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Abstract�Subdividing an area into voting districts is often a
very controversial issue. If we divide purely geographically, then
minority groups may not be properly represented. If we start
changing the borders of the districts to accommodate different
population groups, we may end up with very arti�cial borders
� borders which are often to set up in such a way as to give
an unfair advantage to incumbents. In this paper, we describe
redistricting as a precise optimization problem, and we propose
a new algorithm for solving this problem.

I. FORMULATION OF THE PRACTICAL PROBLEM

The notion of electoral districts. In the USA and in many
other countries, voting is done by electoral districts:
• in elections to the US House of Representative, every

federal voting district elects one representative;
• in elections to the state legislature, each state district

elects one representative;
• in elections to the city council, every district elects one

representative, etc.
To ensure equal representation, districts are drawn in such a
way that all voting districts of the same level (federal, state,
city, etc.) contain the exact same number of voters.

Need for redistricting. In time, demography changes. Some
districts lose voters, some gain them. It is therefore necessary
to change the districts in such a way that the new district
contain equal number of people. In many places in the US,
redistricting is performed every ten years, after a census
provides an accurate count of the population in different areas.

How should redistricting be done? how is it done?

First consideration: the need to represent different geo-
graphic areas leads to compact districts. The whole point
of electoral districts � as opposed to, e.g., nation-wide vote
for political parties as in some countries � is that for each
geographic region, there is a representative who is elected
by people from this region and who, therefore, protects the
interest of people from this region.

The closer people live to each other, the closer their regions.
From this viewpoint, it makes sense to divide the country
(state, city, etc.) into �compact� districts, so that voters living
within the same district live as close to each other as possible.

Additional considerations affect the districts' shape. In
addition to representing different geographic regions, we also
need to represent different type of the population.

For example, rural areas have different problems than city
areas, and it is desirable that their voice be heard. Farmers
living near a city may have much more in common with
farmers living somewhat far way than with the nearby city
dwellers. So, instead of placing the nearby farmers into the
same electoral district as the nearby towns, it may be desirable
to combine them into one or more separate rural districts.

Similarly, ethnic and racial minorities have their own con-
cerns, and it is desirable that these concerns be heard as
well. If we simply divide people into equal-size geographic
zones, then the minority population does not have much of an
in�uence of elections in each of the resulting districts and may,
thus, be under-represented in the legislature. The situation is
somewhat similar to the case of rural population: minorities
living somewhat far away may have more concerns in common
that with the majority population living nearby. In view of this,
it is desirable to form special minority districts which may not
be perfectly geometrically compact, but which will enable the
voice of the minority to be heard in the legislature.

There are many other reasons why we may want to deviate
from the simple geometric shapes (corresponding to pure
geographic consideration). For example, people in the border
areas have speci�c concerns, with a larger emphasis on border
security and interstate commerce and relations. People living
in the regularly �ooded areas are interested in �ood protection,
while for people who live in nearby higher-elevation area,
�ood protection is less of a concern.

All these are legitimate factors that need to be taken into
account during redistricting.

Gerrymandering. In addition to legitimate concern, redistrict-
ing is also in�uences by politicking. In most states, redistrict-
ing is voted upon by the legislature. Whatever party is in power
at the moment of redistricting tries to change the districts in
such a way that in the next elections, this party will get the
largest representation.

The idea behind this possibility is that if we have two parties
A and B, then A votes in B-majority district are �lost� �
since this district votes for B anyway. Similarly, B votes in



A-majority districts are lost � since these districts vote for A
anyway.

So, if party A is in power, it tries to divide all the
A population into A-majority districts, and attach, to each
district, as many B-voters as possible without violating these
districts' A-majority character. The remaining B-voters are
crammed into districts in which no one votes for A. In this
manner, quite a lot of B votes are lost, while no A votes are
lost. Once this plan is implemented, party A is guaranteed a
much larger majority in the legislature than in the case when
this representation was proportional to the number of voters
voting for different parties.

For example, if we have 10 equal-size towns A1, . . . , A10

voting for A and 8 same-size towns B1, . . . , B8 voting for B,
we can divide these 18 towns into the following 6 districts:
• the �rst district consists of A1, A2, and B1;
• the second district consists of A3, A4, and B2;
• the third district consists of A5, A6, and B3;
• the fourth district consists of A7, A8, and B4;
• the �fth district consists of A9, A10, and B5;
• �nally, the sixth district consists of the towns B6, B7,

and B8.
Under this division, in the �rst �ve districts the majority votes
for A, so A gets 5 votes and B gets only 1. In the resulting
legislature, A gets 5/6 ≈ 83% of the votes � while among
the population as a whole, A is supported by a much smaller
majority of 10/18 ≈ 55%.

In principle, by placing every B-voter into an A-majority
district, part A can achieve a redistricting in which B will get
no representation at all.
How to avoid gerrymandering: known algorithms. Re-
searchers have proposed many algorithms to avoid gerryman-
dering. Typically, these algorithms limit the �weirdness� of the
district shapes: e.g., make them as round as possible, with the
smallest possible length of the separation lines.
Limitations of the existing algorithms. The problem with
this approach is that it only takes into account geographical
closeness, and it does not allow to adjust the district in such
a way as to give minorities or rural population an adequate
representation.
Remaining problem. In this paper, we will show how we
can avoid gerrymandering and still take into account not only
geographical closeness and differences, but also other types of
closeness and difference as well.
II. TOWARD FORMULATION OF THE PROBLEM IN PRECISE

MATHEMATICAL TERMS

How to represent voters and their representatives. Each
person in the area can be described by the values of several
relevant parameters x1, . . . , xn � parameters which are im-
portant for this person's political representation. As we have
mentioned, these parameters may include geographic location
(so that the corresponding xi are geographic coordinates),
income, rural vs. urban status, number of children, and many
many other important parameters.

Utility approach: general reminder. To every voter, an ideal
representative is a person from exactly the same geographic,
ethic, cultural, etc, background, a person who can perfectly
represent this voter's preferences. In reality, we have to com-
promise, to �nd a solution which is best for everyone.

Such compromises are studied by game theory, a theory
speci�cally designed to combine preferences of different peo-
ple in decision making.

In decision theory, each person's preference of different
alternatives is described by a number called its utility; see,
e.g., [5]. One of the possible objectives is then to maximize the
overall utility, i.e., the sum of utilities of different participants.

Utility approach to our problem. In the partitioning problem,
we must select districts, and we must select a representative
from each district. The resulting utility of a voter depends
on how close this voter is to the corresponding represen-
tative. If we denote the parameters characterizing the voter
by v = (v1, . . . , vn), and the parameters characterizing the
representative by r = (r1, . . . , rn), then the utility of the
voter depends on the how big is the difference d

def= r − v
between these sets of parameters, i.e., how big are the values
d1 = r1 − v1, . . . , dn = rn − vn. So, the utility function must
depend on the values of these n differences u = u(d1, . . . , dn).

Different characteristics are independent. Different charac-
teristics represent independent quantities. This case has been
actively analyzed in decision theory. In particular, it has been
proven that the corresponding utility function can be repre-
sented as the sum of �marginal� utility functions representing
different quantities, i.e., u(d1, . . . , dn) = u1(d1) + . . . +
un(dn); see, e.g., [2], [3].

Difference are small. In a good representation, representatives
are close to the voters, so the values of the differences di =
ri−vi are small. Since the values di are small, we can expand
each function ui(di) in Taylor series

ui(di) = ui(0) + u′i(0) · di +
u′′(0)

2
· d2

i + . . .

and keep only the main terms in this expansion.
As we have mentioned, the largest possible utility is attained

when a representative is a perfect match for the voter, i.e.,
when di = 0. Thus, the function ui(di) attains a maximum at
di = 0. Since it attains the maximum, its derivative u′i(0) at
di = 0 is equal to 0. So, the �rst non-trivial term in the Taylor
expansion is a quadratic one:

ui(di) ≈ ui(0) +
u′′(0)

2
· d2

i + . . .

Since we have the maximum, the second derivative is non-
positive, so we can describe the corresponding terms as
ui(di) ≈ ui(0)− wi · d2

i for some �weight� wi ≥ 0.



In this approximation, the overall utility function takes the
form

u(d1, . . . , dn) =
n∑

i=1

ui(di) =
n∑

i=1

ui(0)−
n∑

i=1

wi · d2
i .

Thus, maximizing utility is equivalent to minimizing the
following �disutility� function

U(d) =
n∑

i=1

wi · (ri − vi)2.

If for some characteristic i, we have wi = 0, this means
that this characteristic does not affect the preferences and can
therefore be ignored. So, in the following text, we will assume
that all the weights are non-zero, i.e., that wi > 0.

Resulting formulation of the problem. Maximizing overall
utility is equivalent to minimizing overall disutility. As a result,
we arrive at the following formulation of the problem. We
have:
• an integer n (number of characteristics), and n positive

real numbers w1, . . . , wn (weights of these characteris-
tics);

• a collection of �nitely many (N ) n-dimensional vectors
x(k) = (x(k)

1 , . . . , x
(k)
n ), 1 ≤ k ≤ N ; we will say that the

vector x(k) describes the k-th voter; and
• an integer c; this integer will be called the number of

voting districts.
Our objective is to subdivide N voters {1, 2, . . . , N} into c
groups D1, . . . , Dc, and select a vector v(1), . . . , v(c) within
each group in such a way that the overall disutility

c∑

j=1

∑

k∈Dj

ρ(x(k), v(j))

attains the smallest possible value, where we denoted

ρ(x, v) =
n∑

i−1

wi · (xi − vi)2.

III. CLUSTERING APPROACH TO SOLVING THIS PROBLEM:
MAIN IDEA AND LIMITATIONS

Relation to clustering. In qualitative terms, we want voters
within each districts to be close to each other, and we want
each voter to be closer to other voters from this district than
to voters from other districts.

In general, this subdivision is called clustering; see, e.g., [7].
So, our problem is a particular case of a well-studied problem
of clustering. It is therefore reasonable to use clustering
techniques to solve the voter districting problems.

Iterative clustering. In this paper, we will use one of the
most natural clustering algorithms � an iterative clustering
algorithm.

Main idea behind iterative clustering. The main idea behind
this algorithm is as follows. Once we know the clusters
D1, . . . , Dv , we can easily �nd the optimal representations for

each cluster. Indeed, the optimal representative vj for a cluster
Dj can be determined from the condition that the disutility

Uj
def=

∑

k∈Dj

ρ(x(k), v(j))

of this cluster be as small as possible. Differentiating this
disutility with respect to the i-th component v(j)c and equating
the derivative to 0, we conclude that v(j)c is the arithmetic
average of all the values x

(k)
j for all the elements k ∈ Dc of

this structure. (For simplicity, we assume that there is a person
with exactly these average characteristics.)

Similarly, if we know the representatives v(1), . . . , v(c),
then to minimize the overall disutility, we assign, to each voter
k, the district Dj whose representative v(j) is the closest to
this voter, i.e., for which the disutility ρ(x(k), v(j)) attains the
smallest possible value.

Thus, we arrive at the following algorithm.

Iterative clustering algorithm. We start with some rep-
resentations v(1), . . . , v(c) (in politics, we can start with
representatives of the existing districts).

We subdivide the voters into c groups corresponding to the
representative: each point x(k) is assigned to the group Dj if
is the value ρ(x(k), v(j)) is the smallest among all c values
ρ(x(k), v(1)), . . . , ρ(x(k), v(c)).

After that, for each group Dj , we re-calculate the value
v(j): the new value is the arithmetic average of the vectors
x(k) corresponding to all k ∈ Dj .

Then, with the new starting point v(1), . . . , v(c), we repeat
these two steps. Iterations continue until the process converges.

Limitations. The main limitation of this process is that we
can end up with districts of different population size. For
example, if we have a large city and a small town nearby, and
only geographic division is relevant, then a natural 2-cluster
subdivision will result in two unequal clusters:
• the �rst (larger) cluster contains all the voters from the

big city, and
• the second (smaller) cluster contains all the voters from

the small town.

IV. TOWARDS A MORE ADEQUATE SOLUTION

Main idea. In the previous section, we have mentioned that a
cluster approach can lead to a disproportional representation.
To avoid this problem, in the above optimization problem, we
must limit ourselves only to groups D1, . . . , Dc of equal size
N/c.

How can we modify the clustering algorithm to take this
restriction into account?

Analysis of the new problem. If we �x the districts Dj , then
the optimal location of each point v(j) is still the arithmetic
average of the corresponding vectors.

The problem is when we have the centers v(j); what is
then the optimal subdivision into the regions? The problem
of �nding an optimal set (or optimal sets) has been analyzed



in [6]. By applying the approach from [6], we conclude that
in the optimal subdivision, for every two neighboring districts
Di and Dj , the division corresponds to some �xed value of
the ratio ρ(x, v(i))/ρ(x, v(j)):
• points x for which this ratio is smaller than a certain

threshold are assigned to the class Di, while
• points x for which this ratio is larger than the threshold

are assigned to the class Dj .
In the absence of equal-size restriction, this threshold is equal
to 1.

In general, we can therefore conclude that in the optimal
solution, there exist some weights αj such that each point x
is assigned to the class Dj if the the value αj · ρ(x(k), v(j))
is the largest among all c values α1 · ρ(x(k), v(1)), . . . , αc ·
ρ(x(k), v(c)).

In these terms, the problem is to �nd the values αj for
which this subdivision leads to equal-size classes Dj .

Observation: multiplying all the coef�cients αj by the same
constant. One can easily check that if we multiply all the
values αj by the same constant, we get exactly the same
subdivision into classes. In the following analysis, we will
use this property to simplify the formulas.

Towards an iterative process for computing the coef�cients
αj . Let us start with some values α

(p)
1 , . . . , α

(p)
c . In the

beginning, we can start with the values equal to 1, or with
the values corresponding to the previous iteration of the whole
algorithm.

For each j, we then �nd the auxiliary value βj for which
there are exactly N/c points x for which βj · ρ(x, v(j)) is
smaller than all the values α

(p)
k · ρ(x, v(k)) for all k 6= j.

This value βj can be easily found by bisection (see, e.g., [1]).
Indeed:
• if for some βj , we get fewer than N/c points, this means

that we have to decrease this value (and thus, increase
the number of points that satisfy the desired property);

• on the other hand, if for some βj , we get more than N/c
points, this means that we have to increase this value
(and thus, decrease the number of points that satisfy the
desired property).

Once we �nd such values βj , we must then �nd the new values
αj for which

αj

αk
≈ βj

α
(p)
k

for all j 6= k.

Analysis of this auxiliary problem. This condition is non-
linear in terms of the unknowns αj . It can be simpli�ed to
a linear one if we consider logarithms instead of the original
unknowns, i.e., if we consider Aj

def= ln(αj), Bj
def= ln(βj),

and A
(p)
j

def= ln(α(p)
j ), and take the logarithms of both sides of

the desired condition. Since the logarithm of a ratio is equal
to the difference between the logarithms, we conclude that

Aj −Ak ≈ Bj −A
(p)
k .

This problem is linear in terms of the unknown Aj , so we can
use the Least Squares Method to �nd these unknowns, i.e.,
�nd Aj for which the sum

∑

j

∑

k 6=j

(Aj −Ak −Bj + A
(p)
k )2

attains the smallest possible value.
Differentiating this expression with respect to Aj and equat-

ing the derivative to 0, we conclude that
∑

k 6=j

(Aj −Ak−Bj +A
(p)
k )+

∑

k 6=j

(Aj −Ak−A
(p)
j +Bk) = 0.

The terms corresponding to k = j add up to 0:

(Aj −Aj −Bj + A
(p)
j ) + (Aj −Aj −A

(p)
j + Bj) = 0.

So, adding such terms to both sums, we get a simpli�ed
formula
∑

k

(Aj −Ak−Bj +A
(p)
k )+

∑

k

(Aj −Ak−A
(p)
j +Bk) = 0,

or, equivalently,

2n ·Aj−2
∑

k

Ak−n ·Bj +
∑

k

Bk−n ·A(p)
j +

∑

k

A
(p)
k = 0.

So, we conclude that

Aj =
1
2
· (Bj + A

(p)
j ) + const,

where the constant is the same for all j. Adding a constant to
all the values Aj = ln(αj) means multiplying all the values
αj by the same constant. We have already mentioned that this
multiplication does not change our subdivision into regions.
Thus, for simplicity, we can simply take

Aj =
1
2
· (Bj + A

(p)
j ),

or, equivalently,
αj =

√
βj · α(p)

j .

V. EXAMPLE

To illustrate our idea, let us consider a simple example of
unequal distribution. Let us assume that we have a uniform
population distribution on the interval [0, 1], and that we start
with 3 centers v(1) = 0, v(1) = 0.5, and v(3) = 1.0.

If we simply assign each point to the cluster corresponding
to the nearest center, then:
• the points from the interval [0, 0.25] (closest to v(1) = 0)

are assigned the cluster D1,
• the points from the interval [0.25, 0.75] (closest to v(2) =

0.5) are assigned the cluster D2, and
• the points from the interval [0.75, 1] (closest to v(3) =

1.0) are assigned the cluster D3.
In this arrangement, the clusters D1 and D3 have a quarter
of the population, while the cluster D2 has a half and is thus
twice as large.



In this example, the (squared) distance from the �rst center
is x2, the squared distance from the second center is (0.5−x)2,
and the squared distance from the third center is (1− x)2.

We started with the weights α
(1)
1 = α

(1)
2 = α

(1)
3 = 1.

To avoid the difference in size, let us �nd the value β1 for
which there are exactly 1/3 of the points for which β1 · x2 ≤
(0.5 − x)2. (We should not worry about the thir class since
they do not have a common boundary.) For γ1

def=
√

β1, this
condition means γ1·x ≤ 0.5−x, i.e., equivalently, (γ1+1)·x ≤
0.5 and x ≤ 0.5

1 + γ1
. Thus, the portion of voters who satisfy

this inequality is exactly 0.5
1 + γ1

. We want this portion to be

1/3, so we must have 0.5
1 + γ1

= 1/3 and thus, γ1 = 0.5. So,
β1 = γ2

1 = 0.25.
Similarly, for the second cluster, the condition α2 · (0.5 −

x)2 ≤ x2 is equivalent to γ2 ·(0.5−x) ≤ x for γ2
def=
√

β2 (and
to a similar inequality on the boundary with the third cluster).
This is equivalent to γ2 · (0.5 + x) ≤ x, i.e., to γ2 · 0.5 ≤
(1 + γ2) · x and to x ≥ γ2 · 0.5

1 + α2
. To make districts equal in

size, we need to make the borderline 1/3, so we must have
γ2 · 0.5
1 + α2

= 1/3 and thus, γ2 = 2. Hence, β2 = γ2
2 = 4.

Similarly, we get β3 = 0.25. Now, we can compute the next
iteration to αj :
• we have α

(2)
1 =

√
β1 · α(1)

1 =
√

0.25 · 1 = 0.5;

• we have α
(2)
2 =

√
β2 · α(1)

2 =
√

4 · 1 = 2;

• we have α
(2)
3 =

√
β3 · α(1)

3 =
√

0.25 · 1 = 0.5.
Under the new values, the condition that α1 · ρ(x, v(1)) is the
smallest of the three weighted distances is now equivalent to
0.5 · x2 ≤ 2 · (0.5− x)2, i.e., to x2 ≤ 4 · (0.5− x) and to x ≤
2·(0.5−x) = 1−2x and 3x ≤ 1. So, we have exactly 1/3 of the
voters in the �rst cluster. Similarly, we have exactly 1/3 of the
voters in the second and in the third clusters. Thus, here, we
will have βj = α

(2)
j for all j and thus, α

(3)
j =

√
βj · α(2)

j =

α
(2)
j � the same value as on the previous iteration. The process

has converged.
Comment. Our preliminary experiments show that the process
does converge in more realistic cases as well. (Of course, the
above fast and perfect convergence only happens for �toy��
(simpli�ed) examples.)

VI. RESULTING ITERATIVE ALGORITHM

We start with some representations v(1), . . . , v(c) (in poli-
tics, we can start with representatives of the existing districts).

We subdivide the voters into c groups corresponding to the
representative. This subdivision is based on the values αj of
the weights assigned to each group (to equalize the group
sizes). On each iteration of the clustering algorithm, we use
several iterations to �nd these values. To make a description
clearer, we will call the iterations of the whole clustering
process big iterations, and the iterations needed to �nd the
values αj small iterations.

We start small iterations with the values

α
(1)
1 = . . . = α(1)

c = 1

(or with the values for the previous big iteration). Once
we have the values α

(p)
j corresponding to the current small

iteration, then, for each group j, we �nd the value βj

for which there are exactly N/c points x(k) for which the
value βjρ(x(k), v(j)) is small than all the c − 1 values
α(p) · ρ(x(k), v(l)) corresponding to other clusters l 6= j. This
value βj can be found by using bisection.

Then, we take α
(p+1)
j =

√
βj · α(p)

j . Iterations continues
until the process converges, i.e., until the differences

α
(p+1)
j − α

(p)
j

become smaller than a given small value ε.
Once we reach convergence, we subdivide the voters into c

groups corresponding to the representative: each point x(k) is
assigned to the group Dj if is the value αj · ρ(x(k), v(j)) is
the smallest among all c values

α1 · ρ(x(k), v(1)), . . . , αc · ρ(x(k), v(c)).

After that, for each group Dj , we re-calculate the value
v(j): the new value is the arithmetic average of the vectors
x(k) corresponding to all k ∈ Dj .

Then, with the new starting point v(1), . . . , v(c), we repeat
the two steps of the big iteration process. Iterations continue
until the process converges, i.e., until the differences between
the values v(j) at the two consequent iterations become
smaller than a given small value ε.

VII. CONCLUSION

In this paper, we describe a new algorithm for dividing
an area into voting districts, an algorithm that can take into
account not only geographic closeness, but also common
interests of voters. This algorithm does not provide a single
division: it provides a division for every assignment of weights
wi to different factors. These weights must be determine
empirically, to best re�ect the population preferences.

Of course, since several different re-districtings are possible,
it will still be possible to argue which re-districting is the best,
but this time, the argument will be about exact and empirically
checkable things: weights of different factors.
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