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Abstract: Most traffic assignment tasks in practice are performed by using deterministic 
network (DN) models, which assume that the link travel time is uniquely determined by a link 
performance function.  In reality, link travel time, at a given link volume, is a random variable.  
Such stochastic network (SN) models are not widely used because the traffic assignment 
algorithms are much more computationally complex and difficult to understand by practitioners.  
In this paper, we derive an equivalent link disutility (ELD) function, for the case of risk averse 
drivers in a SN, without assuming any distribution of link travel time.  We further derive a 
simpler form of the ELD function in a SN which can be easily implemented in deterministic user 
equilibrium traffic assignment algorithms like a DN.  By comparing our two derived ELD 
functions, the bound of the coefficient of the simpler ELD functions is obtained, so that drivers 
will make the same risk averse route choice decisions.  A method to estimate the coefficient of 
the simpler ELD function has been proposed and demonstrated with questionnaire survey data 
gathered in El Paso, Texas.  The results of user equilibrium traffic assignments in a test network 
using the Bureau of Public Roads (BPR) function and the simpler ELD function are then 
compared.  Our simpler ELD function provides a mean for practitioners to use deterministic user 
equilibrium traffic assignment algorithms to solve the traffic assignment problem in a SN for risk 
averse drivers during the peak hour commute. 
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BACKGROUND AND MOTIVATION 
At present, most traffic assignment models used in practice assume that travel time in a link is a 
deterministic function of the link’s characteristics (such as free-flow travel time and link 
capacity) and link volume.  A network with such a deterministic link travel time function is 
called a Deterministic Network (DN) (1).  In reality, for the same volume in a link, we have 
variations in travel time. These variations are due to the differences in vehicle composition, lane 
distribution, driving behavior, weather, incidents, etc.  These variations are usually small when 
the volume is light but they become larger as the link becomes more congested.  One way to 
model such variation is to consider link travel time as a random variable that has a probability 
distribution, with mean and variance expressed as functions of the link characteristics and link 
volume. A network with such probabilistic link travel times is called a Stochastic Network (SN) 
(1).   

Most transportation network models assume that (1) the drivers have perfect knowledge 
of the link travel times (in a DN) or of the probabilities of different values of link travel times (in 
a SN); and (2) the drivers will select the routes that will minimizes the travel times between their 
origins and destinations.  The resulting state of the transportation network is called Deterministic 
User Equilibrium (DUE).  In reality, a driver’s knowledge is usually somewhat imperfect. The 
driver’s perception of a link travel time may be slightly different from the actual travel time. 
Some transportation network models take this perception error into account by modeling it as a 
normal distribution with zero mean.  Due to these perception errors the selected routes of the 
drivers vary stochastically.  The resulting state of the transportation network is called Stochastic 
User Equilibrium (SUE) (1). 

Based on the assumptions in the nature of link travel times and drivers’ perception on the 
link travel times, traffic assignment models may therefore be classified into four types: 
Deterministic Network-Deterministic User Equilibrium (DN-DUE), Deterministic Network-
Stochastic User Equilibrium (DN-SUE), Stochastic Network-Deterministic User Equilibrium 
(SN-DUE), Stochastic Network-Stochastic User Equilibrium (SN-SUE) (1,2). 

The DN-DUE is the simplest, the easiest to understand, and the most widely used traffic 
assignment model in practice.  This model was originally formulated by Beckman et al. (3) and 
may be solved by DUE algorithms (for examples, the Frank-Wolfe algorithm (4), Algorithm B 
(5), and others).  In DN-SUE models, the network’s link travel times are deterministic (with a 
given volume distribution), but they may be perceived differently by different drivers.  Due to 
the error in travel time perception, drivers will always select what they perceive as the shortest 
paths but these may not be the actual shortest paths.  The DN-SUE model was originally 
formulated by Daganzo and Sheffi (6).  A popular solution algorithm for the DN-SUE model is 
the Method of Successive Averages (MSA) (7).   

In a SN, driver’s response to travel time uncertainty has also been modeled.  Instead of 
selecting the route which has the minimum expected travel time, the driver is modeled to select 
the route that has the minimum expected disutility.  Such SN model was first studied by 
Mirchandani and Soroush (8).  While DN-DUE and DN-SUE models are used by many 
transportation modelers, only few papers such as (1, 2, 8, 9, 10) used SN models because these 
models are much more computationally complex than the DN models.  Under certain conditions, 
the SN-DUE model can be solved by DUE algorithms simply by replacing the link travel time 
function with a suitable equivalent link disutility (ELD) function (8, 11).   

In principle, it is possible to consider an even more realistic SN-SUE model which adds 
drivers’ perception errors into the link travel time variations.  However, according to (2), the SN-
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DUE model is suitable for modeling of peak hour traffic because regular commuters have a good 
knowledge of the mean and variance of peak hour travel times in familiar routes.   

To use the SN-DUE model to assign traffic for the peak hour commute in a network, a 
simple ELD function has been derived in this research.  This function takes into account the link 
characteristics and driver’s respond to uncertainty in link travel time, but unlike in (8, 9, 11), it 
does not require the modeler to specify the link travel time distribution or variance.  With this 
ELD function, a modeler solves the SN-DUE model as a DN-DUE model simply by replacing 
the deterministic link travel time function in a DN with the ELD function in a SN, and then 
applying the DUE algorithm. 

The outline of this paper is as follows.  After reviewing the previous related work, we 
proceed to derive the ELD function from route disutility function for drivers with risk averse 
route choice behavior, without assuming any probability distribution for the link travel time.  
Following this, the next section derives the simple ELD function without assuming the link 
travel time distribution, variance and driver’s risk taking behavior.  By comparing the two 
derived ELD functions, the constraint in the coefficient of the simple ELD function for risk 
averse drivers is obtained.  We then describe a method to estimate this coefficient and 
demonstrate it with survey data gathered in El Paso, Texas.  Using the coefficient obtained from 
the survey, the simple ELD function is implemented in a SN-DUE model for a test network, and 
the results is compared with that obtained in the DN-DUE model. 
 

REVIOUS RELATED WORK 
The Bureau of Public Road (BPR) function is the most popular function that describes the link 
travel time  in link i in a DN: it
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

β

α
i

if
ii c

v
tt 1  (1) 

 
where  is the free-flow travel time in link i,  is the volume in link i,  is the capacity of link 
i, and 

f
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α  and β  are constants.  Typical values of α  and β  are 0.15 and 4 respectively.  
To model a SN, the authors of (9, 11) modeled  as Gamma distribution with a lower 

bound equal to .  In a SN, it is reasonable to assume that (1) describes the average link travel 
time 
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In a SN, since link travel times are stochastic, the route travel times are stochastic.   The 

driver’s route selection depends on how the he/she react to the route travel time uncertainty.  
This is particularly important if he/she has constraint in the time of arrival (e.g., scheduled 
events, work starting times) with heavy penalties for late arrivals.  There are three types of such 
behavior: risk averse, risk prone and risk neutral (1, 2, 8, 9, 11).  The term risk here refers to the 
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risk of a late arrival at the destination.  A risk averse driver prefers a route that has a longer 
average travel time but smaller variance to a route that has a faster average travel time but higher 
variance.  That is, he/she would rather use the route with longer travel time (and depart early) to 
lower the risk of arriving late.  On the contrary, a risk prone driver would select the route with a 
faster travel time but higher variation.  A driver with risk neutral behavior does not consider 
travel time variation in his/her route choice decision.  In the morning commute, it is reasonable 
to assume that majority of the drivers are risk averse. 

According to decision theory (see for example (12)), in the stochastic case, a rational 
decision maker maximizes the expected value of his/her utility function, or equivalently 
minimizes the expected value of the disutility function.  In a SN, given a choice of routes Rr∈  
connecting an origin-destination (O-D) pair, a driver will select the route r′  which has the 
smallest expected route disutility   [ ]rDUE
 
[ ] [{ rRrr DUEminDUE

∈
′ = ]}

]

 (3) 

 
For the drivers with risk neutral behavior, the route disutility  is equal to the route travel 
time .  Therefore  is equal to the average route travel time 

rDU

rt [ rDUE rt .  For a route r which is 
made up of L links .  Therefore, Lr t...tt ++= 1 Lr t...tt ++= 1 .  Thus (3) is equivalent to selecting 
a route with the smallest Lr t...tt ++= 1 .  Hence, a risk neutral driver uses the ELD function 

ii tDU =  for route choice. 
For describing risk averse and risk prone behavior, the most commonly used disutility 

functions are the exponential functions (12).  Such functions have been used by (1, 8, 9, 10, 11): 
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where ϕω  , ,b ,b 21  are positive constants.  According to (3), selecting a route with the smallest 
value of  is equivalent to selecting a route with the smallest value of , the 

sum of the ELDs along the route.   
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In particular, in the SN-DUE case, when there is no perception error, for risk averse 
drivers the ELD function takes the following form (11) 
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where  is the variance of the travel time of link i and c is a constant determined by the 
parameters of the exponential disutility function.  It is important to note that, in order to use (5), 
one needs to know the  for every link. 
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The fact that the users preferences can be expressed in the form of minimizing the 
expression   allows us to use a DUE solution algorithm to solve the SN-DUE 

model (1, 2). 

∑
∈
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DERIVATION OF EQUIVALENT LINK DISUTILITY FUNCTION FROM ROUTE 
DISUTILITY FUNCTION  

In this section, we derive an ELD function  for risk averse drivers in a SN-DUE model, 
without the need to assume a link travel time distribution (e.g., Gamma distribution in (9, 11)).  

iDU

According to the SN-DUE model, a driver selects a route that has the minimum value of 
.  Consider  for some monotonically increasing function [ rDUE ] ])[( rr DUEgA = ( )xg , 

minimizing  is equivalent to minimizing . For risk averse drivers, following (4), we 
can use  
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Since , we can expand (6) to Lr t...tt ++= 1
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In a DN, in which all travel times  and  are deterministic, the above expression reduces to  it rt
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From Equation (8), we conclude that the new route utility function  can be expressed as 
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Thus, the drivers preference in SN-DUE is equivalent to selecting a route with the smallest value 
of rdu .  Therefore, selecting a route in a SN (for risk averse drivers) is very similar to selecting a 
route in a DN, but with link disutility  instead of link travel time .   iDU it

Let us reformulate the expression for  in terms of mean and variance of .  In a SN, 
the  in link i can be expressed: 

iDU it

it
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Using the Taylor series expansion of ( ) ...zzln +=+1  we obtain 
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2

2 itii tDU σω
+=  (18) 

 
We have shown that, if the all drivers in a network have risk averse behavior, solving for 

DUE in a SN is similar to solving for DUE in a DN, except that we replace  in a DN with  
in a SN.  The first term 

it iDU

it  in  in (18) is taken from (2) which is essentially the same as the 
BPR function.  Thus, it can be said that, in a SN, the additional term in the route choice decision 
for risk averse drivers is the link travel time variance, scaled by a factor 

iDU

ω /2 (ω >0).  The 
magnitude of ω  reflects the sensitivity of the drivers in avoiding the risk of late arrival.  Risk 
averse drivers will avoid links that have large .  If 2
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σ =0, the SN-DUE model is reduced to a 

DN-DUE model.  Equations (5) and (18) have similar forms.  In (5),   is assumed to follow 
Gamma distribution but in (18) we have not assumed any distribution for . 
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ALTERNATIVE DERIVATION OF EQUIVALENT LINK DISUTILITY FUNCTION 
This section presents an alternative derivation of a simpler ELD without assuming the 
distribution of ,  and driver’s risk taking behavior. it

2
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for some function ( )d,tF f

i .   
One would expect a link which has a higher  to have a higher link disutility; so, f

it
( )d,tF f

i  must be an increasing function of . One would also expect that as the link becomes 
more congested,  and hence the link disutility increases.  In addition, field data have suggested 
that, as the link becomes more congested, the variation of link speed increases (see the speed-
volume plots in (13)).  Therefore, as the link becomes more congested, the variation of  and 
therefore the link disutility would increase; so, 

f
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The function ( )d,tF f

i  must also satisfy the following conditions:  
(i) When , =0, 0=iv d f
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( )0,tF f
i =  (21) f

it
 
(ii) If we sub-divide a link into a series of shorter links, the equivalent disutility of the original 
link must be equal to the sum of the equivalent disutilities of the shorter links.  If we sub-divide a 
link (link i) into two sub-links (i1, i2) with free-flow travel times  and  respectively, then 
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We then fix a value d and introduce an auxiliary function ( ) ( )d,aFaG = .  Equation (22) then 
takes the form  
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Furthermore, for the standard values of α =0.15, β =4, and the normal range of ii cv , the term 

( ) βα 22
ii cv  is usually negligible.  Therefore we may simplify (25) as 
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Hence, we may view  as consisting of two components: the “deterministic” component iDU it  
which has the same value given by the BPR function, and the “stochastic” component [ ]...t f

i  
which is due to the uncertainty in link travel time.  Then,  describes the sensitivity of the driver 
in respond to this uncertainty.  We called  risk averse coefficient in this paper.  Note that, 
when =1, drivers do not consider travel time uncertainty in route choice, and (27) is reduced to 
the BPR function.  

1a

1a

1a

Comparing (18) with (27), the latter is easier to implement in DUE algorithms as one 
does not need to know the  of every link.  However, the condition of 0 imposes a 

restriction on the  value.  By equating the last term of (18) and (27), and with 0 
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As all other terms in (28) are positive, it follows that 1. ≥1a

To use (27) in a DUE algorithm, one only needs to know the value of .  In principle, 
every driver should have his/her individual  value.  To describe the general behavior of the 
driving population, average value of  may be used.  The following section describes a method 
to estimate the average  value from the results of a driver survey. 
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ESTIMATION OF RISK AVERSE COEFFICIENT 

By expressing (26) in terms of , we get d
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In a hypothetical link that has a constant travel time 
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Suppose that there are only two parallel links connecting an O-D pair, with link i=1 having a 
constant travel time , while link i=2 having a travel time according to (29).  For link i=2, the 
values of  and 

ft1
ft2 2t  are prescribed as the minimum and average travel times respectively.  Given 

the values of , ft2 2t , we may ask a driver to specify the value of  such that they do not have 
any preference on one link over another.  Under this condition 

ft1
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We may then solve for . 1a
 A questionnaire survey has been conducted in the city of El Paso, Texas, to estimate the 
average  value among the driving population.  In this survey, participants were presented with 
the scenario of morning commute to work that has a fixed work-start time with a penalty for late 
arrival.  There are two questions in the survey.  Question 1 has =20 minutes and 

1a

ft2 2t =30 
minutes while Question 2 has =35 minutes and ft2 2t =50.  In each of the questions, participants 
were given a set of possible  values at 5-minute increments.  Each person was asked to select 
the closest  value in each question that satisfies (31), that is, he/she do not have preference 
between link 1 (which has a constant time ) and link 2 (which has an uncertain travel time).  
The two questions with different travel times were designed to check the consistency in the route 
choice behavior.  They also help to find an average  values for different trip lengths.  The , 

ft1
ft1

ft1

1a ft2

2t  values posed in the two questions are the typical ranges found in El Paso.  Survey responds 
were collected from 202 drivers.  There were 404  values computed from (31).  The average 
values of  is 1.4356.  This indicates that an average driver is risk averse (since >1) in the 
morning commute to work. 

1a

1a 1a

 

TEST NETWORK 
In this section, a test network, adopted from (3), is used to illustrate the application of (26), the 
simple ELD, in a SN-DUE model (using the value of =1.4356 obtained in the survey) and 
compare the results against the DN-DUE model.   

1a

The test network has been coded into TransCAD (15).  The 25 nodes, 40 two-way links, 
 and one-way link capacity  are shown in Figure 1.  The links with capacity of 300 vph have 

free-flow speeds of 20 mph while those links with capacity of 200 vph have free-flow speeds of 
55 mph.  Only nodes 7, 9, 17, 19 are O-D node.  The O-D matrix is shown in Table 1.  
TransCAD uses the Frank-Wolfe algorithm to solve the DUE problem (16).  After network 
coding, a DUE assignment was performed in TransCAD using the setting as reported in (3).  
Compared to results of Frank-Wolfe algorithm reported in (3), majority of the links have the 
same  and  values.  Of the few links that have different  and  values, the maximum 
differences are 1 vph and 0.04 minutes, respectively.  We attribute the small differences due to 
the algorithm’s implementation details. 

f
it ic

iv it iv it
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All links are two-way links. 
Free-flow link travel time is shown above each link (in green, italic, in minutes) 
Directional link capacity is shown below each link (in red, in vph) 

 
Figure 1  Free-Flow Travel Time and Link Capacity of Test Network 

 
 

TABLE 1  Origin-Destination Matrix of Text Network 

 Destination Node 
 

Trips 
(vehicles per hour) 7 9 17 19 

 7 0 500 500 500 
 9 500 0 500 500 
 17 500 500 0 500 
 

 
Origin 
Node 

19 500 500 500 0 
 
 

The DN-DUE model was first implemented for this network.  The standard values of 
α =0.15 and β =4 were used in the BPR function.  To be consistent with the practice of the 
Texas Department of Transportation, the Frank-Wolfe algorithm was run for 100 iterations.  
Figure 2 shows the directional volume-capacity ratios ( ii cv ) after 100 iterations.  Since the O-D 
matrix is symmetrical and the links have the same  and  values in both directions, the 
resulting 

f
it ic

ii cv  and  are the same in both directions of a link.  The  are displayed in Figure 3.   it it
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FIGURE 2  V-C Ratio after Traffic Assignment with BPR Function 
 

 
  Link travel time is in minutes 
 

FIGURE 3  Link Travel Time after Traffic Assignment with BPR Function 
 
 

In the SN-DUE model, we simply replaced the BPR function in the DN-DUE model by 
the simple ELD function described in (26).  Put it simply, one only needs to change the value of 
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α =0.15 in the BPR function to α1a =1.4356x0.15=0.2153.  Figures 4 and 5 show the directional  

ii cv  and average directional link travel time ( it ), respectively, after 100 iterations.   
 

 
 

FIGURE 4  V-C Ratio after Traffic Assignment with ELD Function 
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 Link travel time is in minutes 
 

FIGURE 5  Link Travel Time after Traffic Assignment with ELD Function 
 
 

Comparison of Volume-Capacity Ratio 

Figures 2 and 4 show the ii cv  of the links in the test network, after traffic assignments with the 
BPR and ELD functions, respectively.  Compare to Figure 2, Figure 4 has 17 links with 
relatively lower ii cv , 3 links with the same ii cv  ratio and 20 links with higher ii cv .   With 
the BPR function, there are 10 links with ii cv >1.5 in Figure 2.  The ii cv  of these links have 
been reduced after the trips are assigned with the ELD function.  For example, link 8-13 in 
Figure 2 has the maximum ii cv =2.34 in the network.  In Figure 4, this link still has the 
maximum ii cv  in the network but the value has become 2.19.  With the ELD function, risk 
averse drivers are more sensitive to ii cv  (the later is proportional to travel time variation) and 
therefore they will avoid links which have high volume, resulting in a more “uniform” 
distribution of traffic in the network. 
 

Comparison of Link Travel Time 

Figure 3 shows the  (for a DN-DUE model), computed from (1), while Figure 5 show the it it  
(for a SN-DUE) computed from (2).  For links that have high ii cv  in Figure 2, there are 
reductions from  in Figures 3 to it it  in Figure 5 (due to the fact the magnitude of change is 
proportional to ii cv  to the power of β =4).  Link with relatively low ii cv  in Figure 2 have no 
or marginal increase from  in Figures 3 to it it  in Figure 5.  This is the overall effect of re-routing 
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some traffic from links with high volumes (and hence high travel time variance) to links with 
low volumes (with more certain travel times). 
  One point worth noting is that, in the DN-DUE model, the used routes between an O-D 
pair have the same route travel time that is less than the travel time of any unused route.  
However, in our SN-DUE model, all the used routes between an O-D pair have the same route 
disutility that is less than the disutility of any unused route.  Therefore in the SN-DUE model, 
only the route disutility, not the route travel time, is in equilibrium.  For risk averse drivers, the 
link disutility  is always greater than the average link travel time ( iDU ) ( )it .  Therefore, route 
disutility is always greater than the route travel time.  To illustrate this, the link disutilities of the 
test network after traffic assignment with the ELD function is plotted in Figure 6.   Readers can 
compare Figure 6 with Figure 5 to see that ii tDU ≥ , i∀ .  Note that the difference between  
and 

iDU

it  is greater when the ii cv  ratio is higher. 
 

 

 
 Link disutility is in minutes 
 

FIGURE 6  Link Disutility after Traffic Assignment with ELD Function 
 
 

Comparison of O-D Travel Time 

Table 2 shows the O-D travel times along the shortest-time paths of the DN-DUE model, after 
100 iterations of traffic assignment with the BPR function.  Table 3 shows the O-D travel times 
along the shortest-disutility paths of the SN-DUE model, after 100 iterations of traffic 
assignment with the ELD function.  As mentioned, in the SN-DUE model, drivers select the 
route between an O-D pair that has the smallest disutility.  The routes with the smallest disutility 
may not be the same as the route with the shortest travel time.  To illustrate this point, consider 
the route between nodes 7 and 17 in the test network.  In Figure 6, the shortest-disutility path 
between nodes 7 and 17 is by nodes 7-6-11-16-17, with a route disutility of 20.64 minutes.  In 
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Figure 5, this route has an average travel time of 19.21 minutes.  However, if one examines 
Figure 5 carefully, the shortest-time path between nodes 7-17 is via nodes 7-12-17, with an 
average route travel time of 17.33 minutes, a saving of 1.88 minutes!  In this case, along the 
route of nodes 7-12-17, links 7-12 and 12-17 have ii cv  of 1.58 and 1.47, respectively, which 
are higher than the ii cv  of the links along route of nodes 7-6-11-16-17 (see Figure 4).  A higher 

ii cv  ratio indicates a higher link travel time variance (see (28)).  This reflects that in a SN, a 
risk averse driver would rather select a route which has a higher average route travel time but 
smaller travel time variance over a route with a smaller average travel time but higher travel time 
variance.   
 
 

TABLE 2  O-D Travel Time after Traffic Assignment with BPR Function 

 Destination Node 
 

Travel Time  
(minutes) 7 9 17 19 

 7 - 19.42 17.90 38.26 
 9 19.42 - 36.01 19.65 
 17 17.90 36.01 - 20.65 
 

 
Origin 
Node 

19 38.26 19.65 20.65 - 
 
 

TABLE 3  O-D Travel Time after Traffic Assignment with ELD Function 

 Destination Node 
 

Travel Time  
(minutes) 7 9 17 19 

 7 - 17.96 17.33 33.54 
 9 17.96 - 31.93 17.84 
 17 17.33 31.93 - 18.83 
 

 
Origin 
Node 

19 33.54 17.84 18.83 - 
 
 

The route travel times between the O-D pairs in Tables 2 and 3 are of interest in this 
comparison.  For the O-D pairs between nodes 7-9 and 9-7, the shortest-disutility paths are not 
the same as the shortest-time paths.  This has been discussed in the previous paragraph.  
Therefore, for these two O-D pairs, it is expected that the O-D travel times for the SN-DUE 
model in Table 3 are greater than those obtained with the DN-DUE model in Table 2.  For each 
of the other O-D pairs, the shortest-disutility path is the same as the shortest-time path.  
Therefore, for these O-D pairs, the O-D travel times in Tables 3 are lower than those for the 
corresponding O-D pairs in Table 2.  These lower O-D travel times is the result of drivers 
avoiding links with higher ii cv  and shift to links with lower ii cv .   
 

Comparison of Network Performance 

The network performance is evaluated by comparing the total vehicle-miles traveled (VMT) and 
total vehicle-hours traveled (VHT) after 100 iterations of the Frank-Wolfe algorithm.  For the 
DN-DUE model, the VMT is 32119 veh-miles and the VHT is 2545.08 veh-hrs.  For the SN-
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DUE model, the corresponding statistics are 32876 veh-miles and 2425.68 veh-hrs respectively.   
This reflects the fact that risk averse drivers prefer a longer route with a lower travel time 
variance than a shorter route with a higher travel time variance.  The overall effect of 
redistribution of flow has resulted in a smaller VHT.  The SN-DUE model has a total disutility of 
2849.03 veh-hrs.   
 

SUMMARY 
This paper has derived a simple ELD function, which is of similar form as the BPR function, that 
represents the route choice behavior of risk averse drivers.  The ELD function has a risk averse 
coefficient, but it does not depends on the link travel time distribution or variance.  This ELD 
function permits transportation modelers to solve traffic assignment problem in a SN with the 
familiar DUE algorithms, simply by replacing the BPR function with the ELD function. 
 A method of calibrating the risk averse coefficient has been proposed and demonstrated 
with survey data gathered in El Paso, Texas. 
 The effect of using the ELD function in DUE assignment has been evaluated using a test 
network.  Compare to the results of using the BPR function, the ELD function assigns more trips 
to low volume route thus results in a more uniform distribution of flow and lower congestion 
among the links in a network.  This leads to lower route travel times for some O-D pairs and an 
overall reduction in VHT, but at the expense of a higher VMT.   
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