
Computational Aspects of Aggregation in
Biological Systems

Vladik Kreinovich and Max Shpak

University of Texas at El Paso, El Paso, TX 79968, USA vladik@utep.edu,

mshpak@utep.edu

Summary. Many biologically relevant dynamical systems are aggregable, in the
sense that one can divide their variables x1, . . . , xn into several (k) non-intersecting
groups and find functions y1, . . . , yk (k < n) from these groups (macrovariables)
whose dynamics only depend on the initial state of the macrovariable. For example,
the state of a population genetic system can be described by listing the frequencies
xi of different genotypes, so that the corresponding dynamical system describe the
effects of mutation, recombination, and natural selection. The goal of aggregation
approaches in population genetics is to find macrovariables ya, . . . , yk to which aggre-
gated mutation, recombination, and selection functions could be applied. Population
genetic models are formally equivalent to genetic algorithms, and are therefore of
wide interest in the computational sciences.

Another example of a multi-variable biological system of interest arises in ecol-
ogy. Ecosystems contain many interacting species, and because of the complexity of
multi-variable nonlinear systems, it would be of value to derive a formal description
that reduces the number of variables to some macrostates that are weighted sums
of the densities of individual species.

In this chapter, we explore different computational aspects of aggregability for
linear and non-linear systems. Specifically, we investigate the problem of conditional
aggregability (i.e., aggregability restricted to modular states) and aggregation of
variables in biologically relevant quadratic dynamical systems.

1 Introduction

1.1 What is Aggregability

Dynamical systems: informal introduction. Many systems in nature can
be described as dynamical systems, in which the state of a system at each
moment of time is characterized by the values of (finitely many) variables
x1, . . . , xn, and the change of the state over time is described by an equation
x′i = fi(x1, . . . , xn), where

• for continuous-time systems, in which the time t can take any real value,
x′i is the first time derivative of xi:



2 Vladik Kreinovich and Max Shpak

dxi

dt
= fi(x1(t), . . . , xn(t)); (1)

• for discrete-time systems, in which the time t can only take integer values,
x′i is the change in the value of xi between the given moment t and the
next moment of time:

xi(t + 1)− xi(t) = fi(x1(t), . . . , xn(t)). (2)

In the discrete-time case, we can also describe this dynamics as

xi(t + 1) = f̃i(x1(t), . . . , xn(t)), (3)

where f̃i(x1, . . . , xn) def= xi + fi(x1, . . . , xn).
For example, the state of a biological population can be described by

listing the amounts or relative frequencies xi of different genotypes i; in this
example, the corresponding functions fi(x1, . . . , xn) describe the effects of
mutation, recombination, and natural selection.

Dynamical systems: formal definitions. Let us describe the above ideas
in precise terms.

Definition 1. Let n be an integer. This integer will be called the number
of microvariables (or variables, for short). These variables will be denoted
by x1, . . . , xn. By a microstate (or state), we mean an n-dimensional vector
x = (x1, . . . , xn).

Definition 2.

• By a discrete-time trajectory, we means a function which maps integers t
into states x(t).

• By a continuous-time trajectory, we means a function which maps real
numbers t into states x(t).

For each trajectory and for each moment of time t, the state x(t) is called a
state at moment t.

Definition 3. For a given n, by a dynamical system, we mean a tuple
(n, f1, . . . , fn), where n ≥ 1 is an integer, and f1, . . . , fn : Rn → R are func-
tions of n variables.

• We say that a discrete-time trajectory x(t) is consistent with the dynam-
ical system (n, f1, . . . , fn) if for every t, we have xi(t + 1) − xi(t) =
fi(x1(t), . . . , xn(t)).

• We say that a continuous-time trajectory x(t) is consistent with the

dynamical system (n, f1, . . . , fn) if for every t, we have
dxi(t)

dt
=

fi(x1(t), . . . , xn(t)).



Aggregation in Biological Systems: Computational Aspects 3

Equilibria. In general, when we start in some state x(t) at the beginning
moment of time t, the above dynamics leads to a different state x(t+1) at the
next moment of time. In many practical situations, these changes eventually
subside, and we end up with a state which does not change with time, i.e.,

with an equilibrium state. In the equilibrium state x, we have x′i(t) =
dxi

dt
= 0

or x′i(t) = xi(t + 1)− xi(t) = 0, i.e., in general, x′i(t) = fi(x1, . . . , xn) = 0.

Need for aggregation. For natural systems, the number of variables is often
very large. For example, for a system with g loci on a chromosome in which
each of these genes can have two possible allelic states, there are n = 2g

possible genotypes. For large g, due to the large number of state variables,
the corresponding dynamics is extremely difficult to analyze.

This complexity of this analysis can often be reduced if we take into con-
sideration that in practice, quantities corresponding to different variables xi

can be grouped into natural clusters. This happens, for example, when interac-
tions within each cluster are much stronger than interactions across different
clusters. In mathematical terms, this means that we subdivide the variables
x1, . . . , xn into non-overlapping blocks I1 = {i(1, 1), . . . , i(a, n1)}, . . . , Ik =
{i(k, 1), . . . , i(k, nk)} (k ¿ n).

To describe each cluster Ia, it is often not necessary to know the value of
each of its “microvariables” xi(a,1), . . . , xi(a,na). It is sufficient to characterize
this state by a single “macrovariable” ya = ca(xi(a,1), . . . , xi(a,na)) in such a
way that the dynamics of these macrovariables is determined only by their
previous values. In this case, equations (1) or (2) lead to simpler equations

dya

dt
= ha(y1(t), . . . , yk(t)) (4)

or, correspondingly,

ya(t + 1)− ya(t) = hi(y1(t), . . . , yk(t)) (5)

for appropriate functions h1, . . . , hk. Dynamical systems with this property
are called decomposably aggregable. Many biological systems (and in many
systems from other fields such as economics [24] and queuing theory [3] etc.)
are decomposably aggregable in this sense.

The aggregability property has been actively studied; see, e.g., [3, 4, 5, 13,
18, 19, 22, 23, 24].

Aggregability: formal definition. Let us describe a formalization of the
above notions. We would like to avoid a degenerate case like ca = 0, and make
sure that at least one of the macrovariables depends on some microvariable
xi0 . To describe this degeneracy condition, let us fix a microvariable xi0 (i.e.,
an index from 1 to n). In a partition, this microvariable can belong to one of
the blocks. Without losing generality, let us assume that it belongs to the first
block I1 (if it belong to another block, we can simply rename the blocks).



4 Vladik Kreinovich and Max Shpak

Since i0 belongs to the first block and the blocks do not overlap, only the
first macrovariable y1 can depend on this microvariable. We would also like
to avoid a degenerate case in which the macrovariables do not depend on this
microvariable xi0 at all, so we require that y1 actually depend on xi0 . Let us
describe this requirement in precise terms.

Definition 4. Let us fix an index i0 ≤ n. By a partition, we mean a tuple
(i0, I1, . . . , Ik) (k < n) where I1 ⊆ {1, . . . , n}, . . . , Ik ⊆ {1, 2, . . . , n} are non-
empty sets such that i0 ∈ I1, I1 ∪ . . .∪ Ik = {1, . . . , n}, and Ii ∩ Ij = ∅ for all
i 6= j. For each partition, the number of elements in the set Ia will be denoted
by na, and these elements will be denoted by i(a, 1), . . . , i(a, na).

Definition 5. We say that a function c : Rm → R actually depends on the
variable xi0 if there exist real numbers x1, . . . , xi0−1, xi0 , xi0+1, . . . , xm and a
real number x′i0 6= xi0 for which

c(x1, . . . , xi0−1, xi0 , xi0+1, . . . , xm) 6= c(x1, . . . , xi0−1, x
′
i0 , xi0+1, . . . , xm).

Definition 6.

• By a decomposable aggregation, we mean a tuple (i0, I1, . . . , Ik, c1, . . . , ck),
where (i0, I1, . . . , Ik) is a partition, and for each a from 1 to k, ca : Rna →
R is a function of na variables such that the function c1 actually depends
on xi0 .

• For every microstate x = (x1, . . . , xn), by the corresponding macrostate
we mean a tuple y = (y1, . . . , yk), where ya = ca(xi(a,1), . . . , xi(a,na)).

• We say that two microstates x and x̃ are macroequivalent if they lead to
the same macrostate y = ỹ.

Definition 7. We say that a decomposable aggregation (I1, . . . , Ik, c1, . . . , ck)
is consistent with the dynamical system (n, f1, . . . , fn) if for every two tra-
jectories x and x̃ for which at some moment of time t, two microstates x(t)
and x̃(t) are macroequivalent, they remain macroequivalent for all following
moments of time t′ > t.

Definition 8. Let k > 0 be a positive integer.

• We say that a dynamical system is decomposably k-aggregable if it is
consistent with some decomposable aggregation (i0, I1, . . . , Ik, c1, . . . , ck).

• We say that a dynamical system is decomposably ≤ k-aggregable if it is
decomposably `-aggregable for some ` ≤ k.

Definition 9. We say that a dynamical system is decomposably aggregable
if it is decomposably k-aggregable for some integer k.



Aggregation in Biological Systems: Computational Aspects 5

1.2 Discussion

We can have intersecting blocks. Some practical systems have a similar
aggregability property, but with possibly overlapping blocks Ia. In the general
case, we have macrovariables ya = ca(x1, . . . , xn) each of which may depend
on all the microvariables x1, . . . , xn. We are still interested in the situation
when the dynamics of the macrovariables is determined only by their previous
values.

In some cases, such overlapping decomposabilities are useful; however, in
general, they are not practical. For example, for every continuous-time dy-
namical system, we can define a macrovariable y1(x1, . . . , xn) as the time t
after (or before) which the trajectory starting at a state (x1, . . . , xn) reaches
the plane x1 = c for some constant c (this y1 is defined at least for values
x1 ≈ a). The dynamics of the new macrovariable is simple: if in a state x, we
reach x1 = c after time t = y1(x), then for a state x′ which is t0 seconds later
on the same trajectory, the time to reaching x1 = c is t− t0. In other words,
the value of y1 decreases with time t as y1(t0) = y1(0)− t0, or, in terms of the

corresponding differential equation,
dy1

dt
= −1.

From the purely mathematical viewpoint, we have an (overlapping) ag-
gregation. However, the main objective of aggregation is to simplify solving
the system of equations. In the above example, to find y1(x) for a given x,
we, in effect, first need to solve the system – which defeats the purpose of
aggregation.

In view of this observation, and taking into account that most practical
aggregable systems are decomposable (i.e., the blocks do not intersect), in this
chapter, we will concentrate on decomposable aggregations. For readability,
unless otherwise indicated, we will simply refer to decomposable and aggre-
gable systems as aggregable.

We can have strong interactions between clusters. In our motivations,
we assumed that the interaction within each cluster is much stronger than the
interaction among clusters. While this was indeed the original motivating ex-
ample, the aggregability property sometimes occurs even when the interaction
between clusters is strong – as long it can be appropriately “decomposed”.
In view of this fact, in the following precise definitions, we do not make any
assumptions about the relative strengths of different interactions.

Approximate aggregability. It is worth mentioning that perfect aggrega-
bility usually occurs only in idealized mathematical models. In many practical
situations, we only have approximate aggregability, so that the aggregate dy-
namics (4) or (5) differs only marginally from the actual microdynamics of
the macrovariables variables ya = ha(xi(a,1), . . . , xi(a,na)).

Note that many dynamical systems are only approximately aggregable
during certain time intervals in their evolution, or over certain subspaces of
their state space [5, 24].



6 Vladik Kreinovich and Max Shpak

1.3 Linear Systems

Informal introduction. In principle, the functions fi(x1, . . . , xn) can be
arbitrarily complex. In practice, we can often simplify the resulting expressions
if we expand each function fi(x1, . . . , xn) in Taylor series in xi and keep only
terms up to a fixed order in this expansion. In particular, when the interactions
are weak, we can often only keep the linear terms, i.e., get linear systems

x′i(t) = ai(t) +
n∑

j=1

ci,j · xj(t). (6)

In many practical cases, the i-th variable describes the absolute amount of
i-th entity (such as i-th genotype). In this case, if we do not have any entities
at some moment t, i.e., if we have xi(t) = 0 for all i, then none will appear.
So, we will have x′i(t) = 0, and thus, ai(t) = 0. In such cases, the above linear
system takes an even simpler form

x′i(t) =
n∑

j=1

ci,j · xj(t). (7)

Linear dynamical systems: formal definitions. Let us describe how the
general definitions of dynamical systems look like in the linear case.

Definition 10. We say that a dynamical system (n, f1, . . . , fn) is linear if all

the functions fi are linear, i.e., if fi =
n∑

j=1

ci,j · xj for some values ci,j.

This definition can be described in the following equivalent form.

Definition 11. For a given n, by a linear dynamical system, we mean an
n× n matrix c with entries ci,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

• We say that a discrete-time trajectory x(t) is consistent with the linear
dynamical system (n, c) if for every t, we have

xi(t + 1)− xi(t) =
n∑

j=1

ci,j · xj(t).

• We say that a continuous-time trajectory x(t) is consistent with the linear

dynamical system (n, c) if for every t, we have
dxi(t)

dt
=

n∑

j=1

ci,j · xj(t).

Comment. In reality, the coefficients ci,j can be arbitrary real numbers. How-
ever, our main objective is to analyze the corresponding algorithms. So, in-
stead of the actual (unknown) value of each coefficient, we can only consider
the (approximate) value represented in the computer, which are usually ratio-
nal numbers. In view of this fact, in the computational analysis of problems
related to linear dynamical systems, we will always assume that all the values
ci,j are rational numbers.



Aggregation in Biological Systems: Computational Aspects 7

Equilibria. In particular, for such linear systems, equilibrium states x =
(x1, . . . , xn) are states which satisfy the corresponding (homogeneous) system
of linear equations

n∑

j=1

ci,j · xj = 0. (8)

Of course, the state x = (0, . . . , 0) is always an equilibrium for such systems.
In some physical systems, this trivial 0 state is the only equilibrium. However,
in biology, there usually exist non-zero equilibrium states. In such cases, the
matrix ci,j is singular.

In general, the set of all possible solutions of a homogeneous linear system
is a linear space – in the sense that a linear combination of arbitrary solutions
is also a solution. In every linear space, we can select a basis, i.e., a set of
linearly independent vectors such that every other solution is a linear combi-
nation of solutions from this basis. The number of these independent vectors
is called a dimension of the linear space. In principle, we can have matrices for
which this linear space has an arbitrary dimension ≤ n. However, for almost
all singular matrices, this dimension is equal to 1.

In view of this fact, it is reasonable to consider only such matrices in
our analysis of biological systems. For such systems, all equilibria states x =
(x1, . . . , xn) are proportional to some fixed state β = (β1, . . . , βn), i.e., they
can be all characterized by an expression xi = y · βi for some parameter y.

Linear aggregation: definitions. For linear dynamical systems, it is rea-
sonable to restrict ourselves to linear aggregations, i.e., to macrovariables ya

which linearly depend on the the corresponding microvariables xi, i.e., for
which ya =

∑
i∈Ia

αi · xi for some coefficients (“weights”) αi. As a result, we

arrive at the following definition:

Definition 12. We say that a decomposable aggregation

(i0, I1, . . . , Ik, c1, . . . , ck)

is linear if all the functions ca are linear, i.e., have the form
ca(xi(a,1), . . . , xi(a,na)) =

∑
i∈Ia

αi · xi for some coefficients αi.

This definition can be reformulated as follows:

Definition 13.

• By a linear (decomposable) aggregation, we mean a tuple (i0, I1, . . . , Ik, α),
where (i0, I1, . . . , Ik) is a partition, and α = (α1, . . . , αn) is a tuple of real
numbers for which αi0 6= 0.

• For every microstate x = (x1, . . . , xn), by the corresponding macrostate
we mean a tuple y = (y1, . . . , yk), where ya =

∑
i∈Ia

αi · xi.



8 Vladik Kreinovich and Max Shpak

Definition 14. Let k > 0 be a positive integer.

• We say that a dynamical system is linearly k-aggregable if it is consistent
with some linear decomposable aggregation (i0, I1, . . . , Ik, α).

• We say that a dynamical system is linearly ≤ k-aggregable if it is linearly
`-aggregable for some ` ≤ k.

Definition 15. We say that a dynamical system is linearly aggregable if it is
k-linearly aggregable for some integer k.

Formulation of the problem. For every integer k > 0, we arrive at the
following linear k-aggregability problem:

• given a linear dynamical system;
• check whether the given system is linearly k-aggregable.

When such an aggregation exists, the next task is to compute it, i.e., to find
the partition I1, . . . , Ik and the weights αi which form the corresponding ag-
gregation.

Analysis of the problem. In matrix terms, a linear dynamic equation has
the form x′ = cx. Once the partition I1, . . . , Ik is fixed, we can represent each
n-dimensional state vector x as a combination of vectors x(a) formed by the
components xi, i ∈ Ia. In these terms, the equation x′ = cx can be represented
as x′(a) =

∑
b

c(a),(b)x(b), where c(a),(b) denotes the corresponding block of the

matrix c (formed by elements ci,j with i ∈ Ia and j ∈ Ib).
For the corresponding linear combinations ya = α(a) T x(a), the dynamics

takes the form y′a =
∑
b

α(a) T c(a),(b)x(b). The only possibility for this expression

to only depend on the combinations yb = α(b) T x(b) is when for each b, the
coefficients of the dependence of y′a on xi, i ∈ Ib, are proportional to the
corresponding weights αi, i.e., when for every a and b, we have α(a) T c(a),(b) =
λa,bα

(b) T for some number λa,b. By transposing this relation, we conclude
that

c(a),(b) T α(a) = λa,bα
(b). (9)

First known result: the problem is, in general, computationally dif-
ficult (NP-hard). The first known result is that in general, the linear ag-
gregability problem is NP-hard even for k = 2 [6, 7]. This means that even for
linear systems (unless P=NP), there is no hope of finding a general feasible
method for detecting decomposable aggregability.

Second known result: once we know the partition, finding the
weights αi is possible. The above mentioned result is that in general, find-
ing the partition under which the system is aggregate is computationally dif-
ficult (NP-hard).

As we have mentioned, in some practical situations, the partition comes
from the natural clustering of the variables and is, therefore, known. In the



Aggregation in Biological Systems: Computational Aspects 9

case when the partition is found, it is possible to feasibly find the weights αi

of the corresponding linear macrocombinations ya [6, 7].
The main idea behind the corresponding algorithm is as follows. From

the above equation (9), for a = b, we conclude that α(a) is an eigenvector
of the matrix c(a),(a) T . Since the weight vectors α(a) are defined modulo a
scalar factor, we can thus select one of the (easy-to-compute) eigenvectors of
c(a),(a) T as α(a).

Once we know α(a) for one a, we can determine all other weight vectors
α(b) from the condition (9), i.e., as α(b) = c(a),(b) T α(a).

2 Conditional Aggregation

2.1 What is Conditional Aggregability: General Case

Aggregation: reminder. As we have mentioned, in practice, quantities
corresponding to different variables xi can be usually grouped into clus-
ters I1, . . . , Ik in such a way that interactions within each cluster are
much stronger than interactions across different clusters. In the above text,
we considered systems which are (decomposably) aggregable in the sense
that in each block Ia, we can find an appropriate combination of vari-
ables ya = ca(xi(a,1), . . . , xi(a,na)) in such a way that for all possible states
x = (x1, . . . , xn), the change in the new variables is only determined by the

values of these new variables, i.e., that we have a simpler system
dya

dt
=

ha(y1, . . . , yk). This reduction to a simpler system drastically simplifies com-
putations related to the dynamical behavior of the original system.

In practice, we can restrict ourselves to “modular” states. Systems
which are, in this sense, “unconditionally” aggregable, i.e., aggregable for all
possible states x = (x1, . . . , xn), are rather rare. However, in practice, we
rarely encounter the need to consider arbitrary states x. Specifically, we know
that the interaction within each cluster in much stronger than interactions
across different clusters.

In the ideal case when a cluster does not interact with other clusters
at all, the interaction within the cluster will lead to an equilibrium state
of this cluster, i.e., the values of the corresponding microvariables variables
xi(a,1), . . . , xi(a,na) will stop changing with time and reach an equilibrium
state: x′i(a,k)(t) = fi(a,k)(xi(a,1)(t), . . . , xi(a,na)(t)) = 0. Since interactions
across clusters are much weaker, it is reasonable to assume that in spite of
this interaction, the state within each cluster is very close to an equilibrium
state. In particular, in the first approximation, we can assume that within
each cluster, we get the exact equilibrium.

It is therefore reasonable to restrict the decomposability property of the
system only to the such states in which within each cluster, we have equilib-
rium.



10 Vladik Kreinovich and Max Shpak

Towards exact description of conditional aggregability. We have al-
ready mentioned that in general, a biologically relevant dynamical system has
a 1-dimensional family of equilibrium states, i.e., a family which is determined
by a single parameter y. The values of all other variables xi are uniquely de-
termined by this value y.

Thus, to describe the combination of equilibrium states corresponding to k
different clusters, we must describe the values of the corresponding k variables
ya, 1 ≤ a ≤ k and the dependence xi = Fi(ya) of each microvariable xi on the
“macrovariable” ya of the corresponding cluster. In these terms, conditional
(decomposable) aggregability means that there exist functions ha(y1, . . . , yk)
such that in the equilibrium state, the evolution of the macrovariables is deter-

mined by the system
dya

dt
= ha(y1, . . . , yk), and in the new state, every cluster

a in still in the equilibrium state determined by the new value ya(t+1) of the
corresponding macrovariable.

Formal definition of conditional aggregability. The above analysis leads
to the following definitions.

Definition 16.

• By a conditional aggregation, we mean a tuple (i0, I1, . . . , Ik, F1, . . . , Fn),
where (i0, I1, . . . , Ik) is a partition, and for each i from 1 to n, Fi : R→ R
is a function of one variable such that the function Fi0 actually depends
on xi0 .

• By a macrostate, we mean a tuple y = (y1, . . . , yk).
• By a microstate corresponding to a macrostate y, we mean a state x =

(x1, . . . , xn) in which for every index i, we have xi = Fa(ya), where a is
the cluster containing i (i ∈ Ia).

• A microstate is called modular if it corresponds to some macrostate y.

Definition 17. We say that a conditional aggregation

(i0, I1, . . . , Ik, F1, . . . , Fn)

is consistent with a dynamical system (n, f1, . . . , fn) if for every trajectory for
which at some moment t, the microstate x(t) is modular, it remains modular
for all following moments of time t′ > t.

Definition 18. Let k > 0 be a positive integer.

• We say that a dynamical system is conditionally k-aggregable if it is con-
sistent with some conditional aggregation (i0, I1, . . . , Ik, F1, . . . , Fn).

• We say that a dynamical system is conditionally ≤ k-aggregable if it is
conditionally `-aggregable for some ` ≤ k.

Definition 19. We say that a dynamical system is conditionally aggregable
if it is conditionally k-aggregable for some integer k.



Aggregation in Biological Systems: Computational Aspects 11

Example of conditional aggregation: phenotype-based description
of an additive genetic trait. In general, the description of recombination
and natural selection is a quadratic dynamical system [14, 15, 16]. Specifically,
from one generation t to the next one (t+1), the absolute frequency pi (number
of individuals with genotype i in a population) changes as follows:

pz(t + 1) =
∑

i

∑

j

wi · wj · pi(t) · pj(t) ·Rij→z,

where wi is the fitness of the i-th genotype (probability of survival multiplied
by the number of offsprings), and Rij→z is the recombination function that
determines the probability that parental types i and j produce progeny z.

Let us assume that we have two alleles at each of g loci. In this case,
each genotype i can be described as a binary string. A frequent simplifying
assumption in quantitative genetics is that the contribution of each locus to
phenotype is equal. In precise terms, this means that the fitness wi depends
only on the number of 1s ai in the corresponding binary string: wi = wai ;
different genotypes correspond to different numbers a of 1s in a genotype. In
this case, since recombination at different loci are independent, the recombi-
nation function takes the form [1, 21] Rij→z = Raiaj→az (L), where L is the
number of common (overlapping) 1s between the binary sequences i and j:
e.g., the sequences 1010 and 0011 have one overlapping 1 (in the 3rd place),
and

Rab→c(L) =
(

1
2

)a+b−2L (
a + b− 2L

c− L

)
.

In this situation, since different genotypes i within the same phenotype a
have the same fitness, it is reasonable to assume that all these genotypes have
the same frequency within each phenotype class pi = pai . It is easy to see that
this this equal-frequency distribution is an equilibrium, i.e., that if we start
with equal genotype frequencies within each phenotype pi(t) = pai(t), then
in the next generation, we also have equal genotype frequencies pi(t + 1) =
pai(t + 1). It was shown [1] that for many reasonable fitness functions wa,
that this internal equilibrium solution is stable in the sense that if we apply
a small deviations to this equilibrium, the system asymptotically returns to
the equilibrium state.

In this case, the phenotype frequencies pa are the macrovariables ya, and
each microvariable pi is simply equal to the corresponding macrovariable pi =
ya (i.e., Fi(ya) = ya).

For the macrovariables pa, the dynamic equations take the form

pc(t + 1) =
∑

a

∑

b

wa · wb · pa(t) · pb(t) ·Rab→c,

where
Rab→c =

∑

L

P (L) ·Rab→c(L)



12 Vladik Kreinovich and Max Shpak

and

P (L) =

(
i

L

)(
g − i

j − L

)

(
g

j

)

is the probability that in the equal-frequency state, the overlap is L.
Possibility of multi-parametric families of equilibria states: a com-
ment. It is worth mentioning that in some biologically important situations,
we have multi-parametric families of equilibrium states. An example of such a
situation is linkage equilibrium (see, e.g., [8, 9, 10, 20]), when to describe the
equilibrium frequencies xi of different genotypes i, it is sufficient to know the
frequencies f` of alleles ` at different loci; then, for a genotype i = `1 . . . , `m,
the corresponding frequency is equal to the product of the frequencies of its
alleles: xi = f`1 · . . . · f`m

.
If we have two alleles at each locus, then the sum of their frequencies is 1,

so to describe the frequencies of these alleles, it is sufficient to describe one of
the frequencies. In this case, for g loci with two alleles at each locus, there are
n = 2g possible genotypes, so in general, we need 2g different frequencies xi

to describe the state of this system. However, under the condition of linkage
equilibrium, we only need g (¿ 2g) frequencies y1, . . . , yg corresponding to g
loci.

Such situations are not covered by our definitions and will require further
analysis.
Conditional aggregation beyond equilibria. Our main motivation for
the conditional aggregation was based on the assumption that within each
each cluster, the state reaches an equilibrium. This assumption makes sense
for situations in which within-cluster interactions are much stronger than
between-cluster interactions. However, as we have mentioned, this is not a
necessary condition for aggregation. In situations where the between-cluster
interaction is not weak, we can still have conditional aggregation – with mi-
crostates no longer in equilibrium within each cluster.

To take this possibility into account, in the following text, we will call the
corresponding states of each cluster quasi-equilibrium states.

2.2 Linear Case

Discission. The main idea behind conditional aggregation is that we only
consider “modular” states, i.e., states in which an (quasi-)equilibrium is at-
tained within each cluster. For linear systems, as we have mentioned earlier,
(quasi-)equilibrium means that for each cluster Ia, we have xi = ya · βi for
all i ∈ Ia. Here, βi are the values which characterize a fixed quasi-equilibrium
state, and ya is a parameter describing the state of the a-th cluster.

Since in such modular states, the state of each cluster is uniquely charac-
terized by the value ya, this value ya serves as a macrovariable characterizing
this state.



Aggregation in Biological Systems: Computational Aspects 13

Formal definition. We thus arrive at the following definition.

Definition 20.
We say that a conditional aggregation (i0, I1, . . . , Ik, F1, . . . , Fn) is linear if
all the functions Fi are linear, i.e., if Fi(ya) = βi · ya for all i.

This definition can be reformulated in the following equivalent form.

Definition 21.

• By a linear conditional aggregation, we mean a tuple (i0, I1, . . . , Ik, β),
where (i0, I1, . . . , Ik) is a partition, and β = (β1, . . . , βn) is a tuple of real
numbers for which βi0 6= 0.

• By a microstate corresponding to a macrostate y = (y1, . . . , yk), we mean
a state x = (x1, . . . , xn) in which for every index i, we have xi = ya · βi,
where a is the cluster containing i (i ∈ Ia).

• A microstate is called modular if it corresponds to some macrostate y.

Definition 22. Let k > 0 be a positive integer.

• We say that a dynamical system is linearly conditionally k-aggregable if
it is consistent with some conditional linear aggregation (i0, I1, . . . , Ik, β).

• We say that a dynamical system is linearly conditionally ≤ k-aggregable
if it is linearly conditionally `-aggregable for some ` ≤ k.

Definition 23. We say that a dynamical system is linearly conditionally ag-
gregable if it is conditionally linearly k-aggregable for some integer k.

Formulation of the problem. For every integer k > 0, we arrive at the
following linear conditional k-aggregability problem:

• given a linear dynamical system;
• check whether the given system is linearly conditionally k-aggregable.

When such an aggregation exists, the next task is to compute it, i.e., to find
the partition I1, . . . , Ik and the weights βi which form the corresponding con-
ditional aggregation.

Discussion. The main reason why we started discussing the notion of condi-
tional aggregability is that the original notion of decomposable aggregability
required decomposability for all possible states – and was, therefore, too re-
strictive. Instead, we require decomposability only for modular states, in which
we have a quasi-equilibrium within each cluster. This part of the requirement
of conditional aggregability is thus weaker than the corresponding condition
of decomposable aggregability.

On the other hand, in decomposable aggregability, we only worried about
the dynamics of macrostates, while in conditional aggregability, we also require
that microstates also change accordingly (i.e., modular state are transformed
into modular states). This part of the requirement of conditional aggregability



14 Vladik Kreinovich and Max Shpak

is thus stronger than the corresponding condition of decomposable aggrega-
bility.

Since one part of the requirement is weaker and the other part of the
requirement is stronger, it is reasonable to conjecture that the requirements
themselves are of approximately equal strength. It turns out that, indeed, the
two corresponding problems have the exact same computational complexity.

Main results. In this paper, we prove the following two results:

Proposition 1. For every k ≥ 2, the linear conditional k-aggregability prob-
lem is NP-hard.

Proposition 2. There exists an efficient (polynomial-time) algorithm that,
given a linear dynamical system (n, c) and a partition (i0, I1, . . . , Ik) under
which the system is linearly conditionally aggregable, returns the corresponding
weights βi.

The proof of both results is based on the following auxiliary statement.
For every matrix c, let cT denote a transposed matrix, with cT

i,j
def= cj,i.

Proposition 3. A linear dynamical system (n, c) is linearly decomposably ag-
gregable if and only if the system (n, cT ) is linearly conditionally aggregable
(for the same partition).

These results show that not only the two above statements are true, but
also that the problems of detecting linear decomposable aggregability and lin-
ear conditional aggregability have the exact same computational complexity.
For example, if we can solve the problem of detecting linear decomposable
aggregability, then we can apply this algorithm to the transposed matrix cT

and thus get an algorithm for detecting linear conditional aggregability. Vice
versa, if we can solve the problem of detecting linear conditional aggregability,
then we can apply this algorithm to the transposed matrix cT and thus get
an algorithm for detecting linear decomposable aggregability.

So, to prove Propositions 1 and 2, it is sufficient to prove the auxiliary
Proposition 3.

Proof of Proposition 3. By definition, for a given partition (i0, I1, . . . , Ik),
linear conditional aggregability means that for every macrostate y =
(y1, . . . , yk), i.e., for all possible values y1, . . . , yk, the equations of the dy-

namical system x′i =
n∑

j=1

ci,j · xj transform the corresponding modular state

xj = ya · βj (j ∈ Ia) into a modular state x′i. In particular, for every cluster
a (1 ≤ a ≤ k), the corresponding modular state takes the form xj = βj for
j ∈ Ia and xj = 0 for all other j. For this modular state, the new state x′i
takes the form x′i =

∑
j∈Ia

ci,j · βj .

This equation can be simplified if we use the notations that we introduced
in our above analysis of linear dynamical systems. Specifically, we can repre-
sent each n-dimensional state vector x as a combination of vectors x(a) formed



Aggregation in Biological Systems: Computational Aspects 15

by the components xi, i ∈ Ia. In these terms, the above equation takes the
form x′(b) = c(a),(b)β(a) for all b. The new state x′ must also be a modular
state, so for every cluster b, the corresponding state x′(b) must be propor-
tional to the fixed quasi-equilibrium state β(b) of this cluster: x′(b) = λa,bβ

(b)

for some constant λa,b. Thus, for every two clusters a and b, we must have

c(a),(b)β(a) = λa,bβ
(b). (10)

Vice versa, if this equation is satisfied, one can easily check that for every
macrostate y, the corresponding modular state is indeed transformed into a
new modular state.

So, for a given partition (i0, I1, . . . , Ik), a linear dynamical system (n, c)
is linearly conditionally aggregable if and only if there exist vectors β(a) for
which the equations (10) hold for some values λa,b. As we have mentioned
earlier, a system (n, c) is linearly decomposably aggregable if and only if there
exist vectors α(a) for which the equations (10) hold for some values λa,b. The
only difference between the equations (10) and (9) (apart from different names
for α(a) and β(a)) is that in (10), we have the original matrix c, while in (9),
we have the transposed matrix cT . Thus, the linear system (n, c) is linearly
conditionally aggregable if and only if the system (n, cT ) with a transposed
matrix cT is linearly decomposably aggregable. The proposition is proven.

Corollary. In the practically important case when the matrix c describing a
linear dynamical system is symmetric c = cT , the above Proposition 3 leads
to the following interesting corollary:

Proposition 4. A linear dynamical systems (n, c) with a symmetric matrix
c is linearly conditionally aggregable if and only if it is linearly decomposably
aggregable.

Approximate aggregability: observation. One of the main cases of con-
ditional aggregation is when we have clusters with strong interactions within a
cluster and weak interactions between clusters. Due to the weakness of across-
cluster interactions, it is reasonable to assume that the state of each cluster
is close to the equilibrium. In the above text, we assumed that the clusters
are exactly in the (quasi-)equilibrium states. In real life, such systems are only
approximately conditionally aggregable.

Examples of approximately conditionally aggregable systems are given,
e.g., in [24]. For an application to population genetics see [23].

Is detecting approximate linear conditional aggregability easier than de-
tecting the (exact) linear conditional aggregability? In our auxiliary result,
we have shown that the problem of detecting linear conditional aggregability
is equivalent to a problem of detecting linear decomposable aggregability (for
a related linear dynamical system). One can similarly show that approximate
linear conditional aggregability is equivalent to approximate linear decompos-
able aggregability. In [6, 7], we have shown that detecting approximate linear



16 Vladik Kreinovich and Max Shpak

decomposable aggregability is also NP-hard. Thus, detecting approximate lin-
ear conditional aggregability is NP-hard as well – i.e., the approximate charac-
ter of aggregation does not make the corresponding computational problems
simpler.

3 Identifying Aggregations in Lotka-Volterra Equations
with Intraspecific Competition

3.1 Formulation of the Problem

Motivations. In the previous sections, we mentioned that in general, iden-
tifying aggregations is a computationally difficult (NP-hard) problem. This
means that we cannot expect to have a feasible aggregations-identifying algo-
rithm that is applicable to an arbitrary dynamical system. We can, however,
hope to get such a feasible algorithm for specific classes of biology-related
dynamical systems.

In this paper, we start with possible most well-known biology-related dy-
namical systems: Lotka-Volterra equations; see, e.g., [11, 12].

Lotka-Volterra equations. The standard Lotka-Volterra equations for
competition between multiple species xi exploiting the same resource in a
community is

dxi

dt
= ri · xi ·


1−

∑
j

aij · xj

Ki


 , (11)

where Ki is the carrying capacity of the i-th species, and aij is a measure of
the intensity of competition between species i and j. In this equation:

• the terms aij corresponding to i 6= j describe interspecific competition,
i.e., competition between different species, while

• the term aii describes intraspecific competition, i.e., competitions between
organized of the same species.

In this paper, we will only consider the case where there is an intraspecific
competition, i.e., where aii 6= 0 for all i.

Known aggregation results about Lotka-Volterra equations. The
main known results about the aggregability of the Lotka-Volterra equations
are described by Iwasa et al. in [4, 5]. Specifically, these papers analyze a sim-
ple case of aggregation when there are classes of competitors I1, . . . , Ik such
that:

• all the species i within the same class Ia have the same values of ri and
Ki;



Aggregation in Biological Systems: Computational Aspects 17

• the interaction coefficients aij depend only on the classes Ia and Ib to
which i and j belong, i.e., for all i ∈ Ia and j ∈ Ib, the coefficient aij has
the same value.

In this case, the actual aggregation of microvariables is simple and straight-
forward: we can have ya =

∑
i∈Ia

xi.

In [22, 23], it is shown that a similar “weighted” linear aggregation, with
ya =

∑
i∈Ia

αi · xi and possible different weights αi, is sometimes possible in

situations when the values aij are not equal within classes – namely, it is
possible when the values aij satisfy some symmetry properties. In this section,
we will analyze the general problem of linear aggregability of such systems of
equations.

Restriction to practically important cases. Before we formulate a pre-
cise mathematical formulation of our result, let us once again recall why this
problem is practically useful. As we have mentioned earlier, the main reason
why aggregation is important is because aggregation simplifies the analysis
of the complex large-size dynamical equations – by reducing them to simpler
smaller-size ones, of size k ¿ n. From this viewpoint, the fewer classes we
have, the simpler the reduced system, and the more important its practical
impact.

From this viewpoint, the most practically interesting reduction is the re-
duction with the smallest possible number of classes. In other words, it is
important to know whether we can subdivide the objects into 10 classes or
less – but once we know that we can subdivide the objects into 7 classes, then
the problem of checking whether we can also have a non-trivial subdivision
into 9 classes sounds more academic.

In view of this observation, instead of checking whether a given system
can be decomposed into exactly k classes, we study the possibility of checking
whether it can be subdivided into ≤ k classes. Thus, we arrive at the following
problem.

Exact formulation of the problem. For every integer k > 0, we arrive at
the following linear k-aggregability problem for Lotka-Volterra equations:

• given: a Lotka-Volterra system, i.e., rational values n, ri, Ki, (1 ≤ i ≤ n),
and aij (1 ≤ i ≤ n, 1 ≤ j ≤ n);

• check whether the given system is linearly ≤ k-aggregable.

When such an aggregation exists, the next task is to compute it, i.e., to find
the partition I1, . . . , Ik and the weights αi which form the corresponding con-
ditional aggregation.

3.2 Analysis of the Problem

Linearization seems to indicate that this problem is NP-hard. One
can easily check that if a non-linear system (n, f1, . . . , fn) is k-aggregable, then



18 Vladik Kreinovich and Max Shpak

for each state x(0) = (x(0)
1 , . . . , x

(0)
n ) and for the deviations ∆xi

def= xi − x
(0)
i ,

the corresponding linearized system

∆x′i = fi(x(0)) +
n∑

j=1

∂fi

∂xj
·∆xj (12)

is also k-aggregable.
In particular, if the Lotka-Volterra equation is k-aggregable, then the cor-

responding linearized system

∆x′i =


ri −

n∑

j=1

ri · aij ·K−1
i · x(0)

j


 ·∆xi− riẋ

(0)
i ·K−1

i ·
n∑

j=a

aij ·∆xj (13)

should also be k-aggregable. Since in the general Lotka-Volterra equations,
we can have an arbitrary matrix aij , the corresponding linearized systems
can have an arbitrary matrix ci,j .

We already know that for general linear systems, the general problem of
detecting linear k-aggregability for an arbitrary matrix ci,j is NP-hard. So,
at first glance, it may seem like for Lotka-Volterra equations, the problem of
detecting linear k-aggregability should also be NP-hard.

Why the above argument for NP-hardness is not a proof. In spite
of the above argument, we will show that a feasible algorithm is possible for
detecting k-aggregability of Lotka-Volterra equations. This means that the
above argument in favor of NP-hardness cannot be transformed into a precise
proof.

Indeed, the result about NP-hardness of the linear problem means that it
is computationally difficult to check k-aggregability of a single linear system.
On the other hand, k-aggregability of a non-linear system means, in general,
that several different linear dynamic systems are k-aggregable – namely, the
linearized systems (12) corresponding to all possible states x(0). So, even if
for some state x(0), it is difficult to check k-aggregability, we may be able to
avoid this computational difficulty if for other states x(0), the corresponding
linear system is easily proven not to be k-aggregable.

3.3 Main Result

Result. The main result of this section is that for every k > 0, there exists
a feasible (polynomial-time) algorithm for solving the above problem:

Proposition 5. For every k > 0, there exists a polynomial-time algorithm for
solving linear k-aggregability problem for Lotka-Volterra equations.



Aggregation in Biological Systems: Computational Aspects 19

Practically useful corollary: how to compute the corresponding
weights. As we will see from the proof, identifying the aggregating parti-
tion is feasible but rather complicated.

However, as well see from the same proof, once we know the aggregating
partition I1, . . . , Ik, we have a straightforward formula for determining the
wights αi of the corresponding macrovariables ya =

∑
i∈Ia

αi · xi: namely, we

can take αi = ri · aii ·K−1
i .

Discussion. It may be worth mentioning that the approach behind our al-
gorithm will be not work for a general recombination system (as described
above). Specifically, in our algorithm, we essentially used the fact that in the
Lotka-Volterra equations, all the quadratic terms in the expression for the new
value x′i are proportional to the previous value xi of the same quantity. In con-
trast, in the recombination system, this is not necessarily the case, because a
genotype z need not be a progeny of z and some other genotype.

3.4 Proof

Reduction to minimal aggregability. According to the precise formula-
tion of our problem, we want to know, for a given k > 0, whether there exists
a linear `-aggregation for some ` ≤ k. If such a linear aggregation exists, then
among all such aggregations we can select a minimal one, i.e., a linear aggre-
gation for which no linear aggregation with fewer classes is possible. Thus, to
check whether a system is linearly `-aggregable for some ` ≤ k, it is sufficient
to check whether it is minimally linearly `-aggregable for some ` ≤ k.

Once we have feasible algorithms for checking minimal linear `-
aggregability for different `, we can then apply these algorithms for ` =
1, 2, . . . , k and thus decide whether the original system is ≤ k-aggregable.
For every given k, we have a finite sequence of feasible (polynomial-time) al-
gorithms. The computation time for each of these algorithms is bounded by
a polynomial of the size of the input. Thus, the total computation time taken
by this sequence is bounded by the sum of finitely many polynomials – i.e.,
by a polynomial.

In view of this observation, in the following text, we will design, for a given
integer k > 0, an algorithm for detecting minimal linear k-aggregability of a
given Lotka-Volterra equation.

Simplification of the Lotka-Volterra equation. In order to describe the
desired algorithm, let us first reformulate the Lotka-Volterra equations in a
simplified form x′i = ri · xi −

∑
j

bij · xj , where bij
def= ri · aij ·K−1

i .

Linear aggregability: reminder. Linear k-aggregability means that for the
macrovariables ya =

∑
i∈Ia

αi · xi, their changes y′a =
∑

i∈Ia

αi · x′i are uniquely

determined by the old ones y1, . . . , yk. Substituting the expression for x′i into
the formula for y′a, we conclude that



20 Vladik Kreinovich and Max Shpak

y′a =
∑

i∈Ia

αi · ri · xi −
∑

i∈Ia

n∑

j=1

αi · bij · xi · xj . (14)

Dividing the sum over all j into sums corresponding to different classes a, we
conclude that

y′a =
∑

i∈Ia

αi · ri ·xi−
∑

i∈Ia

∑

j∈Ia

αi · bij ·xi ·xj −
∑

b6=a

∑

i∈Ia

∑

j∈Ib

αi · bij ·xi ·xj . (15)

This expression must depend only on the values y1, . . . , yk. Since the expres-
sion for y′a in terms of microvariables xi is quadratic, and y1, . . . , yk are linear
functions of the microvariables, the dependence of y′a on y1, . . . , yk must also
be quadratic.

Since y′a depends only on the variables xi for i ∈ Ia, we can only have a lin-
ear term proportional to ya. Similarly, since quadratic terms are proportional
to xi for i ∈ Ia, quadratic terms in the expression for y′a must be proportional
to ya. So, we arrive at the following expression:

y′a = Ra · ya + Baa · y2
a +

∑

b6=a

Bab · ya · yb. (16)

Substituting the expressions ya =
∑

i∈Ia

αi · xi into the right-hand side of the

formula (16), we conclude that

y′a = Ra ·
∑

i∈Ia

αi · xi + Baa ·
(∑

i∈Ia

αi · xi

)2

+

∑

b 6=a

Bab ·
(∑

i∈Ia

αi · xi

)
·

∑

j∈Ib

αj · xj


 . (17)

Aggregability means that the right-hand sides of the expressions (16) and (17)
must coincide for all possible values of the microvariables xi. Both right-hand
side are quadratic functions of xi. For the quadratic functions to coincide, they
must have the exact same coefficients at xi and the exact same coefficients at
all the products xi · xj . Let us see what we can conclude about the system
from this condition.

Possibility of zero weights: analysis of the degenerate case. Let us
first take into account that, in general, it is possible that the weight αj of some
variables is 0; our only restriction is that αi0 6= 0 for a fixed microvariable i0.

By definition of linear aggregation, the fact that αj = 0 for some j means
that none of the macrovariables y1, . . . , yk depend on the corresponding mi-
crovariable xj and thus, the expression y′a also cannot depend on xj .

From the above expression for y′a, we can thus conclude that for every i
for which αi 6= 0, we must have bij = 0. Thus, if αi 6= 0 and bij 6= 0, then we
must have αj 6= 0.



Aggregation in Biological Systems: Computational Aspects 21

As we have just mentioned, we have αi0 6= 0. So, if bi0j 6= 0, we must
have αj 6= 0; if for such j, we have bjk 6= 0, then we must have αk 6= 0, etc.
This fact can be described in graph terms if we form a directed graph with
the microvariables 1, . . . , n as vertices, and a connection i → j if and only if
bij 6= 0. In terms of this graph, if there is a path (sequence of connections)
leading from i0 to j, then αj 6= 0.

It is known that in polynomial time, we can find out whether every vertex
can be thus reached; see, e.g., [2]. For this, we first mark i0 as reachable. At
each stage, we take all marked vertices, take all edges starting with them,a nd
mark their endpoints. Once there are no new vertices to mark, we are done: if
all vertices are marked, this means that all vertices are reachable, otherwise
this means that some vertices are not reachable.

At each stage except for the last one, we add at least one vertex to the
marked list; thus, the number of steps cannot exceed the number n of vertices.
Each step requires polynomial time; thus, overall, this graph algorithm takes
polynomial time.

If all states are reachable from i0, this means that in every aggregation,
we must have αi 6= 0. If some states are not reachable, then for these states,
we can set αi = 0 and keep the aggregation.

Reduction to non-degenerate case. In view of the above, to check for
the existence of a linear aggregation, it is sufficient to first mark all reachable
vertices and then to restrict ourselves only to reachable vertices.

For these vertices, αi 6= 0. So, in the following text, we will assume that
all the vertices are reachable and all the weights αi are non-zeros – i.e., that
we have a “non-degenerate” situation.

For this non-degenerate situation, let us make conclusions from the equal-
ity of the coefficients at xi and at xi ·xj in the right-hand sides of the formulas
(16) and (17).

Comparing coefficients at xi. Comparing coefficients at xi, we get αi ·ri =
Ra · αi. Since αi 6= 0, we can divide both sides of this equality by αi and
conclude that ri = Ra, i.e., that for all i from the same class i ∈ Ia, we have
the same value ri.

Comparing coefficients at x2
i . Comparing coefficients at x2

i , we get αi·bii =
Baa ·α2

i . Since αi 6= 0, we conclude that bii = Baa ·αi. Since we only consider
the situations with intraspecific competition bii 6= 0, and we know that αi 6= 0,
we thus conclude that Baa 6= 0 for all a.

Let us use non-uniqueness in ya to further simplify the formulas.
The macrovariables ya are not uniquely determined. In principle, instead of
the original macrovariables ya, we can consider new macrovariables ỹa = ka ·ya

for arbitrary constants ka 6= 0. Let us use this non-uniqueness to further
simplify our equations.

Specifically, we will consider the new macrovariables ỹa = Baa · ya. From
the original equation



22 Vladik Kreinovich and Max Shpak

y′a = Ra · ya + Baa · y2
a +

∑

b6=a

Bab · ya · yb,

we conclude that

ỹ′a = Baa · y′a = Baa ·Ra · ya + B2
aa · y2

a +
∑

b6=a

Baa ·Bab · ya · yb.

Representing the values ya and yb in the right-hand side in terms of the new

macrovariables ỹa and ỹb, as ya =
ỹa

Baa
and yb =

ỹb

Bbb
, we conclude that

ỹ′a = Ra · ỹa + y2
a +

∑
B̃ab · ỹa · ỹb,

where
B̃ab

def=
Bab

Bbb
.

For these new macrovariables, B̃aa = 1.
Thus, without losing generality, we can conclude that Baa = 1 for all a. In

this case, the above conclusion bii = Baa · αi takes a simplified form αi = bii.

Comparing coefficients at xi ·xj when i and j are in different classes.
When i ∈ Ia and j ∈ Ib (a 6= b), comparing coefficients at xi · xj leads to
αi · bij = Bab · αi · αj . Since αi 6= 0, this results in bij = Bab · αj . We already
know that αj = bjj , so we can conclude that for every i and j from different
classes a 6= b, the ratio

rij
def=

bij

bjj

takes the same value Bab, irrespective of the choice of i ∈ Ia and j ∈ Ib.

Comparing coefficients at xi · xj when i and j are in the same class.
When i, j ∈ Ia, comparing coefficients at xi ·xj (and at the same term xj ·xi)
and using the fact that Baa = 1 leads to the equation

αi · bij + αj · bji = 2αi · αj .

Dividing both sides of this equality by αi = bii and αj = bjj , we conclude
that

bij

bjj
+

bji

bii
= 2.

Using the notation rij that we introduced in the previous section, we conclude
that rij + rji = 2.



Aggregation in Biological Systems: Computational Aspects 23

Summarizing the analysis. Combining the analysis of all linear and
quadratic terms, we conclude that for the aggregating partition into classes
I1, . . . , Ik, the following must be true:

• for all i within each class Ia, the values ri are the same: ri = Ra (for some
value Ra);

• for all i, j ∈ Ia, we have rij + rji = 2;
• for every a 6= b, for all i ∈ Ia and j ∈ Ib, the ratios rij are the same:

rij = Bab (for some value Bab).

Vice versa, if we have a partition for which these properties are satisfied, then,
as one can easily see, we have an aggregation.
Taking minimality into account. As we have mentioned in the beginning
of this proof, we are looking for a minimal aggregation, i.e., for an aggregation
with the smallest possible number of classes. This means, in particular, that
if we simply combine two classes a 6= b into a single one, we will no longer get
an aggregation. This means, in turn, that one of the three above conditions is
not satisfied for the new class, i.e., that (at least) one of the following three
things is happening:

• either Ra 6= Rb;
• or Bab + Bba 6= 2;
• or for some c 6= a, c 6= b, we have Bac 6= Bbc or Bca 6= Bcb.

Towards an algorithm for distinguishing i 6∈ Ia versus i 6∈ Ib. To exploit
this consequence of minimality, let us select a points sa in each class Ia. Let
us show that once we know these points, we can use the above property to
tell, for every two classes a 6= b and for each i, whether i 6∈ Ia or i 6∈ Ib.

Indeed, at least one of the above three properties holds for a 6= b. If
this property is Ra 6= Rb, then we cannot have both ri = Ra = rsa and
ri = Rb = rsb

. So:

• if ri 6= rsa , we have i 6∈ Ia;
• if ri 6= rsb

, we have i 6∈ Ib.

If this property is Bab + Bba 6= 2, this means that:

• for i ∈ Ia, we have risa + rsai = 2 but risb
+ rsbi = Bab + Bba 6= 2;

• for i ∈ Ib, we have risb
+ rsbi = 2 but risa + rsai = Bab + Bba 6= 2.

Thus:

• if risa + rsai 6= 2, we have i 6∈ Ia;
• if risb

+ rsbi 6= 2, we have i 6∈ Ib.

If this property is Bac 6= Bbc, this means that for i ∈ Ia, we have risc = Bac 6=
Bbc, while for i ∈ Ib, we have risc = Bbc 6= Bac. Thus:

• if risc 6= rsasc = Bac, we have i 6∈ Ia;
• if risc 6= rsbsc = Bbc, we have i 6∈ Ib.

As a result, we arrive at the following auxiliary algorithm.



24 Vladik Kreinovich and Max Shpak

Auxiliary algorithm. In this algorithm, we assume that we have selected a
representative sa from each class Ia. This algorithm enables us, given a 6= b
and i, to check whether i 6∈ Ia or i 6∈ Ib. This algorithm works as follows.

On the first stage of this algorithm, we compare ri with rsa
and rsb

:

• if ri 6= rsa , we conclude that i 6∈ Ia (and stop);
• if ri 6= rsb

, we conclude i 6∈ Ib (and stop);
• otherwise (i.e., if ri = rsa = rsb

), we go to the next stage.

On the second stage, we do the following:

• if risa
+ rsai 6= 2, we conclude that i 6∈ Ia (and stop);

• if risb
+ rsbi 6= 2, we conclude that i 6∈ Ib (and stop);

• otherwise (i.e., if risa
+ rsai = risb

+ rsbi = 2), we go to the next stage.

On the third stage, for all c 6= a, b, we compute the values risc
, rsci, rsasc

,
rscsa

, rsbsc
, rscsb

.

• If for some c, we get risc 6= rsasc or rsci 6= rscsa , we conclude that i 6∈ Ia.
• If for some c, we get risc

6= rsbsc
or rsci 6= rscsb

, we conclude that i 6∈ Ib.

(Due to the above minimality property, this algorithm always decides whether
i 6∈ Ia or i 6∈ Ib.)

For every i, a, and b, this algorithm requires that we compute at most 6
values rxsc or rscx for each of k classes c, to the total of ≤ 6k computational
steps.

Once we know representatives s1, . . . , sk, we can determine the par-
tition (I1, . . . , Ik). Let us now show that once we know the representatives
s1, . . . , sk, we can assign each element i to the appropriate class Ia as follows.

In the beginning, we only know that i belongs to one of the classes Ia,
where a belongs to the k-element set S = {1, . . . , k}. We will show how we
can sequentially decrease this set – until we get a set consisting of a single
element.

Indeed, if the set S of possible classes containing i contains at least two
different classes a 6= b, then we can use the above algorithm to check whether
i 6∈ Ia or i 6∈ Ib. Whichever of the two conclusions we make, in both cases
we delete one element from the set S. So, after k − 1 steps, we get a set S
consisting of a single class a – and thus, we have computed the class to which
i belongs.

This computation takes k−1 applications of the above auxiliary algorithm.
So, overall, it takes (k − 1) · 6k = O(k2) steps. For a given k, this is simply a
constant.

Once we know a partition, we can check whether it leads to the ag-
gregation. In accordance with the above characterization of the aggregating
partition, once we know a partition I1, . . . , Ik, in order to determine whether
it leads to an aggregation, we need to check the following conditions:



Aggregation in Biological Systems: Computational Aspects 25

• for all i within each class Ia, the values ri are the same: ri = Ra (for some
value Ra);

• for all i, j ∈ Ia, we have rij + rji = 2;
• for every a 6= b, for all i ∈ Ia and j ∈ Ib, the ratios rij are the same:

rij = Bab (for some value Bab).

This checking requires checking all pairs (i, j), 1 ≤ i, j ≤ n, so it takes O(n2)
computational steps.

Final algorithm. For a given k, to check k-aggregability of a given Lotka-
Volterra system, we try all possible combinations of points s1, . . . , sk (1 ≤
sa ≤ n). For each of these combinations, we find the corresponding partition
and check if it leads to an aggregation.

If one of these partitions leads to an aggregation, the system is aggregable.
In the process, we have computed the partition, and we know the weights
αi = bii.

If none of the partitions leads to an aggregation, this means that the
original Lotka-Volterra system is not linearly k-aggregable.

Computation time. For each class a, there are n values choices of sa. We
need to make this choice for k different classes, so we test nk possible tuples
(s1, . . . , sk). For each tuple, we take O(n2) time, so the overall computation
time is nk ·O(n2) = O(nk+2).

For a fixed k, this is polynomial time. The proposition is proven.

Comment. It is important to emphasize that while for every given k, the
algorithm is polynomial, but its computation time grows exponentially with
k. It is not clear whether it is possible to have an algorithm whose computation
time grows polynomially with k as well.

Conclusions and Open Problems

Aggerability is an important property of biological systems, a property that
simplifies their analysis. In view of this importance, it is desirable to be able
to detect aggregability of a given system.

In our previous papers, we analyzed the problem of detecting and iden-
tifying aggregability for linear systems. We showed that this problem is, in
general, computationally difficult (NP-hard). We also showed that, once an ag-
gregating partition of microvariables x1, . . . , xn into classes I1, . . . , Ik is iden-
tified, we can efficiently compute the weights αi describing the corresponding
macrovariables ya =

∑
i∈Ia

αi · xi.

In this paper, we extend our analysis in two different directions. First,
we consider conditional aggregability, i.e., aggregability of modular states. For
linear systems, we get results similar to general (unconditional) aggregability:
the problem of identifying conditional aggregability is, in general, NP-hard,



26 Vladik Kreinovich and Max Shpak

but once a partition is identified, we can efficiently compute the corresponding
weights.

Second, we consider a biologically important case of non-linear systems:
Lotka-Volterra systems with interspecific competition. For such systems, we
have designed an efficient (polynomial-time) algorithm for identifying aggre-
gability and computing the corresponding weights.

It is desirable to further extend these results. For conditional aggregabil-
ity, it would be great to extend our results about conditional aggregability to
situations like linkage equilibrium, when we have a non-linear relation depen-
dence of microvariables on the macrovariables. For non-linear systems, it is
desirable to extend our non-linear results to Lotka-Volterra systems without
intraspecial competition, and to other biologically relevant classes of non-
linear systems. It is also desirable to extend our results to aggregations in
which blocks Ia are allowed to overlap but remain smaller than the set of all
the microvariables.

Acknowledgments.

This work was supported in part by NSF grants HRD-0734825, EAR-0225670,
and EIA-0080940, and by Texas Department of Transportation grant No. 0-
5453.

References

1. Barton NH, Shpak M (2000) The stability of symmetric solutions to polygenic
models. Theoretical Population Biology 57:249–263

2. Cormen T, Leiserson CE, Rivest RL, Stein C (2001), Introduction to Algo-
rithms, MIT Press, Cambridge, MA

3. Courtois PJ (1977) Decomposability: queueing and computer system applica-
tions. Academic Press, New York

4. Iwasa Y, Andreasen V, Levin SA (1987) Aggregation in model ecosystems. I.
Perfect aggregation. Ecological Modelling 37:287–302

5. Iwasa Y, Levin SA, Andreasen V (1989) Aggregation in model ecosystems. II.
Approximate aggregation. IMA Journal of Mathematics Applied in Medicine
and Biology 6:1–23

6. Kreinovich V, Shpak M (2006) Aggregability is NP-hard. ACM SIGACT,
37(3):97–104

7. Kreinovich V, Shpak M (2007) Decomposable aggregability in population ge-
netics and evolutionary computations: algorithms and computational complex-
ity. In: Kelemen, A (ed.), Computational Intelligence in Medical Informatics,
Springer-Verlag (to appear).

8. Laubichler MD, Wagner GP (2000) Organism and character decomposition:
Steps towards an integrative theory of biology. Philosophy of Science 67:289–
300.

9. Lewonwtin RC (1974) The Genetic Basis of Evolutionary Change, Columbia
University Press, New York



Aggregation in Biological Systems: Computational Aspects 27

10. Lewonwtin RC, Kojima K-i (1960) The evolutionary dynamics of complex poly-
morphisms. Evolution 14(4):485–472

11. MacArthur R, Levins R (1967) The limiting similarity, convergence and diver-
gence of coexisting species. American Naturalist 101:377385.

12. May, RM (1973) Stability and Complexity in Model Ecosystems, Princeton
University Press, Princeton, NJ

13. Moey CCJ, Rowe JE (2004). Population aggregation based on fitness. Natural
Computing 3(1):5–19

14. Rabani Y, Rabinovich Y, Sinclair A (1995) A computational view of popula-
tion genetics. Proceedings of the 1995 Annual ACM Symposium on Theory of
Computing, Las Vegas, Nevada, 83–92

15. Rabani Y, Rabinovich Y, Sinclair A (1998) A computational view of population
genetics. Random Structures & Algorithms 12(4):313–334

16. Rabinovich Y, Sinclair A, Wigderson A (1992) Quadratic dynamical systems.
Proc. 33rd Annual Symp. on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, California, 304–313

17. Rowe J (1998) Population fixed-points for functions of unitation. In: Reeves
C, Banzhaf W (Eds), Foundations of Genetic Algorithms, Morgan Kaufmann
Publishers, Vol. 5

18. Rowe JE, Vose MD, Wright AH (2005). Coarse graining selection and mu-
tation. In: Proceedings of the 8th International Workshop on Foundations of
Genetic Algorithms FOGA’2005, Aizu-Wakamatsu City, Japan, January 5–9,
2005, Springer Lecture Notes in Computer Science, Vol. 3469, pp. 176–191

19. Rowe JE, Vose MD, Wright AH (2005) State aggregation and population dy-
namics in linear systems. Artificial Life 11(4):473–492

20. Shpak M, Gavrilets S (2005) Population genetics: multilocus. In: Encyclopedia
of Life Sciences, Wiley, Chichester, 2005, http://www.els.net/

21. Shpak M, Kondrashov AS (1999) Applicability of the hypergeometric pheno-
typic model to haploid and diploid production. Evolution 53(2):600–604

22. Shpak M, Stadler PF, Wagner GP, Hermisson J (2004) Aggregation of variables
and system decomposition: application to fitness landscape analysis. Theory in
Biosciences 123:33–68

23. Shpak M, Stadler PF, Wagner GP, Altenberg L (2004). Simon-Ando decompos-
ability and mutation-selection dynamics. Theory in Biosciences 123:139–180

24. Simon H, Ando F (1961) Aggregation of variables in dynamical systems. Econo-
metrica 29:111–138

A What is NP-Hardness: A Brief Description

For readers who are not very familiar with the notion of NP-hardness, this
Appendix provides a brief and informal explanation.

The complexity of a computational problem is usually described by the
computation time that is needed to solve this problem. This time grows with
the number of variables (and with the number of bits which are needed to
represent each of these variables).

For some computational problems, this time grows as a polynomial of the
size n of the input. For example, the standard algorithms for multiplying



28 Vladik Kreinovich and Max Shpak

two n × n matrices or solving a system of linear equations with n unknowns
grows as const ·n3. For large n, this is still feasible. These problems are called
polynomial time (or P, for short), and the class of such problem is denoted
by P.

For some other computational problems, however, the computation time
grows exponentially with n, as 2n or even faster. For example, this growth
occurs when we need to search for a subset of the set of n variables, and
we need to do an exhaustive search over all 2n subsets in order to find the
desired set. For such algorithms, for reasonable n ≈ 300 − 400, the number
of computational steps exceeds the number of particles in the Universe; thus,
such exhaustive-search algorithms are not practically feasible.

In most of these problems, once we have guessed a solution, we can check,
in feasible (polynomial) time, whether this guess is indeed a correct solu-
tion. Such problems can be “solved” in polynomial time on a hypotheti-
cal “non-deterministic” machine, i.e., on a Turing machine that allows non-
deterministic (= guess) steps. Because of this possibility, these problems are
usually called non-deterministic polynomial (NP, for short), and the class of
such problems is denoted by NP.

Most computer scientists believe that there are problems in the class NP
which cannot be solved in polynomial time, i.e., that NP 6=P; however, this
has not been proven yet.

Not all the problems from the class of NP are of the same complexity.
Some problems from the class NP – e.g., the problem of solving systems of
linear equations – are relatively easy in the sense that they can be solved by
polynomial time algorithms. Some problem are more difficult than others –
because we can reduce every particular case of the first problem to special
cases of the second problem. For example, we can reduce solution of a system
of linear equations to solving quadratic equations (with 0 coefficients at x2

i );
this means that the general problem of solving systems of quadratic equations
is more difficult (or at least not less difficult) than the general problem of
solving systems of linear equations.

Some general problems from the class NP are known to be the most difficult
ones, in the sense that every other problem from the class NP can be reduced
(in the above sense) to this particular problem. Such problems are called NP-
complete. A similar notion of complexity can be extended to problems outside
the class NP, for which we may not know how to check the correctness of the
proposed solution in polynomial time. If any problem from the class NP can
be reduced to such a problem, then this problem is called NP-hard. In these
terms, a problem is NP-complete if it is NP-hard and belongs to the class NP.

It is worth mentioning that even if a general problem is NP-hard, its
particular instance may be easy to solve. There may be efficient algorithms
which solve particular instances from an important subclass of an NP-hard
problem, there may be efficient heuristics which, in many cases, solve these
problems.


