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Summary. In many practical situations, we are not satisfied with the accuracy of
the existing measurements. There are two possible ways to improve the measurement
accuracy:

e first, instead of a single measurement, we can make repeated measurements; the
additional information coming from these additional measurements can improve
the accuracy of the result of this series of measurements;

e second, we can replace the current measuring instrument with a more accurate
one; correspondingly, we can use a more accurate (and more expensive) measure-
ment procedure provided by a measuring lab — e.g., a procedure that includes
the use of a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements with
a more accurate measuring instrument. What is the appropriate trade-off between
sample size and accuracy? In our previous paper, we solved this problem for the case
of static measurements. In this paper, we extend the results to the case of dynamic
measurements.

1 Formulation of the problem

In some practical situations, we want to know the value of the measured
quantity with the accuracy which is higher than the guaranteed accuracy of a
single measurement. There are two possible ways to improve the measurement
accuracy:

e first, instead of a single measurement, we can make several (n) measure-
ments;

e second, we can replace the current measuring instrument with a more
accurate one.

What is the appropriate trade-off between sample size and accuracy? In our
previous paper [11], we analyzed this problem for the case when we measure a
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static quantity, i.e., a quantity which does not change with time. In this paper,
we extend the results from [11] to the general case of dynamic measurements,
when the measured quantity changes over time.

For such dynamic quantities, we may have two different objectives:

e We may be interested in knowing the average value of the measured quan-
tity, e.g., the average concentration of a pollutant in a lake or the average
day temperature. In addition to to knowing the average, we may also want
to know the standard deviation and/or other statistical characteristics.

e We may also want to know not only the average, but also the actual
dependence of the measured quantity on space location and/or time.

For example:

e If we interested in general weather patterns, e.g., as a part of the clima-
tological analysis, then it is probably sufficient to measure the average
temperature (or the average wind velocity) in a given area.

e On the other hand, if our intent is to provide the meteorological data to
the planes flying in this area, then we would rather know how exactly the
wind velocity depends on the location, so that the plane will be able to
avoid locations where the winds are too strong.

In this paper, we analyze the trade-off between accuracy and sample size for
both objectives.

2 First objective: measuring the average value of a
varying quantity

Case of ideal measuring instruments: analysis. Let us start to analyze
this situation with the case of an ideal measuring instrument, i.e., a measuring
instrument for which the measurement errors are negligible.

By using this ideal instrument, we can measure the value of the quantity of
interest at different points and at different moments of time. After we perform
n measurements and get n measurement results x1,...,x,, a natural way to

estimate the desired mean value xy = FE[z] of z is to use the arithmetic

r1+...+2x .
average F def P17 n of these measured values. Tt is reasonable to

n
assume that the differences z; — x¢ are independent random variables, with a
known standard deviation og.

In this case, due to the Central Limit Theorem, for large n, the differ-

ence Az def FE — z¢ between the estimate E and the desired value xq is

approximately normally distributed with 0 average sand standard deviation
oo/ v/n.

So, even for measurements with the ideal measuring instrument, the result
E of measuring xg is not exact; we can only guarantee (with the corresponding
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level of confidence) that the measurement error Az is bounded by the value
ko - o0//n.

Comment. If we do not know this standard deviation, we can estimate it
based on the measurement results z1, ..., x,, by using the standard statistical
formulas, such as

n—1

1 n
op ~ Z(Z’Z—E)2
i=1

Case of ideal measuring instruments: recommendations. In the case of
ideal measuring instruments, if we want to achieve the desired overall accuracy
Ag with a given confidence, then the sample size n must be determined by
the condition that kg - 09/v/n < Ag, where kg corresponds to this confidence:

e 95% confidence corresponds to kg = 2,
99.9% corresponds to ky = 3, and
e confidence 1 — 107%% corresponds to ky = 6.

L ko-oo . kg - o5
The above condition is equivalent to y/n > OA O, ie., ton > OA2 Y To
0 0
minimize the measurement costs, we must select the smallest sample size for
-0
which this inequality holds, i.e., select n ~ ~2 2 0
0

Case of realistic measuring instruments: description. In practice, mea-
suring instruments are not perfect, they have measurement errors. Usually, we
assume that we know the standard deviation o of the corresponding measure-
ment error, and we know the upper bound A on the possible values of the
mean (systematic) error A — s: |Ag] < A; see, e.g., [14].

Case of realistic measuring instruments: analysis. For realistic measur-
ing instruments, for each measurement, the difference Ax; = x; — x; between
the measured and actual values of the quantity of interest is no longer negli-
gible.

In this case, based on n measurement results 1, ..., Z,, we do not get the
arithmetic average E of the actual values, we only get the average

14 ...+ Ty

n

E =
of the measured values. We are using this average E as an estimate for the

desired average xg. There are two reasons why F is different from xzg:

e first, due to measurement errors, ; # x;, hence E #+ B,
e second, due to the finite sample size, E # xg.
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As a result, the error Azg with which this procedure measures xg, i.e., the

difference Axg ef B Tg, can be represented as the sum of two error compo-
nents: _ _
E—2y=(FE—FE)+ (E—x). (1)

If we use a measuring instrument whose mean (systematic) error is A, and
standard deviation is o, then for the difference of arithmetic averages, the
mean is the same value A, (systematic error) and the standard deviation is
v/n times smaller: it is equal to o/y/n. We have just described the difference
E — z: it is a random variable with 0 mean and standard deviation og/+/n.

Since the mean value of E — z( is 0 (by definition of zy as the mean of
x;), the mean value of the sum (1) is equal to the mean value of the first error
component, i.e., to Ag.

It is reasonable to assume that the measurement errors z; — x; (caused by
the imperfections of the measurement procedure) and the deviations x; —
(caused by variability of the quantity of interest) are independent random
variables. In this case, the variance of the sum (1) is equal to the sum of the
corresponding variances, i.e., to

where we denoted oy def \/0? + o3. Hence, the standard deviation of the total
error is equal to a;/y/n.

So, the measurement error E-— xo is approximately normally distributed,
with the mean A, (about which we know that |Ag| < A) and the standard
deviation o¢/+/n. Thus, we can conclude that with a selected degree of confi-
dence, the overall error cannot exceed A + ko - oy

Vn
Case of realistic measuring instruments: recommendations. From the
purely mathematical viewpoint, when the standard deviation ¢ of a measuring
instrument is fixed, then, to determine A and n, we get exactly the same
formulas as in the case of static measurements, with the only difference that:

e instead of the standard deviation o of the random error component of the
measuring instrument,
e we now have the combined standard deviation o; = /02 +U§ of the

measuring instrument and of the measured quantity.

So, all the recommendations that we have developed in [11] for static mea-
surements are also applicable here.

Example. If we want to achieve a given accuracy Ay with the smallest pos-
sible cost, then, according to [11], we should use the measuring instrument

with accuracy A =~ (1/3) - Ag. The sample size n is then determined by the

formula kg - gt _ (2/3) - Ao.

NG
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For measuring average, the optimal accuracy A if the same as for static
measurements, but the optimal sample size is now determined by a new for-
9-k3 o

1 A2
larger sample size n.

mula nepy = , with o; instead of o. Since o, > o, we will need a

3 Second objective: measuring the actual dependence of
the measured quantity on space location and/or on time

Formulation of the problem. In many real-life situations, we are interested
not only in the average value of the measured quantity x, we are also interested
in the actual dependence of this quantity on space and/or time.

Within this general scheme, there are several possible situations:

e We may have a quantity that does not depend on a spatial location but
does depend on time — e.g., we may be interested in the temperature at a
given location. In this case, we are interested to learn how this quantity
x depends on the time ¢, i.e., we are interested to know the dependence
x(t).

e We may be interested in a quantity that does not change with time but
does change from one spatial location to the other. For example:

— in a geographic analysis, we may be interested in how the elevation z
depends on the 2-D spatial location t = (t1,t2);

— in a geophysical analysis, we may be interested how in the density
depends on a 3-D location t = (t1,t2,t3) inside the Earth.

e Finally, we may be interested in a quantity that changes both with time
and from one spatial location to the other. For example:

— we may be interested in learning how the surface temperature depends
on time ¢; and on the 2-D spatial location (t3,t3);

— we may be also interested in learning how the general temperature in
the atmosphere depends on time ¢; and on the 3-D spatial location

(t2, 13, ta).
In all these cases, we are interested to know the dependence z(t) of a mea-
sured quantity on the point ¢ = (¢1,...,tq4) in d-dimensional space, where the

dimension d ranges from 1 (for the case when we have a quantity depending
on time) to 4 (for the case when we are interested in the dependence both on
time and on the 3-D spatial location).

Measurement inaccuracy caused by the finiteness of the sample.
In practice, we can only measure the values of x at finitely many different
locations, and we must use extrapolation to find the values at other locations.
So, even if we use a perfect measuring instrument, for which the measurement
error can be ignored, we still have an error cause by extrapolation.

For example, suppose that we have measured the values x(t(i)) of the
quantity z at moments of time t() < t@& < ... < t( and we want to
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describe the value z(t) of this quantity at a different moment of time ¢ # t(9),
a moment of time at which no measurement has been made.

In practice, for most systems, we know the limit g on how fast the value of
the quantity = can change with time (or from one spatial location to the other).
So, when, e.g., t1) < t < t(2) we can conclude that |2(t)—z(t™M)] < g-[t—t()],
i.e., that x(t) € [¢(tM)) — g - |t —tW], 2(tW) + g - |t — tM]]. Thus, even when
we have an ideal measuring instrument, the fact that we only have a finite
sample t() ... (™ leads to uncertainty in our knowledge of the values z(t)
for t # 29,

Estimate of the measurement uncertainty for a given measurement
accuracy and given sample size. Let us consider a general situation when
we perform measurements with a guaranteed accuracy A, and when we mea-
sure the quantity z at n different points t(), ... ¢(™ in the d-dimensional
space. As a result of this measurement, we get n values Z; that are A-
close to the actual values of the quantity x at the corresponding point ¢(*):
|7 — 2(tD)] < A.

If we are interested in the value z(t) of the quantity  at a point t # ¢(?)
then we have to use one of the measured values ;.

We assume that we know the rate g with which z(¢) changes with ¢. Thus, if
we use the the result Z; of measuring x(t(i)) to estimate x(t), we can guarantee
that |2(t™) — 2(t)| < g - p(t,t?), where p(a,b) denotes the distance between
the two points in the d-dimensional space. Since |T; — z(t®)| < A, we can
thus conclude that |Z; —z(t)| < |Z; —2(tD)|+|z(tD) —z(t)| < A+g-p(t, D),
ie.,

17— ()] < A+ g-plt, t@). (2)

Thus, the smaller the distance between ¢t and t(, the smaller the resulting
error. So, to get the most accurate estimate for z(t), we must select, for this
estimate, the point ¢(*) which is the closest to t.

In general, once we fix the accuracy A, the sample size n, and the points
tM ..t at which the measurement are performed, we can guarantee that
for every t, the value x(t) can be reconstructed with the accuracy A+ g - po,
where pg is the largest possible distance between a point ¢ and the sample set
{tM ey,

Thus, once we fixed A and n, we should select the points ¢ in such a
way that this “largest distance” py attains the smallest possible value.

In the 1-D case, the corresponding allocation is easy to describe. Indeed,
suppose that we want to allocate such points ¢ on the interval [0,T]. We
want to minimize the distance pg corresponding to a given sample size n — or,
equivalently, to minimize the sample size given a distance pg. Every point ¢
is po-close to one of the sample points t(), so it belongs to the corresponding
interval

[t — po, t™ + py).

Thus, the interval [0,7] of width T is covered by the union of n intervals
[t(i) — po, % + po] of widths 2p9. The width T of the covered interval cannot
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exceed the sum of the widths of the covering intervals, so we have T' < n-(2po),
hence always pg > T'/(2n). Actually, we can have py = T/2n if we select the
points t*) = (i — 0.5) - (T/n). Then:

e for the values t € [0,7'/n], we take, as the estimate for x(¢), the result ;
of measuring z(tV)) = z(T/(2n));

e for the values t € [T/n,2T/n], we take, as the estimate for (), the result
Ty of measuring x(t?)) = x((3/2) - (T/n));

for the values t € [(i — 1) - T'/n,i - T/n], we take, as the estimate for x(¢),
the result T; of measuring z(t") = z((i — 1/2) - (T/n));

So, the optimal location of points is when they are on a grid t) = 0.5- T/n,
t? =1.5-T/n, t® =2.5.T/n, ..., and each point t(?) “serves” the values t
from the corresponding interval [(i—1)-T/n,i-T/n] (the interval that contains
this point ¢t as its center), serves in the sense that for each point ¢ from this
interval, as the measured value of x(t), we take the value (). These intervals
corresponding to individual points () cover the entire interval [0, 7] without
intersection,

In this optimal location, when we perform n measurements, we get pg =
T/(2n).

Similarly, in the general d-dimensional case, we can place n points on a
d-dimensional grid. In this case, each point t() “serves” the corresponding
cube; these cubes cover the whole domain without intersection. If we denote,
by V, the d-dimensional volume of the spatial (or spatio-temporal) domain
that we want to cover, then we can conclude that each point z(?) serves the
cube of volume V/n. Since the volume of a d-dimensional cube of linear size
At is equal to (At)?, we can thus conclude that the linear size of each of the
cubes serves by a measurement point is (V/n)!/?.

Within this cube, each point ¢ is located at the center of the correspond-
ing cube. Thus, for each point ¢ within this cube and for each coordinate j,
the absolute value [t; — t;l)| between the j-th coordinate of this point ¢ and
the j-th coordinate of the cube’s center t(*) does not exceed one half of the
cube’s linear size: |t; — t§z)| < (1/2) - (V/n)'/4. Therefore, for

p(t, t@) = \/(751 - t§“)2 T (td - tg>)2,

1/d\ 2 1/d
Wy < ydef | (L (V _va. 1Y
p(t, t\") <p d (2 - Vd 5 i

We have already mentioned that for every point ¢, the accuracy with which
we can reconstruct z(t) is bounded by the value A+ g- pg. Thus, this accuracy

1 v
is bounded by A+g¢-Vd- = - ——.
2 nl/d

we get
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We are now ready to formally describe the corresponding trade-off prob-
lems.

Trade-off problems for engineering and science: formulation. In en-
gineering applications, we know the overall accuracy Ay, and we want to
minimize the cost of the resulting measurement. In this case, the trade-off
problem takes the following form:

Minimize n - F(A) — min under the constraint A + EBd =20, (3)
n
where F(A) is a cost of a single measurement made by a measuring instrument
with accuracy A, and we denoted

9o dﬁfg \[ Sy (4)

In scientific applications, when we are given the cost Fy, and the problem is to
achieve the highest possible accuracy within this cost. In this case, we arrive
at the following problem

90

Minimize A + id nAnn under the constraint n - F(A) = Fy.  (5)

Engineering situation: solution. For the basic cost model F(A) = ¢/A
[11], the engineering problem (3) has the following solution:

1 go d+1\*
Aopt:m'Ao; nopt<A0'd> . (6)

Similarly to the static case [11], the optimal trade-off between accuracy and
the sample size is attained when both error components are of approximately
the same size.

Science situation: solution. For the basic cost model F(A) = ¢/A, the
science problem (3) has the following solution:

d/(d+1)

F opt

Topt = 2. %0 ; Aopt = fopt C- (7)
C d F()

In this case too, in the optimal trade-off, the error bound coming from the ac-
curacy of individual measurements is approximately equal to the error bound
coming from the finiteness of the sample.

Case of non-smooth processes: how to describe them. In the above
text, we considered the case the dependence of the quantity x on time and/or
space t is smooth. In this case, for small changes At, this dependence can be
approximately described by a linear function x(t + At) = z(t) + g1 - At1 +
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..+ ga - Atg. So, if we know the upper bound g on the length ||(g1, ..., 94)ll
of the gradient of x(t), we can bound the difference x(t + At) — x(t) between
the values of the quantity z at close points ¢t + At and ¢ by the product
g- 1At =g-p(t,t + At).

In practice, we often encounter non-smooth processes. For example, mete-
orological data exhibit random change (similar to the Brownian motion); as
the result of this, the dependence of the corresponding quantities  on time
and spatial coordinates is not smooth.

For the particular case of a Brownian motion, the difference between the
values of the quantity = at nearly points grows as the square root of the dis-
tance between these points: |z(t + At) — z(t)] < C - ||At||*/? for some real
number C. In many physical processes, this dependence can be described by
a more general power law, i.e., |z(t + At) — x(t)] < C - ||At||® for some real
numbers C' and # € (0,1). Such processes are a particular case of fractals;
see, e.g., [9] (This notion is closely related with the notion of a fractal dimen-
sion: namely, the graph of the corresponding dependence z(t) has a fractal
dimension d + (1 — 3).)

In [10], it is explained why scale invariance naturally leads to the power
law — and thus, to the fractal dependence.

Measurement errors in the case of non-smooth processes. Let us use
these formulas to estimate measurement errors for the case of non-smooth pro-
cesses. We have already mentioned that if we perform (appropriately located)
n measurements in a d-dimensional space, then the distance from each point
t of the domain of interest to one of the points ¢(* in which the measurement
1 v
3

In the fractal case, we can conclude that the error of approximating the
desired value x(t) with the measured value z(t(*)) does not exceed C - p°.
Thus, if we perform n measurements with a measuring device of accuracy A,
the resulting accuracy in reconstructing all the values of z(¢) is bounded by
the value

was made does not exceed py = Vd -

A+C-pl=A+C-d°2.

28 pprd At

where we denoted

def ~ g2 1 1
g = C-d 5874 vere,

Trade-off problems for engineering and science: formulation and
solution. In the situation when we know the overall accuracy 4y, and we
want to minimize the cost of the resulting measurement, the trade-off problem
takes the following form:

Minimize n - F(A) under the constraint A + % = Ap. (8)
n
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In the situation when we are given the limit Fjy on the cost, and the problem
is to achieve the highest possible accuracy within this cost, we arrive at the
following problem

Minimize A + %i/d under the constraint n - F(A) = Fy. (9)
n

From the mathematical viewpoint, these formulas are similar to the formu-
las corresponding to the smooth case, with the only difference that instead of

raising n to the power 1/d, we now raise n to the power 1/d’, where d’ def d/g.
Thus, for the basic cost model F(A) = ¢/A [11], the engineering problem
has the following solution:

8 95 d+p5\"
Aopt = m . AO; nOpt = KO . T . (10)
For the basic cost model F(A) = ¢/A, the science problem has the following

solution:
B g\ /D) .
Nopt = 2. gﬁ ; Aopt = Dopt C' (11)
C d FO

in this case too, in the optimal trade-off, both error components are of ap-
proximately the same value.

Case of more accurate measuring instruments. In [11], we have shown
that for more accurate measuring instrument, the cost F'(A) of a measurement
depends on its accuracy as F'(A) = ¢/A%. Once we go beyond the basic cost
model o = 1, we get o = 3, and then, as we increase accuracy, we switch to
a different value a.

For such a power law, in the engineering case, the optimal accuracy is

«
Aopt =

—— - Ap. In particular, for o = 3, we have Agpy = = - Ap.
o+ 2

5

4 Case study: in brief

A real-life example in which we used similar arguments to made a selection
between the accuracy and the sample size is the design of radioastronomical
telescope system [1, 2, 3, 4, 5, 7, 8]. As we have mentioned, for the radiotele-
scope of diameter D, the measurement accuracy is proportional to A/D, and
the cost is proportional to D?.

The design of a large system of radiotelescopes has several objectives:

e first, we would like to solve radioastrometry problems, i.e., determine the
location of the radiosources with as much accuracy as possible;

e second, we would like to solve the radioimaging problems, i.e., for each of
the radiosources, we would like to know not only its location, but also its
image — i.e., how the intensity (and polarization) of the source changes
from one point of this source to the other.
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In the first problem, we are interested in measuring a well-defined unchang-
ing quantity. In the second problem, we are interested in finding the actual
dependence of the measured quantity on the spatial location.

In the second problem, similar to what we discussed in the general case,
the more samples we take (i.e., the more telescopes we build), the more points
we will get on the image. On the other hand, within a given overall cost, if we
build more telescopes, then the amount of money allocated to each telescope
will be smaller, so each telescope will be small (D’ < D), and the resulting
accuracy A ~ 1/D of each of the many measurements will be not so good.

In our analysis, we have found an optimal trade-off between accuracy and
sample size. This analysis was used in the design of the successful Russian
network of radiotelescopes.

5 Conclusions

In general, if the measurement error consists of several components, then the
optimal trade-off between the accuracy A and the same size n occurs when
these components are approximately of the same size.

In particular, if we want to achieve the overall accuracy Ay, as a first
approximation, it is reasonable to take A = Ag/2 — and select the sample size
for which the resulting overall error is Ag.

A more accurate description of optimal selections in different situations is
as follows:

e for the case when we measure a single well-defined quantity (or the average
1
value of varying quantity), we should take A = = - Ag;

e for the case when are interested in reconstructing all the values z(t) of a

smooth quantity x depending on d parameters t = (t1,...,tq), we should
1
take A = —— - Ay;
d+1 7°
e for the case when are interested in reconstructing all the values z(t) of
a non-smooth quantity x depending on d parameters t = (¢1,...,tq), we
should take A = 117 - Ag, where (8 is the exponent of the power law

that describes how the difference z(t + At) — z(t) changes with || A¢|.
For the case of more accurate measuring instruments, when the cost F'(A) of

a single measurement starts growing as ¢/A3, we should take A = 5 Ag. In
general, if F(A) = ¢/A%, we should take A = j_ 5" Ap.
o
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