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Computing statistics is important. In many engineering applications, we
are interested in computing statistics. For example, in environmental analysis,
we observe a pollution level x(t) in a lake at different moments of time t, and
we would like to estimate standard statistical characteristics such as mean,
variance, autocorrelation, correlation with other measurements.

For each of these characteristics C, there is an expression C(x1, . . . , xn)
that enables us to provide an estimate for C based on the observed values
x1, . . . , xn. For example:

• a reasonable statistic for estimating the mean value of a probability dis-

tribution is the population average E(x1, . . . , xn) =
1
n
· (x1 + . . . + xn);

• a reasonable statistic for estimating the variance V is the population vari-

ance V (x1, . . . , xn) =
1
n
·

n∑

i=1

(xi − E)2.

Comment. The population variance is often computed by using an alternative

formula V = M−E2, where M =
1
n
·

n∑
i=1

x2
i is the population second moment.

Comment. In many practical situations, we are interested in an unbiased esti-

mate of the population variance Vu(x1, . . . , xn) =
1

n− 1
·

n∑

i=1

(xi−E)2. In this

dissertation, we will describe how to estimate V under interval uncertainty;
since Vu =

n

n− 1
· V , we can easily transform estimates for V into estimates

for Vu.

Interval uncertainty. In environmental measurements, we often only mea-
sure the values with interval uncertainty. For example, if we did not detect any
pollution, the pollution value v can be anywhere between 0 and the sensor’s
detection limit DL. In other words, the only information that we have about
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v is that v belongs to the interval [0, DL]; we have no information about the
probability of different values from this interval.

Another example: to study the effect of a pollutant on the fish, we check
on the fish daily; if a fish was alive on Day 5 but dead on Day 6, then the
only information about the lifetime of this fish is that it is somewhere within
the interval [5, 6]; we have no information about the distribution of different
values in this interval.

In non-destructive testing, we look for outliers as indications of possible
faults. To detect an outlier, we must know the mean and standard deviation
of the normal values – and these values can often only be measured with
interval uncertainty; see, e.g., [38]. In other words, often, we know the result
x̃ of measuring the desired characteristic x, and we know the upper bound ∆

on the absolute value |∆x| of the measurement error ∆x
def= x̃− x (this upper

bound is provided by the manufacturer of the measuring instrument), but we
have no information about the probability of different values ∆x ∈ [−∆,∆].
In such situations, after the measurement, the only information that we have
about the true value x of the measured quantity is that this value belongs to
interval [x̃−∆, x̃ + ∆].

In geophysics, outliers should be identified as possible locations of minerals;
the importance of interval uncertainty for such applications was emphasized
in [34, 35]. Detecting outliers is also important in bioinformatics [41].

In bioinformatics and bioengineering applications, we must solve systems
of linear equations in which coefficients come from experts and are only known
with interval uncertainty; see, e.g., [48].

In biomedical systems, statistical analysis of the data often leads to im-
provements in medical recommendations; however, to maintain privacy, we
do not want to use the exact values of the patient’s parameters. Instead, for
each parameter, we select fixed values, and for each patient, we only keep the
corresponding range. For example, instead of keeping the exact age, we only
record whether the age is between 0 and 10, 10 and 20, 20 and 30, etc. We
must then perform statistical analysis based on such interval data; see, e.g.,
[23].

Estimating statistics under interval uncertainty: a problem. In all
such cases, instead of the true values x1, . . . , xn, we only know the intervals
x1 = [x1, x1], . . . ,xn = [xn, xn] that contain the (unknown) true values of the
measured quantities. For different values xi ∈ xi, we get, in general, differ-
ent values of the corresponding statistical characteristic C(x1, . . . , xn). Since
all values xi ∈ xi are possible, we conclude that all the values C(x1, . . . , xn)
corresponding to xi ∈ xi are possible estimates for the corresponding statis-
tical characteristic. Therefore, for the interval data x1, . . . ,xn, a reasonable
estimate for the corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
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We must therefore modify the existing statistical algorithms so that they
compute, or bound these ranges. This is the problem that we will be solving
in this dissertation.

This problem is a part of a general problem. The above range estima-
tion problem is a specific problem related to a combination of interval and
probabilistic uncertainty. Such problems – and their potential applications –
have been described, in a general context, in the monographs [30, 42]; for fur-
ther developments, see, e.g., [4, 5, 6, 7, 16, 19, 32, 33, 39, 40, 43] and references
therein.

Mean. Let us start our discussion with the simplest possible characteristic:
the mean. The arithmetic average E is a monotonically increasing function of
each of its n variables x1, . . . , xn, so its smallest possible value E is attained
when each value xi is the smallest possible (xi = xi) and its largest possible
value is attained when xi = xi for all i. In other words, the range E of E is

equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other words, E =
1
n
·(x1 + . . .+xn)

and E =
1
n
· (x1 + . . . + xn).

Variance: computing the exact range is difficult. Another widely used
statistic is the variance. In contrast to the mean, the dependence of the vari-
ance V on xi is not monotonic, so the above simple idea does not work. Rather
surprisingly, it turns out that the problem of computing the exact range for the
variance over interval data is, in general, NP-hard [17] which means, crudely
speaking, that the worst-case computation time grows exponentially with n.
Specifically, computing the upper endpoint V of the range [V , V ] is NP-hard.
Moreover, if we want to compute the variance range or V with a given ac-
curacy ε, the problem is still NP-hard. (For a more detailed description of
NP-hardness in relation to interval uncertainty, see, e.g., [22].)

Linearization. From the practical viewpoint, often, we may not need the
exact range, we can often use approximate linearization techniques. For ex-
ample, when the uncertainty comes from measurement errors ∆xi, and these
errors are small, we can ignore terms that are quadratic (and of higher or-
der) in ∆xi and get reasonable estimates for the corresponding statistical
characteristics. In general, in order to estimate the range of the statistic
C(x1, . . . , xn) on the intervals [x1, x1], . . . , [xn, xn], we expand the func-
tion C in Taylor series at the midpoint x̃i

def= (xi + xi)/2 and keep only
linear terms in this expansion. As a result, we replace the original statis-

tic with its linearized version Clin(x1, . . . , xn) = C0 −
n∑

i=1

Ci · ∆xi, where

C0
def= C(x̃1, . . . , x̃n), Ci

def=
∂C

∂xi
(x̃1, . . . , x̃n), and ∆xi

def= x̃i − xi. For each

i, when xi ∈ [xi, xi], the difference ∆xi can take all possible values from
−∆i to ∆i, where ∆i

def= (xi − xi)/2. Thus, in the linear approximation, we
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can estimate the range of the characteristic C as [C0 − ∆,C0 + ∆], where

∆
def=

n∑
i=1

|Ci| ·∆i.

In particular, if we take, as the statistic, the population variance C = V ,

then Ci =
∂V

∂xi
=

2
n
· (x̃i − Ẽ), where Ẽ is the average of the midpoints x̃i,

and C0 =
1
n
·

n∑

i=1

(x̃i − Ẽ)2 is the variance of the midpoint values x̃1, . . . , x̃n.

So, for the variance, ∆ =
2
n
·

n∑

i=1

|x̃i − Ẽ| ·∆i.

It is worth mentioning that for the variance, the ignored quadratic term

is equal to
1
n
·

n∑

i=1

(∆xi)2 − (∆E)2, where ∆E
def=

1
n
·

n∑

i=1

∆xi, and therefore,

can be bounded by 0 from below and by ∆(2) def=
1
n
·

n∑

i=1

∆2
i from above. Thus,

the interval [V0 −∆,V0 + ∆ + ∆(2)] is a guaranteed enclosure for V.

Linearization is not always acceptable. In some cases, linearized esti-
mates are not sufficient: the intervals may be wide so that quadratic terms
can no longer be ignored, and/or we may be in a situation where we want to
guarantee that, e.g., the variance does not exceed a certain required threshold.
In such situations, we need to get the exact range – or at least an enclosure
for the exact range.

Since, even for as simple a characteristic as variance, the problem of com-
puting its exact range is NP-hard, we cannot have a feasible-time algorithm
that always computes the exact range of these characteristics. Therefore, we
must look for the reasonable classes of problems for which such algorithms
are possible. Let us analyze what such classes can be.

First class: narrow intervals. The main idea behind linearization is that
if the measurement errors ∆xi are small, we can safely ignore quadratic and
higher order terms in ∆xi and replace the original difficult-to-analyze ex-
pression by its easier-to-analyze linear approximation. The accuracy of this
techniques is determined by the size of the first term that we ignore, i.e., is
of size O(∆x2

i ). Thus, the narrower the intervals (i.e., the smaller the values
∆xi), the more accurate is the result of this linearization.

In real life, we want to compute the range with a certain accuracy. So,
when the intervals are sufficiently accurate, the results of linearization esti-
mation provide the desired accuracy and thus, we have a feasible algorithm
for solving our problem. When the intervals become wider, we can no longer
ignore the quadratic terms and thus, the problem becomes more computa-
tionally complex. In other words, when intervals are narrower, the problem of
computing statistics under interval uncertainty becomes easier. It is therefore
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reasonable to consider the case of narrow intervals as the first case in which
we can expect feasible algorithms for computing statistics of interval data.

How can we describe “narrowness” formally? The very fact that we are
performing the statistical analysis means that we assume that the actual val-
ues x1, . . . , xn come from a probability distribution, and we want to find the
statistical characteristics of this probability distribution. Usually, this distri-
bution is continuous: normal, uniform, etc. Formally, a continuous distribution
is a one for which a finite probability density ρ(x) exists for every x. In this
case, for every the real number a, the probability p =

∫ a+δ

a−δ
ρ(x) dx to have

a random value within an interval [a − δ, a + δ] is approximately equal to
ρ(a) · 2δ and thus, tends to 0 as δ → 0. This means that for every value a,
the probability to have a random value exactly equal to a is 0. In particular,
this means that with probability 1, all the values x1, . . . , xn randomly selected
from the original distribution are different.

The data intervals x1, . . . ,xn contain these different values x1, . . . , xn.
When the intervals xi surrounding the corresponding points xi are narrow,
these intervals do not intersect. When their widths becomes larger than the
distance between the original values, the intervals start intersecting.

Thus, the ideal case of “narrow intervals” can be described as the case
when no two intervals xi intersect.

Second class: slightly wider intervals. Narrow intervals can be described
as intervals which do not intersect at all. Namely, we have a set of (unknown)
actual values x1 < x2 < . . . < xn, and we have intervals around each value
which are so narrow that the neighboring intervals xi and xi+1 do not inter-
sect.

As the widths of the intervals increase, they start intersecting. At first,
only the neighboring intervals xi and xi+1 intersect, but intervals xi and xi+2

still do not intersect. As the widths increase further, intervals xi and xi+2

start intersecting, etc. When the intervals become very wide, all n intervals
intersect.

We can therefore gauge the degree of narrowness by the number of intervals
which have a common point.

Specifically, we define the case of slightly wider intervals as the situation
when for some integer K, no set of K intervals has a common intersection.
The case of narrow intervals correspond to K = 2, the next case is K = 3,
etc. – all the way to the general case K = n.

As we have mentioned, the narrower the intervals, the easier the corre-
sponding computational problem. Since the parameter K is a measure of this
narrowness, it is therefore reasonable to expect that feasible algorithms exist
in this case – at least for values of K which are not too large.

Third class: single measuring instrument. We have already mentioned
that one of the most widely used engineering techniques for dealing with
measurement uncertainty is linearlization. To be able to easily compute the
range C of a statistic C by using linearization, we must make sure not only
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that intervals are relatively narrow, but also that they are approximately of
the same size: otherwise, if, say, ∆x2

i is of the same order as ∆xj , we cannot
meaningfully ignore ∆x2

i and retain ∆xj . In other words, the interval data set
should not combine high-accurate measurement results (with narrow intervals)
and low-accurate results (with wide intervals): all measurements should have
been done by a single measuring instrument (or at least by several measuring
instruments of the same type).

The traditional linearization techniques only provide us with an approx-
imate range. However, as we will show, for some classes of problems, these
approximate estimates can be refined into an efficient computation of the ex-
act range. Because of this possibility, let us formulate, in precise terms, the
class of problems for which linearization is possible, i.e., the class of problem
for which all the measurements have been performed by a single measuring
instrument.

How can we describe this class mathematically? A clear indication that we
have two measuring instruments (MI) of different quality is that one interval
is a proper subset of the other one: [xi, xi] ⊆ (xj , xj).

This restriction only refers to not absolutely measurement results, i.e., to
non-degenerate intervals. In addition to such interval values, we may also have
machine-represented floating point values produced by very accurate measure-
ments, so accurate that we can, for all practical purposes, consider these values
exactly known. From this viewpoint, when we talk about measurements made
by a single measuring instrument, we may allow degenerate intervals (i.e.,
exact numbers) as well.

As we will see, the absence of such pairs is a useful property that enables
us to compute interval statistics faster. We will also see that this absence
happens not only for measurements made by a single MI, but also in several
other useful practical cases. Since this property is useful, we will give it a
name.

We say that a collection of intervals satisfies a subset property if [xi, xi] 6⊆
(xj , xj) for all i and j for which the intervals xi and xj are non-degenerate.

Fourth class: several MI. After the single MI case, the natural next case is
when we have several (m) MI, i.e., when our intervals are divided into several
subgroups each of which has the above-described subset property.

We have already mentioned that the case of a single MI is the easiest; the
more MI we involve, the more complex the resulting problem – all the way to
the general case m = n, when each measurement is performed by a different
MI.

Since the parameter m is a measure of complexity, it is therefore reasonable
to expect that feasible algorithms exist for the case of a fixed number m – at
least for the values of m which are not too large.

Fifth class: privacy case. In the previous text, we mainly emphasized that
measurement uncertainty naturally leads to intervals. It is worth mentioning,
however, that interval uncertainty may also come from other sources: e.g.,
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from the desire to protect privacy in statistical databases. Indeed, often, we
collect large amounts of data about persons – e.g., during census, or during
medical experiments. Statistical analysis of this data enables us to find useful
correlations between, e.g., age and effects of a certain drug, or between a ge-
ographic location and income level. Because of this usefulness, it is desirable
to give researchers an ability to perform a statistical analysis of this data.
However, if we simply researchers to receive answers to arbitrary queries and
publish the results of their analysis, then these results may reveal the infor-
mation from the databases which is private and not supposed to be disclosed.

One way to protect privacy is not to keep the exact actual values of the
privacy-related quantities such as salary or age in the database. Instead, we
fix a finite number of thresholds, e.g., 0, 10, 20, 30 years, and for each person,
we only record the corresponding age range: from 0 to 10, or from 10 to 20,
or from 20 to 30, etc. Since the actual values are not stored in the database
anymore, no queries can disclose these values.

So, this idea solves the privacy problem, but it opens up another prob-
lem: how can perform statistical processing on this privacy-related interval
data? Suppose that we are interested in the values of a statistical character-
istic C(x1, . . . , xn). If we knew the actual values x1, . . . , xn, then we could
easily compute the value of this characteristic. However, in case of privacy-
related interval uncertainty, all we know is intervals xi = [xi, xi] of possible
values of xi. Different values xi ∈ xi lead, in general, to different values of
C(x1, . . . , xn). So, a reasonable idea is to return the range of possible values
of the characteristic C(x1, . . . , xn) when xi ∈ xi.

From the algorithmic viewpoint, we get the same problem as with
measurement-related interval uncertainty: find the range of the given char-
acteristic C(x1, . . . , xn) on given intervals x1, . . . ,xn. The difference between
this case and the two previous cases is that, in the first two cases, we do not
know the exact values, while in this case, in principle, it is possible to get the
exact value, but we do not use the exact values, because we want to protect
privacy.

From the mathematical viewpoint, privacy-related intervals have the fol-
lowing property: they either coincide (if the value corresponding to the two
patients belongs to the same range) or are different, in which case they in-
tersect in at most point. Similarly to the above situation, we also allow exact
values in addition to ranges; these values correspond, e.g., to the exact records
made in the past, records that are already in the public domain.

We will call interval data with this property – that every two non-
degenerate intervals either coincide or intersect in at most one point – privacy
case.

Comment. For the privacy case, the subset property is satisfied, so algorithms
that work for the subset property case work for the privacy case as well.

Comment. Sometimes, in the privacy-motivated situation, we must process
interval data in which intervals come from several different “granulation”
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schemes. For example, to find the average salary in North America, we may
combine US interval records in which the salary is from 0 to 10,000 US dollars,
from 10,000 to 20,000, etc., with the Canadian interval records in which the
ranges are between 0 to 10,000 Canadian dollars, 10,000 to 20,000 Canadian
dollars, etc. When we transform these records to a single unit, we get two dif-
ferent families of intervals, each of which satisfies the subset property. Thus,
to handle such situations, we can use algorithms developed for the several MI
case.

Sixth class: non-detects. An important practical case is the case of non-
detects. Namely, many sensors are reasonably accurate, but they have a de-
tection limit DL – so they cannot detect any value below DL but they detect
values of DL and higher with a very good accuracy.

In this case, if a sensor returns a value x̃ ≥ DL, then this value is reason-
ably accurate, so we can consider it exact (i.e., a degenerate interval [x̃, x̃]).
However, if the sensor does not return any signal at all, i.e., the measurement
result x̃ = 0, then the only thing we can conclude about the actual value of
the quantity is that this value is below the detection limit, i.e., that it lies in
the interval [0, DL].

In this case, every interval is either an exact value or a non-detect, i.e.,
an interval [0, DLi] for some real number DLi (with possibly different detec-
tion limits for different sensors). Under this assumption, the resulting non-
degenerate intervals also satisfy the subset property. Thus, algorithms that
work for the subset property case work for this “non-detects” case as well.

Also, an algorithm that works for the general privacy case also works for
the non-detects case when all sensors have the same detection limit DL.

Results. The main results are summarized in the following table:

Case E V L, U S

Narrow intervals O(n) O(n) O(n · log(n)) O(n2)

Slightly wider
narrow intervals O(n) O(n · log(n)) O(n · log(n)) ?

Single MI O(n) O(n) O(n · log(n)) O(n2)

Several (m) MI O(n) O(nm) O(nm) O(n2m)

New case O(n) O(nm) ? ?

Privacy case O(n) O(n) O(n · log(n)) O(n2)

Non-detects O(n) O(n) O(n · log(n)) O(n2)

General O(n) NP-hard NP-hard ?

Table 1. Computational complexity of statistical analysis under interval uncer-
tainty: an overview
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Here, E is a population mean, V is a population variance, S
def=

1
n
·

n∑

i=1

(xi−E)3

is the population skewness, and L
def= E−k0·σ and U

def= E+k0·σ are endpoints
of the confidence interval, where a parameter k0 is usually taken as k0 = 2,
k0 = 3, or k0 = 6.

Comment. For descriptions of the algorithms, and for proofs of the algorithm
correctness, see [18, 46] and references therein; see also [1, 3, 12, 13, 14, 20,
21, 23, 24, 25, 26, 27, 28, 29, 31, 44, 45, 47].

Applications. There are several application areas in which it is possible to
take into account interval uncertainty in statistical data processing:

• the seismic inverse problem in geophysics [2],
• the problem of estimating and decreasing the clock cycle in computer chips

[36, 37],
• the problem of separating the core from the fragments in radar data pro-

cessing [15], and
• the problem of inverse half-toning in image processing [11].
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