

i

ciσ
p
i

=
∆xp−1

j

cjσ
p
j

.

This equality holds for every two indices for which ∆xi < ∆i and ∆xj < ∆j ;
thus, for all such indices, the above ratio has the same value. Let us denote this

common ratio by r0; then, we conclude that
∆xp−1

i

ciσ
p
i

= r0 and hence, that

∆xi = α c
1/(p−1)
i σ

p/(p−1)
i ,

where we denoted α := r
1/(p−1)
0 .

If ∆xi < ∆i and ∆xj = ∆j , then we can similarly change ∆xi and ∆xj ,
but only the changes for which εj < 0 will keep us inside the box. Since the
sign of εj is opposite to the sign of εi, we thus conclude that we can only take
εi > 0. Thus, the coefficient at εi in the expression for the change in the (linear)
objective function cannot be positive – because then, we would be able to further
increase this objective function. So, this coefficient must be non-positive, i.e.,

ci − cj
∆xp−1

i

∆xp−1
j

σp
j

σp
i

≤ 0,

or, equivalently,
∆xp−1

i

ciσ
p
i

≤ ∆xp−1
j

cjσ
p
j

.

Since ∆xi < ∆i, for i, we have
∆xp−1

i

ciσ
p
i

= r0. Thus, we conclude that
∆xp−1

j

cjσ
p
j

≤

r0, i.e., ∆xj = ∆j ≤ α c
1/(p−1)
j σ

p/(p−1)
j .

Hence,

• when ∆xi < ∆i, we get ∆xi = α c
1/(p−1)
i σ

p/(p−1)
i ;

• when ∆xj = ∆i, we get ∆xj = ∆j ≤ α c
1/(p−1)
j σ

p/(p−1)
j .

To complete the proof of our proposition, let us consider two cases.
If ∆i ≤ α c

1/(p−1)
i σ

p/(p−1)
i , then we cannot have ∆xi < ∆i – because then we

would have ∆xi = α c
1/(p−1)
i σ

p/(p−1)
i and thus, ∆i > ∆xi = α c

1/(p−1)
i σ

p/(p−1)
i

and ∆i > α c
1/(p−1)
i σ

p/(p−1)
i – which contradicts our assumption. Thus, the

only remaining case here is ∆xi = ∆i.
On the other hand, if ∆j > α c

1/(p−1)
j σ

p/(p−1)
j , then we cannot have ∆xj =

∆j – because otherwise, we would have ∆j ≤ α c
1/(p−1)
j σ

p/(p−1)
j , which also

contradicts our assumption. Thus, in this case, we must have ∆xj < ∆j , and
we already know that in this case, ∆xj = α c

1/(p−1)
j σ

p/(p−1)
i . So:
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• if ∆i ≤ α c
1/(p−1)
i σ

p/(p−1)
i then ∆xi = ∆i;

• if ∆j > α c
1/(p−1)
j σ

p/(p−1)
j then ∆xj = α c

1/(p−1)
j σ

p/(p−1)
i .

In both cases, we have

∆xi = min(∆i, α c
1/(p−1)
i σ

p/(p−1)
i ).

The proposition is proven.

3 Analysis of the Problem: How to Find α

According to our result, once we know the value of the parameter α, we will be
able to find all the values ∆xi from the optimal tuple, and thus, find the largest

possible value ∆ of the desired linear function
n∑

i=1

ci ∆xi.

Writing zi :=
∆i

|ci|1/(p−1)σ
p/(p−1)
i

, the dependence of |∆xi| on α can be de-

scribed as follows:

• If α |ci|1/(p−1)σ
p/(p−1)
i < ∆i, i.e., if α < zi, then we take |∆xi| =

α |ci|1/(p−1)σ
p/(p−1)
i .

• On the other hand, if α |ci|1/(p−1)σ
p/(p−1)
i ≥ ∆i, i.e., if α ≥ zi, then we

take |∆xi| = ∆i.

So, if we sort the indices by the value zi, into a sequence z1 ≤ z2 . . . ≤ zn, then
the maximizing tuple have the form

∆x = (sign(c1) ·∆1, . . . , sign(ct) ·∆t,

α sign(ct+1) · |ct+1|1/(p−1)σ
p/(p−1)
t+1 , . . . , α sign(cn) · |cn|1/(p−1)σp/(p−1)

n )

for some threshold value t for which zt ≤ α < zt+1.
How do we find this threshold value t? In principle, it is possible that

the optimal solution is attained when ∆xi = ±∆i for all i. In this case, the
generalized ellipsoid contains the whole box. In all other cases, the value α must
be determined by the condition that the optimal tuple is on the surface of the
generalized ellipsoid, i.e., that

t∑

i=1

∆p
i

σp
i

+ αp
n∑

j=t+1

|ci|p/(p−1)σ
p/(p−1)
j = rp,

or, equivalently,

n∑

i=1

(min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ))p

σp
i

= rp.
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The left-hand side of this equality is an increasing function of α. Thus, to find
the proper value of k, it is sufficient to check all the values α = z1, . . . , zn.

If for some k, we get

k∑

i=1

∆p
i

σp
i

+ zp
k

n∑

j=k+1

|cj |p/(p−1)σ
p/(p−1)
j > rp,

this means that we need to decrease α, i.e., that we should have fewer values
∆xi = ±∆i – in other words, this means that t < k.

On the other hand, if for some k, we get

k∑

i=1

∆p
i

σp
i

+ zp
k

n∑

j=k+1

|cj |p/(p−1)σ
p/(p−1)
i ≤ rp,

this means that t ≥ k.
So, we can find the desired threshold t as the largest index k for which for

α = zk, the left-hand side of the above equality is still less than or equal to rp;
due to monotonicity with respect to α, this value t can be found by bisection.

Once we find this threshold value t, we can then find α from the equation

t∑

i=1

∆p
i

σp
i

+ αp
n∑

j=t+1

|cj |p/(p−1)σ
p/(p−1)
j = rp,

i.e., αp =
rp − E−

E+
, where E− :=

t∑
i=1

∆p
i

σp
i

and E+ :=
n∑

j=t+1

|cj |p/(p−1)σ
p/(p−1)
j .

After that, we can uniquely determine the optimal tuple ∆xi and thus the

desired maximal value ∆ =
k∑

i=1

|ci| ·∆i + α
n∑

j=t+1

|cj |p/(p−1)σ
p/(p−1)
j .

So, we arrive at the following algorithms for computing ∆.

4 A Simpler O(n log(n)) Algorithm

Algorithm. First, we check whether the generalized ellipsoid contains the

box, i.e., whether
n∑

i=1

∆p
i

σp
i

≤ rp. If this is the case, then the desired maximum is

equal to
n∑

i=1

|ci|∆i. If this is not the case, then we apply our algorithm.

In this algorithm, we first sort the indices in the increasing order by zi.
After this sorting, we apply the following iterative algorithm. At each iter-

ation of this algorithm, we have two numbers:

• the number i− such that for all indices i ≤ i−, we already know that for
the optimal tuple ∆x, we have |∆xi| = ∆i;
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• the number i+ of all the indices j ≥ i+ for which we already know that
for the optimal tuple ∆x, we have |∆xj | < ∆j .

In the beginning, i− = 0 and i+ = n + 1. At each iteration, we also

update the value of two auxiliary quantities E− :=
i−∑
i=1

∆p
i

σp
i

and E+ :=
n∑

j=i+
|cj |p/(p−1)σ

p/(p−1)
j .

In principle, on each iteration, we could compute these sums “from scratch”;
however, to speed up computations, on each iteration, we update these auxiliary
values in a way that is faster than re-computing the corresponding sums.

Initially, since i−0 and i+ = n + 1, we take E− = E+ = 0.
At each iteration, we do the following:

• first, we compute the midpoint m = (i− + i+)/2;

• we compute e− :=
m∑

i=i−+1

∆p
i

σp
i

and e+ :=
i+−1∑

j=m+1

|cj |p/(p−1)σ
p/(p−1)
j ;

• if E− + e− + zp
m (E+ + e+) > rp, then we replace i+ with m + 1 and E+

with E+ + e+;

• if E−+ e−+ zp
m (E+ + e+) ≤ rp, then we replace i− with m and E− with

E− + e−.

At each iteration, the set of undecided indices is divided in half. Iterations con-
tinue until all indices are decided, after which we compute α from the condition

that E−+αpE+ = rp, i.e., as αp :=
rp − E−

E+
. Once we know α, we compute the

maximizing tuple |∆xi| = min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ) and then, the desired

maximum
n∑

i=1

|ci| |∆xi|.

Computational complexity of the above algorithm. Sorting requires
time O(n log(n)); see, e.g., [5].

After this, at each iteration, all the operations with indices from i− to i+

require time t linear in the number of such indices: t ≤ C · (i+ − i−) for some
C. We start with the set of indices of full size n; on the next iteration, we have
a set of size n/2, then n/4, etc. Thus, after sorting, the overall computation
time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e., linear in n. So, the overall
computation time is indeed O(n log(n)) + O(n) = O(n log(n)).

Comment. This algorithm works for an even more general case.

In some cases, we have distributions ρi(∆xi) = ρ0

( |∆xi|
σi

)
for a different

function ρ0(x). In this case, similar arguments lead to a generalized ellipsoid of
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the type
n∑

i=1

ψ

( |∆xi|
σi

)
≤ r0, where ψ(x) := − ln(ρ0(x)). The above algorithm

can be extended to the case of strictly convex smooth functions ψ(x) for which
both this function, its derivative, and the corresponding inverse functions can be
computed in polynomial time. This class includes the lp-functions ψ(x) = |x|p
with p > 1 as particular cases.

5 Linear-Time Algorithm

Main idea behind the linear time algorithm. Our second algorithm is
similar to the above O(n log(n)) algorithm. In that algorithm, the only non-
linear-time part was sorting. To avoid sorting, in the second algorithm, we use
the known fact that we can compute the median of a set of n elements in linear
time (see, e.g., [5]). (Our use of median is similar to the one from [2, 10].)

Our linear time algorithm is only efficient to large n. It is worth men-
tioning that while asymptotically, the linear time algorithm for computing the
median is faster than sorting, this median computing algorithm is still rather
complex – so, for small n, sorting is faster than computing the median.

This is the reason why in this paper, we present two different algorithms –
both algorithms are practically useful:

• for large n, the linear time algorithm is faster;

• however, for small n, the O(n log(n)) algorithm is faster.

Let us now describe the linear time algorithm.

Algorithm. First, we check whether the generalized ellipsoid contains the

box, i.e., whether
n∑

i=1

∆p
i

σp
i

≤ rp. If this is the case, then the desired maximum

is equal to
n∑

i=1

ci ∆i. If this is not the case, then we perform the following

iterations.
At each iteration, we have three sets:

• the set I− of all the indices i from 1 to n for which we already know that
for the optimal tuple ∆x, we have |∆xi| = ∆i;

• the set I+ of all the indices j for which we already know that for the
optimal tuple ∆x, we have |∆xj | < ∆j ;

• the set I = {1, . . . , n} − I− − I+ of the indices i for which we are still
undecided.

12



In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration, we

also update the value of two auxiliary quantities E− :=
∑

i∈I−

∆p
i

σp
i

and E+ :=
∑

j∈I+
|cj |p/(p−1)σ

p/(p−1)
j .

In principle, we could compute this value by computing this sum of squares,
but to speed up computations, on each iteration, we update this auxiliary value
in a way that is faster than re-computing the corresponding sum.

Initially, since I− = I+ = ∅, we take E− = E+0.
At each iteration, we do the following:

• first, we compute the median m of the set I (median in terms of sorting
by zi);

• then, by analyzing the elements of the undecided set I one by one, we
divide them into two subsets P− = {i : zi ≤ zm} and P+ = {j : zj > zm};

• we compute e− =
∑

i∈P−

∆p
i

σp
i

and e+ :=
∑

j∈P+
|cj |p/(p−1)σ

p/(p−1)
j ;

• if E−+ e−+ zp
m (E+ + e+) > rp, then we replace I+ with I+∪P+, I with

P−, and E+ with E+ + e+;

• if E−+ e−+ zp
m (E+ + e+) ≤ rp, then we replace I− with I−∪P−, I with

P+, and E− with E− + e−.

At each iteration, the set of undecided indices is divided in half. Iterations con-
tinue until all indices are decided, after which we compute α from the condition

that E−+αpE+ = rp, i.e., as αp :=
rp − E−

E+
. Once we know α, we compute the

maximizing tuple |∆xi| = min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ) and then, the desired

maximum
n∑

i=1

|ci| |∆xi|.

Computational complexity of the above algorithm. Let us show that
this algorithm indeed requires linear time. Indeed, at each iteration, computing
median requires linear time, and all other operations with I require time t linear
in the number of elements |I| of I: t ≤ C · |I| for some C. We start with the
set I of size n; on the next iteration, we have a set of size n/2, then n/4, etc.
Thus, the overall computation time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e.,
linear in n.
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