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Abstract In many practical situations, we only know the upper bound A on the (ab-
solute value of the) measurement error Ax, i.e., we only know that the measurement
error is located on the interval [—A, A]. The traditional engineering approach to such
situations is to assume that Ax is uniformly distributed on [—A, A], and to use the
corresponding statistical techniques. In some situations, however, this approach un-
derestimates the error of indirect measurements. It is therefore desirable to directly
process this interval uncertainty. Such “interval computations” methods have been
developed since the 1950s. In this chapter, we provide a brief overview of related
algorithms, results, and remaining open problems.

1 Importance of Data Processing and Indirect Measurements

In many real-life situations, we are interested in the value of a physical quantity y
that is difficult or impossible to measure directly. Examples of such quantities are
the distance to a star and the amount of oil in a given well. Since we cannot mea-
sure y directly, a natural idea is to measure y indirectly. Specifically, we find some
easier-to-measure quantities xi,...,x, which are related to y by a known relation
y = f(x1,...,x,); this relation may be a simple functional transformation, or com-
plex algorithm (e.g., for the amount of oil, numerical solution to an inverse prob-
lem). Then, to estimate y, we first measure the values of the quantities x1, ... ,x;,, and
then we use the results xi,...,x, of these measurements to to compute an estimate
yforyasy= f(X1,...,%,).
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For example, to find the resistance R, we measure current s ancl Vgltage V, and
then use the known relation R =V /I to estimate resistance as R =V /.

Computing an estimate for y based on the results of direct measurements is called
data processing; data processing is the main reason why computers were invented
in the first place, and data processing is still one of the main uses of computers as
number crunching devices.

Comment. In this chapter, for simplicity, we consider the case when the relation
between x; and y is known exactly; in some practical situations, we only known an
approximate relation between x; and y.

2 Estimating Uncertainty for the Results of Data Processing and
Indirect Measurements: An Important Metrological Problem

Measurements are never 100% accurate, so in reality, the actual value x; of i-th
measured quantity can differ from the measurement result x;. Because of these mea-

def ~ ~ ~ ~ .
surement errors Ax; = X; — x;, the result y = f(x1,...,X,) of data processing is, in
general, different from the actual value y = f(x1,...,x,) of the desired quantity y.

. . . def ~ .
It is desirable to describe the error Ay = y—y of the result of data processing. To
do that, we must have some information about the errors of direct measurements.

3 Uncertainty of Direct Measurements: Brief Description,
Limitations, Need for Overall Error Bounds (i.e., Interval
Uncertainty)

Upper bounds on measurement errors. What do we know about the errors Ax; of
direct measurements? First, the manufacturers of a measuring device usually pro-
vide us with an upper bound A; for the (absolute value of) possible measurement
errors, i.e., with the bound A; for which we are guaranteed that |Ax;| < A;.

The need for such a bound comes from the very nature of a measurement process.
Indeed, if no such bound is provided, this means that the actual value x; can be as
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different from the “measurement result” x; as possible. Such a value X; is not a
measurement, it is a wild guess.

Since the (absolute value of the) measurement error Ax; = ¥; — x; is bounded by
the given bound A;, we can therefore guarantee that the actual (unknown) value of
the desired quantity belongs to the interval x; def [Xi — A, X + Al
Example. If the measured value of a quantity is x; = 1.0, and the upper bound A;
on the measurement error is 0.1, this means that the (unknown) actual value of the
measured quantity can be anywhere between 1 —0.1 =09 and 1 4+0.1 = 1.1, i.e,,
that it can take any value from the interval [0.9,1.1].

Probabilities. In many practical situations, we not only know the interval [—A;, Aj]
of possible values of the measurement error; we also know the probabilities of dif-
ferent values Ax; within this interval [27].

In most practical applications, it is assumed that the corresponding measurement
errors are normally distributed with O means and known standard deviation.

Numerous engineering techniques are known (and widely used) for processing
this uncertainty; see, e.g., [27].

In practice, we can determine the desired probabilities of different values of Ax;
by comparing the results X; of measuring with this instrument with the results X;*
of measuring the same quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much more accurate than
the one use, the difference between these two measurement results is practically
equal to the measurement error; thus, the empirical distribution of this difference
Ax; = X; — x;* is close to the desired probability distribution for the measurement
error Ax; = X; — X;.

Sometimes, we do not know probabilities. There are two cases when this determi-
nation is not done:

e Firstis the case of cutting-edge measurements, e.g., measurements in fundamen-
tal science. When a Hubble telescope detects the light from a distant galaxy, there
is no “standard” (much more accurate) telescope floating nearby that we can use
to calibrate the Hubble: the Hubble telescope is the best we have.

e The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration is so
costly — usually costing ten times more than the sensor itself — that manufacturers
rarely do it.

In both cases, we have no information about the probabilities of Ax;; the only infor-
mation we have is the upper bound on the measurement error.
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4 Data Processing and Indirect Measurements Under Interval
Uncertainty: The Main Problem of Interval Computations

In the case when the only information we have is the upper bound on the measure-
ment error, after we performed a measurement and got a measurement result x;, the
only information that we have about the actual value x; of the measured quantity
is that it belongs to the interval x; = [x; — A;,X; + A;]. In such situations, the only
information that we have about the (unknown) actual value of y = f(x1,...,x,) is
that y belongs to the range y = [y,y] of the function f over the box x; X ... X X;:

y= [Xv.ﬂ = {f(xlv"')-xn)‘xl EX,y.. Xy GX”}.

X1

—

f y:f(xla“-;xn)

The process of computing this interval range based on the input intervals x; is
called interval computations; see, e.g., [13, 15].

5 Uniform Distributions: Traditional Engineering Approach to
Interval Uncertainty

Brief description. In the case of interval uncertainty, we only know the intervals,
we do not know the probability distributions on these intervals. A traditional statis-
tical approach to the situation when several probability distributions are possible is
to select the “most uncertain” distribution, i.e., the distribution which has the largest

possible value of the entropy S L Jp(x)-In(p(x))dx (here p(x) denotes the prob-
ability density). For details on this Maximum Entropy approach and its relation to
interval uncertainty (and Laplace’s principle of indifference), see, e.g., [5, 14, 16]

One can easily check that for a single variable x, among all distributions located
on a given interval, the entropy is the largest when this distribution is uniform on this
interval. In the case of several variables, we can similarly conclude that the distribu-
tion with the largest value of the entropy is the one which is uniformly distributed
in the corresponding box X1 X ... X X, i.e., a distribution in which:

e cach variable Ax; is uniformly distributed on the corresponding interval [—A4;, A;],
and
e variables corresponding to different inputs are statistically independent.
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This is indeed one of the main ways how interval uncertainty is treated in engineer-
ing practice: if we only know that the value of some variable is in the interval [x;, %],
and we have no information about the probabilities, then we assume that the variable
x; is uniformly distributed on this interval.

Limitations. To explain the limitations of this engineering approach, let us consider
the simplest possible algorithm y = f(x1,...,x,) = x1 + ... +x,. For simplicity, let
us assume that the measured values of all n quantities are Os x; = ... =X, =0, and
that all » measurements have the same error bound Ay; A} = ... = A, = A,.

In this case, Ay = Ax; +. ..+ Ax,. Each of n component measurement errors can
take any value from —A, to A,, so the largest possible value of Ay is attained when
all of the component errors attain the largest possible value Ax; = A,. In this case,
the largest possible value A of Ayisequalto A =n-A,.

Let us see what the maximum entropy approach will predict in this case. Accord-
ing to this approach, we assume that Ax; are independent random variables, each of
which is uniformly distributed on the interval [—A,A]. According to the Central
Limit theorem [29, 32], when n — oo, the distribution of the sum of n independent
identically distributed bounded random variables tends to Gaussian. This means that
for large values #n, the distribution of Ay is approximately normal.

Normal distribution is uniquely determined by its mean and variance. When we
add several independent variables, their means and variances add up. For each uni-
form distribution Ax; on the interval [—Ay, Ay] of width 2A,, the probability density

1
is equal to p(x) = A 50 the mean is 0 and the variance is
X

M (e 11
v= [ 2= [ Rde= o 20 =LA
J—Ay —Ay Ly
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Thus, for the sum Ay of n such variables, the mean is 0, and the variance is equal to
(n/3) - A2. Thus, the standard deviation is equal to 6 = \/V = A, - ﬁ

It is known that in a normal distribution, with probability close to 1: all the values
are located within the k- o vicinity of the mean: for k = 3, it is true with probability
99.9%, for k = 6, it is true with probability 107%%, etc. So, practically with certainty,
Ay is located within an interval k- ¢ which grows with n as /7.

For large n, we have k- A, - g < Ay - n, so we get a serious underestimation

of the resulting measurement error. This example shows that estimates obtained by
selecting a single distribution can be very misleading.
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6 Techniques for Estimating the Uncertainty of the Results of
Indirect Measurements in Situations when the Measurement
Errors of Direct Measurements are Relatively Small

Linearization: main idea. When the measurement errors Ax; are relatively small,
we can use linearization.

By definition of the measurement error Ax; = X; — x;, hence x; = X; — Ax;. When
the measurement errors Ax; of direct measurements are relatively small, we can
expand the expression

Ay=y—y=f(x1,.. ., X0)— f(x1,-sx0) = f(X1, - X)) — f(X1 —Ax1,. . X — Axy)
in Taylor series and only keep linear terms in the resulting expansion. Since

_ _ _ _ n a
y=f(x1 —Ax1,..., % — Axy,) %f(xl,...,x,,)—za—‘;-Ax,-,
i 1

n 0
we conclude that Ay=y—y =Y ¢;- Ax;, where ¢; = —f
,'7

= dx;
The dependence of Ay on Ax; is linear: it is increasing relative to x; if ¢; > 0 and
decreasing if ¢; < 0. So, to find the largest possible value A of Ay, we must take:

e the largest possible value Ax; = A; when ¢; > 0, and
o the smallest possible value Ax; = —A; when ¢; < 0.

In both cases, the corresponding term in the sum has the form |c;| - A;, so we can
conclude that

n
A= Z |C,“ A,
i=1

Similarly, the smallest possible value of Ay is equal to —A. Thus, the range of
possible values of y is equal to [y, 5] = [y —A,y+A]. So, to compute A, it is sufficient
to know the partial derivatives c;.

Case of analytical formulas. In the simplest case when the algorithm f(xi,...,x,)
consists of a simple analytical expression, we can find explicit analytical formulas
for the partial derivatives and thus compute the desired bound A.

Techniques based on sensitivity analysis (automatic differentiation). In the gen-
eral case, a natural way to compute partial derivatives comes directly from the defi-
nition. By definition, a partial derivative is defined as a limit

8f f(flr"7-%}—17)feii+hi7fi+l>"'a561) _f(-flw'wfn)

—— = lim .
ax,- h;—0 hi

In turn, a limit, by its definition, means that when the values of A; is small, the
corresponding ratio is very close to the partial derivative. Thus, we can estimate the
partial derivative as the ratio
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8x,- h;

Ci =

for some small value #;.
After we have computed n such ratios, we can then compute the desired bound

n
Aon|AylasA =Y |ci|- A
i=1

In general, this Brocedure requires n divisions by %; and n multiplications by A;.
The procedure can be made faster if we select ii; = A;. In this case, we get

n

A= Z|f(5{1>'"7E—I7E+Ai7-%if+l7"'7fn)_,}TI'
i=1

Advanced Monte-Carlo simulation techniques. The above algorithm requires that
we call the data processing algorithm n + 1 times: first to compute the value y =
F(x1,...,X,), and then n more times to compute the values

1, Ximt, Xi + Aiy X1 %)

and thus, the corresponding partial derivatives.

In many practical situations, the data processing algorithms are time-consuming,
and we process large amounts of data, with the number # of data points in thousands.
In this case, the use of the above linearization algorithm would require thousands
time longer than data processing itself — which itself is already time consuming. Is
it possible to estimate A faster?

The answer is “yes”, it is possible to have a Monte-Carlo-type algorithm which
estimates A by using only a constant number of calls to the data processing algo-
rithm f; for details, see, e.g. [18, 19].

At first glance, since we know that the measurement errors are located within the
intervals [—A;, 4;], it sounds reasonable to select distributions located on these in-
tervals. However, it can be shown that this does not lead to the desired estimates. It
turns out that it is possible to estimate the interval uncertainty if we use a distribution
d which is not located on the interval [—1, 1] — namely, the basic Cauchy distribu-

tion with the probability density function p(x) = . The resulting Cauchy

T (x2+1
deviate method works in the linearized case — when tl(le func)tion F(x1,...,x,) is rea-
sonably smooth and the box [x;,%]] X ... X [x,,,%,] is reasonably small, so that on
this box, we can reasonably approximate the function f by its linear terms.

If we multiply a random variable distributed according to the above basic Cauchy
distribution d by a value A, then we get a Cauchy distribution with a parameter A,

i.e., a distribution described by the following density function: p(x) =

- (x2+A2)’
It is known that if &;,...,&, are independent variables distributed according to
Cauchy distributions with parameters A;, then, for every n real numbers cy,...,c,,

the corresponding linear combination ¢; - & +... 4 ¢, - &, is also Cauchy distributed,
with the parameter A described by the formula (1).
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Thus, if for some number of iterations N, we simulate 3x§k> (1 <k<N)as
Cauchy distributed with parameter A;, then, in the linear approximation, the cor-
responding differences

5y<k) déff(Nl 4+ 5x5k), e Xnt+ 5xl<1k)) -y

are distributed according to the Cauchy distribution with the parameter A. The re-
sulting values 5y(1), N 5y<N ) are therefore a sample from the Cauchy distribution
with the unknown parameter A. Based on this sample, we can estimate the value A.

In order to estimate A, we can apply the Maximum Likelihood Method which
leads to the following equation:

1 1 N

- 4 = .
(1> M\* 2
() ()
The left-hand side of this equation is an increasing function that is equal to 0(< N/2)

forA=0and > N/2 for A =max |0 y("') ; therefore the solution to this equation can

be found by applying a bisection method to the interval [O,max ‘5))(") H .

Simulation of Cauchy distribution with parameter A; can be based on the func-
tional transformation of uniformly distributed sample values:

5x = Aj-tan( - (r; - 0.5)),

where r; is uniformly distributed on the interval [0, 1].
As a result, we arrive at the following algorithm [19, 31]

e Apply f to the midpoints: y:= f(X1,...,%,);
e Fork=1,2,...,N, repeat the following:

(k)

e use the standard random number generator to compute n numbers r;”’, i =
1,2,...,n, that are uniformly distributed on the interval [0, 1];

e compute Cauchy distributed values c,@ :=tan(7- (r}k) —0.5));

e compute the largest value of |cl(k)| so that we will be able to normalize the
simulated approximation errors and apply f to the values that are within the

: K — RO

box of possible values: K := max;|c;” [;

e compute the simulated approximation errors 6x§k) =A- cl(k) /K;

e compute the simulated “actual values™ xgk) =X+ 5x§k);

e apply the program f to the simulated measurement results and compute the
simulated approximation error for y: Ay(") =K- (_f (xgk), . ,xf,k)) —)7> ;

e Compute A by applying the bisection method to solve the equation
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AvD 2 AvMNZ 2
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In [19, 31], we found the number of iterations N that would provide the desired
(relative) accuracy € in estimating A, i.e., the number of iterations that are needed
to guarantee that (1 —€)-A <A < (1+¢€)-A with a given certainty. In practice, it
is reasonable to get a certainty 95% and accuracy € = 0.2 (20%). To get an accuracy
€ with 95% certainty, we must pick N = 8 /€. In particular, to get a 20% accuracy
(0.2 - A) with 95% certainty, i.e., to guarantee that 0.8-A <AL 1.2~X, we need
N =8/(0.2)% =200 runs.

In general, the required number of calls to a model depends only on the desired
accuracy € and not on n — so for large n, these methods are much faster.

Comment. It is important to mention that we assumed that the function f is reason-
ably linear within the box [X] — Ay, X] + A1] X ... X [x, — Ay, %, + A,]. However, the
simulated values §; may be outside the box. When we get such values, we do not
use the function f for them, we use a normalized function that is equal to f within
the box, and that is extended linearly for all other values.

7 Techniques for Error Estimation in the General Case of
Interval Uncertainty

Need for interval computations. In many application areas, it is sufficient to have
an approximate estimate of y. However, in some applications, it is important to guar-
antee that the (unknown) actual value y of a certain quantity does not exceed a cer-
tain threshold yg. The only way to guarantee this is to have an interval Y = [V, Y]
which is guaranteed to contain y (i.e., for which y C Y) and for which ¥ < yy.

For example, in nuclear engineering, we must make sure that the temperatures
and the neutron flows do not exceed the critical values; when planning a space flight,
we want to guarantee that the space ship lands on the planet and does not fly pass it,
etc.

The interval Y which is guaranteed to contain the actual range y is usually called
an enclosure for this range. So, in such situations, we need to compute either the
original range or at least an enclosure for this range. Computing such an enclosure
is also one of the main tasks of interval computations.

Traditional numerical methods are often not sufficient. The main limitations of
the traditional numerical mathematics approach to error estimation was that often,
no clear distinction was made between approximate (non-guaranteed) and guaran-
teed (= interval) error bounds.

For example, for iterative methods, many papers on numerical mathematics con-
sider the rate of convergence as an appropriate measure of approximation error.
Clearly, if we know that the error decreases as O(1/n) or as O(a™"), we gain some
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information about the corresponding algorithms — and we also gain a knowledge
that for large n, the second method is more accurate. However, in real life, we make
a fixed number n of iterations. If the only information we have about the approxima-
tion error is the above asymptotics, then we still have no idea how close the result
of n-th iteration is to the actual (desired) value.

It is therefore important to emphasize the need for guaranteed methods, and to
develop techniques for producing guaranteed estimates. Such guaranteed estimates
is what interval computations are about.

Interval computations: a brief history. The notion of interval computations is
reasonably recent, it dates back to the 1950s, but the main problem is known since
Archimedes who used guaranteed two-sided bounds to compute 7; see, e.g., [1].

Since then, many useful guaranteed bounds have been developed for different nu-
merical methods. There have also been several general descriptions of such bounds,
often formulated in terms similar to what we described above. For example, in the
early 20 century, the concept of a function having values which are bounded within
limits was discussed by W. H. Young in [35]. The concept of operations with a set of
multi-valued numbers was introduced by R. C. Young, who developed a formal al-
gebra of multi-valued numbers [34]. The special case of closed intervals was further
developed by P. S. Dwyer in [6].

Interval computations in their current form were independently invented by three
researchers in three different parts of the world: by M. Warmus in Poland [33], by
T. Sunaga in Japan [30], and by R. Moore in the USA [24].

The active interest in interval computations started with Moore’s 1966 mono-
graph [25]. This interest was enhanced by the fact that in addition to estimates for
general numerical algorithms, Moore’s monograph also described practical applica-
tions which have already been developed in his earlier papers and technical reports:
in particular, interval computations were used to make sure that even when we take
all the uncertainties into account, the trajectory of a space flight is guaranteed to
reach the Moon.

Since then, interval computations have been actively used in many areas of sci-
ence and engineering [12, 13].

Comment. Early papers on interval computations can be found on the interval com-
putations website [12].

First step: interval arithmetic. Our goal is to find the range of a given function
f(x1,...,x,) on the given intervals X; = [x;,X1],...,X; = [%,,,%n]-

This function f(x1,...,x,) is given as an algorithm. In particular, we may have an
explicit analytical expression for f, in which case this algorithm consists of simply
computing this expression.

When we talk about algorithms, we usually mean an algorithm (program) written
in a high-level programming language like Java or C. Such programming languages
allows us to use arithmetic expressions and many other complex constructions. Most
of these constructions, however, are not directly implemented inside a computer.
Usually, only simple arithmetic operations are implemented: addition, subtraction,
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multiplication, and 1/x (plus branching). Even division a/b is usually not directly
supported, it is performed as a sequence of two elementary arithmetic operations:

e first, we compute 1/b;
e then, we multiply a by 1/b.

When we input a general program into a computer, the computer parses it, i.e.,
represents it a sequence of elementary arithmetic operations.

Since a computer performs this parsing anyway, we can safely assume that the
original algorithm f(xi,...,x,) is already represented as a sequence of such ele-
mentary arithmetic operations.

Let us start our analysis of the interval computation techniques with the simplest
possible case when the algorithm f(x,...,x,) simply consists of a single arithmetic
operation: addition, subtraction, multiplication, or computing 1/x.

Let us start by estimating the range of the addition function f(x1,x2) = x1 +x7 on
the intervals [x;,X1] and [x,,X2]. This function is increasing with respect to both its
variables. We already know how to compute the range [y,¥] of a monotonic function.
So, the range of addition is equal to [x; +x,, % +%2].

The desired range is usually denoted as f(xi,...,X,); in particular, for addition,
this notation takes the form x; +x;. Thus, we can define “addition” of two intervals
as follows:

[x1,%1] + [0, %] = [x; + 2, %2 +%2].

This formula makes perfect intuitive sense: if one town has between 700 and 800
thousand people, and it merges with a nearby town whose population is between
100 and 200 thousand, then:

e the smallest possible value of the total population of the new big town is when
both populations were the smallest possible, 700+ 100 = 800, and

o the largest possible value is when both populations are the largest possible, i.e.,
800 + 200 = 1000.

The subtraction function f(x1,x2) = x1 —x» is increasing with respect to x; and
decreasing with respect to x», so we have

[Klvxl} - [lbxﬂ = [51 —X2,X] 7&2}

These operations are also in full agreement with common sense. For example, if
a warehouse originally had between 6.0 and 8.0 tons, and we moved between 1.0
and 2.0 tons to another location, then the smallest amount left is when we start with
the smallest possible value 6.0 and move the largest possible value 2.0, resulting in
6.0 — 2.0 = 4.0. The largest amount left is when we start with the largest possible
value 8.0 and move the smallest possible value 1.0, resulting in 8.0 — 1.0 =7.0.

For multiplication f(x1,x2) = x1 - x2, the direction of monotonicity depends on
the actual values of x; and x,: e.g., when x, > 0, the product increases with x1, oth-
erwise it decreases with x1. So, unless we know the signs of the product beforehand,
we cannot tell whether the maximum is attained at x; = x; or at x; = X;. However,
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we know that it is always attained at one of these endpoints. So, to find the range of
the product, it is sufficient to try all 2-2 = 4 combinations of these endpoints:

[Elﬁxl] ) [EZ’XZ] =

[min(&l “Xp, X1 X2, X1 - Xp, X1 '@)»max(&] “Xo, X1 X2, X1 - Xp, X1 Wz)].

Finally, the function f(x;) = 1/x; is decreasing wherever it is defined (when
x1 #£0),80if 0 & [x;,%], then

The formulas for addition, subtraction, multiplication, and reciprocal of intervals
are called formulas of interval arithmetic.

Straightforward (“naive”) interval computations. Historically the first method
for computing the enclosure for the general case is the method which is sometimes
called “straightforward” interval computations. In this method, we repeat the com-
putations forming the program f step-by-step, replacing each operation with real
numbers by the corresponding operation of interval arithmetic. It is known that, as
a result, we get an enclosure Y D y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see example be-
low), the enclosure has excess width.

Example. Let us illustrate the above idea on the example of estimating the range of
the function f(x1) = x; — x7 on the interval x; € [0, 1].

We start with parsing the expression for the function, i.e., describing how a com-
puter will compute this expression; it will implement the following sequence of
elementary operation:

Fli=X1-X15; pi=Xx1—1r.

According to straightforward interval computations, we perform the same opera-
tions, but with intervals instead of numbers:

ri:=[0,1]-[0,1] = [0,1]; r2:=[0,1]—[0,1] = [ 1,1].

For this function, the actual range is f(x1) = [0,0.25].

Interval computations go beyond straightforward technique. People who are
vaguely familiar with interval computations sometimes erroneously assume that the
above straightforward (“naive”) techniques is all there is in interval computations.
In conference presentations (and even in published papers), one often encounters
a statement: “I tried interval computations, and it did not work”. What this state-
ment usually means is that they tried the above straightforward approach and — not
surprisingly — it did not work well.

In reality, interval computations is not a single algorithm, it is a problem for
which many different techniques exist. Let us now describe some of such tech-
niques.
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Comment. For each of the known techniques, there are cases when we get an excess
width. The reason is that the problem of computing the exact range is NP-hard even
for polynomial functions f(xp,...,x,) — actually, even for quadratic functions f
(see, e.g., [20]).

Centered form. One of such techniques is the centered form. This technique is
based on the same Taylor series expansion ideas as linearization. We start by repre-
senting each interval x; = [x;,%;] in the form [X; — A;, X; 4+ A;], where X; = (x;+%;) /2 is
the midpoint of the interval x; and A; = (X; — x;)/2 is the half-width of this interval.

After that, we use the Taylor expansion. In linearization, we simply ignored
quadratic and higher order terms. Here, instead, we use the Taylor form with a re-
mainder term. Specifically, the centered form is based on the formula

~ ~ "0 ~
f(-xla"'7xrl) :f(xla"'axrl)+zTi(nla"'7nll).(xf_xi)v
i=1 4

where each 7); is some value from the interval x;.

Since 7); € x;, the value of the i-th derivative belongs to the interval range of this
derivative on these intervals. We also known that x; — X; € [—A;, A;]. Thus, we can
conclude that

~ ~ )
FXi,..%,) Zf(xly---7xzz)+zT){_(Xl’“-axn)'[_AIVA"]'
i—1 9%i

To compute the ranges of the partial derivatives, we can use straightforward interval
computations.

Example. Let us illustrate this method on the above example of estimating the range

of the function f(x;) = x; —x7 over the interval [0, 1]. For this interval, the midpoint

is X1 = 0.5; at this midpoint, f(xX;) = 0.25. The half-width is A; = 0.5. The only

partial derivative here is &—f =1—2x, its range on [0,1] is equal to 1 —2-[0,1] =
X1

[—1,1]. Thus, we get the following enclosure for the desired range y:
yCY=025+[-1,1]-[-0.5,0.5] = 0.254+[-0.5,0.5] = [-0.25,0.75].
This enclosure is narrower than the “naive” estimate [—1, 1], but it still contains

excess width.

How can we get better estimates? In the centered form, we, in effect, ignored

2
-Ax;j-Ax;. When the

quadratic and higher order terms, i.e., terms of the type f
8x,-8x j
estimate is not accurate enough, it means that this ignored term is too large. There
are two ways to reduce the size of the ignored term:

e we can try to decrease this quadratic term, or

e we can try to explicitly include higher order terms in the Taylor expansion for-
mula, so that the remainder term will be proportional to say Ax;3 and thus, be
much smaller.
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Let us describe these two ideas in detail.

First idea: bisection. Let us first describe the situation in which we try to minimize
the second-order remainder term. In the above expression for this term, we cannot
change the second derivative. The only thing we can decrease is the difference Ax; =
x; — X; between the actual value and the midpoint. This value is bounded by the
half-width A; of the box. So, to decrease this value, we can subdivide the original
box into several narrower subboxes. Usually, we divide into two subboxes, so this
subdivision is called bisection.

The range over the whole box is equal to the union of the ranges over all the
subboxes. The widths of each subbox are smaller, so we get smaller Ax; and hope-
fully, more accurate estimates for ranges over each of this subbox. Then, we take
the union of the ranges over subboxes.

Example. Let us illustrate this idea on the above x; — x% example. In this example,

we divide the original interval [0, 1] into two subintervals [0,0.5] and [0.5, 1]. For
both intervals, Ax; = 0.25.

In the first subinterval, the midpoint is X; = 0.25, so f(x1) = 0.25 — 0.0625 =
0.1875. The range of the derivative is equal to 1 —2-[0,0.5] = 1—1[0,1] =[0,1],
hence we get an enclosure 0.1875+ [0, 1] - [-0.25,0.25] = [—0.0625,0.4375].

For the second interval, x; = 0.75, £(0.75) = 0.1875, the range of the derivative
is 1—2-]0.5,1] = [-1,0], hence we get an enclosure

0.1875+[—1,0]-[~0.25,0.25] = [~0.0625,0.4375).

The union of these two enclosures is the same interval [—0.0625,0.4375]. This en-
closure is much more accurate than before.

Bisection: general comment. The more subboxes we consider, the smaller Ax; and
thus, the more accurate the corresponding enclosures. However, once we have more
boxes, we need to spend more time processing these boxes. Thus, we have a trade-
off between computation time and accuracy: the more computation time we allow,
the more accurate estimates we will be able to compute.

Additional idea: monotonicity checking. If the function f(x1,...,x,) is monotonic
over the original box x; X ... X X, then we can easily compute its exact range. Since
we used the centered form for the original box, this probably means that on that box,
the function is not monotonic: for example, with respect to x1, it may be increasing
at some points in this box, and decreasing at other points.

However, as we divide the original box into smaller subboxes, it is quite possible
that at least some of these subboxes will be outside the areas where the derivatives
are 0 and thus, the function f(xp,...,x,) will be monotonic. So, after we subdivide
the box into subboxes, we should first check monotonicity on each of these subboxes
— and if the function is monotonic, we can easily compute its range.

In calculus terms, a function is increasing with respect to x; if its partial derivative

of is non-negative everywhere on this subbox. Thus, to check monotonicity, we

3x,-
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should find the range [XI_J,-] of this derivative (we need to do it anyway to compute
the centered form expression):

o if Y 2 0, this means that the derivative is everywhere non-negative and thus, the
function f is increasing in x;;

e if ¥; <0, this means that the derivative is everywhere non-positive and thus, the
function f is decreasing in x;.

If y; < 0 <y, then we have to use the centered form.
If the function is monotonic (e.g., increasing) only with respect to some of the
variables x;, then

e to compute ¥, it is sufficient to consider only the value x; = X;, and
e to compute y, it is sufficient to consider only the value x; = x;.

For such subboxes, we reduce the original problem to two problems with fewer
variables, problems which are thus easier to solve.

Example. For the example f(x;) =x; — x%, the partial derivative is equal to 1 —2-x;.

On the first subbox [0,0.5], the range of this derivative is 1 —2-[0,0.5] = [0, 1].
Thus, the derivative is always non-negative, the function is increasing on this sub-
box, and its range on this subbox is equal to [£(0), f(0.5)] = [0,0.25].

On the second subbox [0.5,1], the range of the derivative is 1 —2-[0.5,1] =

[—1,0]. Thus, the derivative is always non-positive, the function is decreasing on
this subbox, and its range on this subbox is equal to [f(1), f(0.5)] = [0,0.25]. The
union of these two ranges is [0,0.25] — the exact range.
Comment. We got the exact range because of the simplicity of our example, in which
the extreme point 0.5 of the function f(x;) = x; —x? is exactly in the middle of
the interval [0, 1]. Thus, when we divided the box in two, both subboxes have the
monotonicity property. In the general case, the extremal point will be inside one of
the subboxes, so we will have excess width.

General Taylor techniques. As we have mentioned, another way to get more ac-
curate estimates is to use so-called Taylor techniques, i.e., to explicitly consider
second-order and higher-order terms in the Taylor expansion; see, e.g., [4, 26, 28]
and references therein.

Let us illustrate the main ideas of Taylor analysis on the case when we allow
second order terms. In this case, the formula with a remainder takes the form

_ _ n a " _ _
fxyexn) = f(x1, %) + Za—){(xl,...,x,,) (i —X)+
i=1 9Xi

] n o m a f _ N
EZZ 8x,axj (nl, 7”") ( iixi).(xjixj)'

Thus, we get the enclosure
n

- - af ~
f(Xl,...,X,l) - f(xl,...,x,l) +Z Ti(xh'”’x") . [—Ai,Ai}—F
i=1 0%
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(X1, %) - [=AL Al - [=A), A

Example. Let us illustrate this idea on the above example of f(x) = x; — x7. Here,

- - If o

x1 = 0.5, s0 f(x1) =0.25 and a—‘f(xl) =1-—2-0.5=0. The second derivative is
X1

equal to —2, so the Taylor estimate takes the form Y = 0.25 — [-0.5,0.5].

Strictly speaking, if we interpret Ax% as Axj - Ax; and use the formulas of interval
multiplication, we get the interval [—0.5,0.5] - [—0.5,0.5] = [-0.25,0.25] and thus,
the range Y = 0.25 — [—0.25,0.25] = [0,0.5] with excess width. However, we can
view x° as a special function, for which the range over [—0.5,0.5] is known to be
[0,0.25]. In this case, the above enclosure 0.25 — [0,0.25] = [0,0.25] is actually the

exact range.

Taylor methods: general comment. The more terms we consider in the Taylor expan-
sion, the smaller the remainder term and thus, the more accurate the corresponding
enclosures. However, once we have more terms, we need to spend more time com-
puting these terms. Thus, for Taylor methods, we also have a trade-off between
computation time and accuracy: the more computation time we allow, the more ac-
curate estimates we will be able to compute.

An alternative version of affine and Taylor arithmetic. The main idea of Taylor
methods is to approximate the given function f(xi,...,x,) by a polynomial of a
small order plus an interval remainder term.

In these terms, straightforward interval computations can be viewed as O-th order
Taylor methods in which all we have is the corresponding interval (or, equivalently,
the constant term plus the remainder interval). To compute this interval, we repeated
the computation of f step by step, replacing operations with numbers by operations
with intervals.

We can do the same for higher-order Taylor expansions as well. Let us illustrate
how this can be done for the first order Taylor terms. We start with the expressions

X; = X; — Ax;. Then, at each step, we keep a term of the type a = a + Z a;-Ax;+a.

(To be more precise, the keep the coefficients a and ¢; and the mterval a )
Addition and subtraction of such terms are straightforward:

n . n . n
(@+Y ai-Axi+a)+ (b+ Y bi-Axi+b) = (a+b)+ ) (a;+b;)-Axi+ (a+Db);

i=1 i=1 i=1

n
(ZiJrZa,waiJra b+Zb Axi+b)=(a— b+Z )-Ax;i+ (a—h).
i=1 i=1

For multiplication, we add terms proportional to Ax; - Ax; to the interval part:

a+Za, Ax;+a)- b+Zb ‘Axi+b)=(a-b)+ Y (@-bi+b-a;)- Axi+
i=1 i=1 i=1
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_ n n
(5-b+b~a+2a,~b,~- [O,AIZ]-FZZCI,Z?/[—A,A,][AJAJ])
i—1 i=1 jZi

At the end, we get an expression of the above type for the desired quantity y: y =
n

15

y+ Y vi-Axi+y. We already know how to compute the range of a linear function,
i=1

so we get the following enclosure for the final range: Y = y+ [—A,A] +y, where
n

A= ‘21 il Ai.
i=

Example. For f(x;) = x; — x%, we first compute xp = x% and then y = x; —xp. We
start with the interval x; = x; —Ax; = 0.5+ (—1)-A; 4+ [0,0].

On the next step, we compute the square of this expression. This square is equal
to 0.25 — Ax; + Ax?. Since Ax; € [—0.5,0.5], we conclude that Ax? € [0,0.25] and
thus, that x = 0.254 (—1) - Ax; +[0,0.25].

For y = x; — xo, we now have

y=(0.5-0.25)+((=1) = (=1)) - Ax; + ([0,0] — [0,0.25]) =

0.25 4 [—0.25,0] = [0,0.25].

This is actually the exact range for the desired function f(x;).

8 Situations when, in Addition to the Upper Bounds on the
Measurement Error, we Also Have Partial Information About
the Probabilities of Different Error Values

Practical problem. In interval computations, we assume that the uncertainty in x;
can be described by the interval of possible values. In real life, in addition to the
intervals, we often have some information about the probabilities of different values
within this interval. What can we then do?

Which is the best way to describe the corresponding probabilistic uncertainty?
One of the main objectives of data processing is to make decisions. A standard way
of making a decision is to select the action a for which the expected utility (gain)
is the largest possible. This is where probabilities are used: in computing, for every
possible action a, the corresponding expected utility. To be more precise, we usually
know, for each action a and for each actual value of the (unknown) quantity x, the
corresponding value of the utility u,(x). We must use the probability distribution for
x to compute the expected value E[ug(x)] of this utility.

In view of this application, the most useful characteristics of a probability dis-
tribution would be the ones which would enable us to compute the expected value
E[uq(x)] of different functions u,(x).

Which representations are the most useful for this intended usage? General
idea. Which characteristics of a probability distribution are the most useful for com-
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puting mathematical expectations of different functions u,(x)? The answer to this
question depends on the type of the function, i.e., on how the utility value u depends
on the value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case is when
the utility function u,(x) is smooth. We have already mentioned, in Section I,
that we usually know a (reasonably narrow) interval of possible values of x. So,
to compute the expected value of u,(x), all we need to know is how the function
ug(x) behaves on this narrow interval. Because the function is smooth, we can ex-
pand it into Taylor series. Because the interval is narrow, we can safely consider
only linear and quadratic terms in this expansion and ignore higher-order terms:
ua(x) = co+cp - (x—x0) + 2 - (x —x0)?, where xo is a point inside the interval.
Thus, we can approximate the expectation of this function by the expectation of the
corresponding quadratic expression: E[ug(x)] ~ E[co+¢1 - (x —x0) +¢2 - (x —x0)?]
i.e., by the following expression: E[u,(x)] &~ co + c1 - E[x — x0] + ¢2 - E[(x — x0)?].
So, to compute the expectations of such utility functions, it is sufficient to know the
first and second moments of the probability distribution.

In particular, if we use, as the point xo, the average E[x], the second moment turns
into the variance of the original probability distribution. So, instead of the first and
the second moments, we can use the mean E and the variance V.

Y

In decision making, non-smooth utility functions are common. In decision mak-
ing, not all dependencies are smooth. There is often a threshold xq after which, say,
a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or physical anal-
ysis. In this case, when we increase the value of this parameter, we see the drastic
increase in effect and hence, the drastic change in utility value. Sometimes, this
threshold simply comes from regulations. In this case, when we increase the value
of this parameter past the threshold, there is no drastic increase in effects, but there
is a drastic decrease of utility due to the necessity to pay fines, change technology,
etc. In both cases, we have a utility function which experiences an abrupt decrease
at a certain threshold value xg.

Non-smooth utility functions naturally lead to cdfs. We want to be able to com-
pute the expected value E[u,(x)] of a function u,(x) which changes smoothly until
a certain value xp, then drops it value and continues smoothly for x > xg. We usu-
ally know the (reasonably narrow) interval which contains all possible values of x.
Because the interval is narrow and the dependence before and after the threshold is
smooth, the resulting change in u,(x) before xg and after xq is much smaller than
the change at xq. Thus, with a reasonable accuracy, we can ignore the small changes
before and after xo, and assume that the function u,(x) is equal to a constant u™ for
x < xp, and to some other constant 4~ < u™ for x > xq.

The simplest case is when u™ = 1 and 1~ = 0. In this case, the desired expected
value E [ug,0> (x)] coincides with the probability that x < xg, i.e., with the correspond-
ing value F(xp) of the cumulative distribution function (cdf). A generic function
uy(x) of this type, with arbitrary values u~ and u™, can be easily reduced to this
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simplest case, because, as one can easily check, ug(x) = u~ 4+ (u™ —u) - u®(x)
and hence, E[u,(x)] =u~ + (ut —u") - F(x).

Thus, to be able to easily compute the expected values of all possible non-smooth
utility functions, it is sufficient to know the values of the cdf F (xg) for all possible xg.

How to represent partial information about probabilities: general idea. In many
cases, we have a complete information about the probability distributions that de-
scribe the uncertainty of each of n inputs.

However, a practically interesting case is how to deal with situations when we
only have partial information about the probability distributions. How can we rep-
resent this partial information?

Case of cdf. If we use cdf F(x) to represent a distribution, then full information
corresponds to the case when we know the exact value of F(x) for every x. Partial
information means:

e cither that we only know approximate values of F'(x) for all x, i.e., that for every
x, we only know the interval that contains F (x); in this case, we get a p-box [7];

e or that we only know the values of F(x) for some x, i.e, that we only know the
values F(x1), ..., F(x,) for finitely many values x = x1,...,x,; in this case, we
have a histogram.

It is also possible that we know only approximate values of F(x) for some x; in this
case, we have an interval-valued histogram.

Case of moments. If we use moments to represent a distribution, then partial in-
formation means that we either know the exact values of finitely many moments, or
that we know intervals of possible values of several moments.

Resulting algorithms. This discussion leads to a natural classification of possible
algorithms:

e If we have complete information about the distributions of x;, then, to get vali-
dated estimates on uncertainty of y, we have to use Monte-Carlo-type techniques;
see, e.g., [23].

If we have p-boxes, we can use methods from [7, 9].
If we have histograms, we can use methods from [2, 3].
If we have moments, then we can use methods from [11, 17].

Case study: first moments. In some practical situations, in addition to the lower and
upper bounds on each random variable x;, we know the bounds E; = [E, ,-,E-] on its
mean E;. Indeed, in measurement practice (see, e.g., [11]), the overall measurement
error Ax is usually represented as a sum of two components:

e a systematic error component Agx which is defined as the expected value E[Ax],
and
e a random error component A,x which is defined as the difference between the

. def
overall measurement error and the systematic error component: A,.x = Ax — Agx.
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In addition to the bound A on the overall measurement error, the manufacturers of
the measuring instrument often provide an upper bound A on the systematic error
component: |Agx| < A,

This additional information is provided because, with this additional information,
we not only get a bound on the accuracy of a single measurement, but we also get
an idea of what accuracy we can attain if we use repeated measurements to increase
the measurement accuracy. Indeed, the very idea that repeated measurements can
improve the measurement accuracy is natural: we measure the same quantity by

using the same measurement instrument several (N) times, and then take, e.g., an
, , FAONENE Y .
arithmetic average ¥ = T — of the corresponding measurement results

D = x4+ AxV V) = x4 AxW),

o If systematic error is the only error component, then all the measurements lead
to exactly the same value ') = ... = X™)_ and averaging does not change the
value — hence does not improve the accuracy.

e On the other hand, if we know that the systematic error component is 0, i.e.,
E[Ax] = 0 and E[X] = x, then, as N — oo, the arithmetic average tends to the
actual value x. In this case, by repeating the measurements sufficiently many
times, we can determine the actual value of x with an arbitrary given accuracy.

In general, by repeating measurements sufficiently many times, we can arbitrarily
decrease the random error component and thus attain accuracy as close to Ay as we
want.

When this additional information is given, then, after we performed a measure-
ment and got a measurement result X, then not only we get the information that the
actual value x of the measured quantity belongs to the interval x = [ — A, X+ A,
but we can also conclude that the expected value of x = X — Ax (which is equal to
E[x] =X — E[Ax] =X — Ayx) belongs to the interval E = [x — A, X+ A].

If we have this information for every x;, then, in addition to the interval y of pos-
sible value of y, we would also like to know the interval of possible values of E[y].
This additional interval will hopefully provide us with the information on how re-
peated measurements can improve the accuracy of this indirect measurement. Thus,
we arrive at the following problem:

Precise formulation of the problem. Given an algorithm computing a function
flx1,...,x,) from R" to R, and values x;, X1, ..., x,, Xn, E|, E1, ..., E,;, Ey, we
want to find

EY min{E[f(x1,...,x,)]| all distributions of (xi,...,x,) for which

X1 € [El;xl]w--axn € [L;aXnLE[xl] € [Elafl]v-“E[xn] € [E;”EH]};

and E which is the maximum of E[f(x1,...,x,)] for all such distributions.
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x1,Eq

x2,Ep

X, Ey

In addition to considering all possible distributions, we can also consider the case
when all the variables x; are independent.

Algorithms for solving the problem: case of exactly known moments. The main
idea behind straightforward interval computations can be applied here as well.
Namely, first, we find out how to solve this problem for the case when n =2 and
f(x1,x2) is one of the standard arithmetic operations. Then, once we have an arbi-
trary algorithm f(xi,...,x,), we parse it and replace each elementary operation on
real numbers with the corresponding operation on quadruples (x, E, E,X).

To implement this idea, we must therefore know how to, solve the above problem
for elementary operations.

For addition, the answer is simple. Since E[x] +x3] = E[x1| + E[x2], if y = x1 +x2,
there is only one possible value for E = E[y]: the value E = E;| + E». This value
does not depend on whether we have correlation or nor, and whether we have any
information about the correlation. Thus, E = E; + E».

Similarly, the answer is simple for subtraction. if y = x| — xp, there is only one
possible value for E = E[y]: the value E = E; — E;. Thus, E=E; — E;.

For multiplication, if the variables x; and x, are independent, then E[x; - xp] =
E[x1] - E[xs]. Hence, if y = x1 - x» and x; and x, are independent, there is only one
possible value for E = E[y]: the value E = E; - E; hence E=E; - E,.

The first non-trivial case is the case of multiplication in the presence of possible
correlation. When we know the exact values of E| and E», the solution to the above
problem is as follows [11, 17]: For multiplication y = x7 - x, when we have no
information about the correlation,

E=max(p; +p2—1,0)-X - X2 +min(p1, 1 — p2) %1 -2+

min(1l — py, p2) - x; - X2 +max(l — p1 — p2,0) - x; - £33
E = min(py, pp) X1 -Xo +max(py — p2,0) - %1 - xp+

max(ps — p1,0) - x; X2 +min(1 — p1, 1 —p2) - x; - x5,

def -
where p; = (Ei —x;)/ (% — x;).

For the inverse y = 1/x1, the finite range is possible only when 0 ¢ x;. Without
losing generality, we can consider the case when 0 < x;. In this case, the range of
possible values of E is E = [1/E1, p1 /%1 + (1 — p1) /x;]-
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Similar formulas can be produced for max and min, and also for the cases when
there is a strong correlation between x;: namely, when x; is (non-strictly) increasing
or decreasing in x».

Algorithms for solving the problem: general case. For multiplication (under no
assumption about correlation), if we only know the intervals of possible values of
E;, then to find E, it is sufficient to consider the following combinations of p; and

p2:

e pr=p,and p» =p,; p1 =p, and po =p,; p1 =p; and p» = p,; p1 = p; and
p2 = P2}

e p1=max(p;,1—p,) and p» = 1—p; (if | € p1 +p2); and

e p1=min(p;,l —p,)and p =1 —p1 (if 1 € p1 +p2).

The smalleit value of E for all these cases is the desired lower bound E.
To find E, it is sufficient to consider the following combinations of p; and ps:

e pi1=p,and p»=p,; p1 = p, and p» = P,; p1 = p; and p» = p,; p1 = p; and
P2 =D;

e pI=p :max(gl,g ) (if py Np2 # 0); and

® p1 = p2=min(p;,p,) (if p1Np2 #0).

The largest value of E for all these cases is the desired upper bound E.

Important open problems. What if, in addition to intervals and first moments,
we also know second moments? This problem is important for design of computer
chips.

What if, in addition to moments, we also know p-boxes?

Additional problem: how to estimate bounds on the moments? If we knew the
exact values Ax; of the measurement errors, we could estimate the moments by

1
(Ax1+...+Ax,), the variance

using the standard formulas: the mean as E(Ax) = —
n

1 n 5 X
as V(Ax) = — 'Zl (Ax; — E(Ax))*, and the covariance as
i=
l n
C(Ax,Ay) = — ) (Axi — E(Ax)) - (Ayi — E(Ay)).

n—1 &

In practice, we do not know the actual value of Ax; = X; — xi, we only know an
approximate value Ax; = X; —X;*, where X; is the result of measuring the same
quantity by a standard (much more accurate) measuring instrument.

For the standard measuring instrument, we often only know the upper bound

A on its measurement error: X —x;| < AM. In this case, we only know that

Ax; € [in — A,:“,Zx,- + AM]. So, to find guaranteed bounds for each of the above
statistical characteristics C(Axy,...,Ax,), we must find the range of possible values
of the corresponding characteristics when Ax; belongs to the corresponding interval
[Ax;, Ax;].
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For some characteristics, computing the corresponding range is easy. For ex-
ample, the mean E(Ax) is a monotonic function of all its variables, so its range

— 1 _
can be computed as E(A) = [E,E], where E = —(Ax; + ...+ Ax,) and E =
n

1 — _
;(Axl +...+Ax,).

For other statistics such as variance V (Ax) or covariance C(Ax,Ay), the problem
is, in general, NP-hard [8]. In such cases, in general, we have to use approximate
techniques. There are, however, practically meaningful situations in which it is pos-
sible to efficiently compute the exact range of the variance and of other characteris-

tics; the corresponding algorithms are summarized in [10, 22, 21].

Comment. Similar algorithms can be used in the general situation of statistical pro-
cessing under interval uncertainty. Interval uncertainty can come from measurement
errors, but there are also other sources of interval uncertainty:

e A source of interval uncertainty is the existence of detection limits for different
sensors: if a sensor, e.g., did not detect any ozone, this means that the ozone
concentration is below its detection limit DL, i.e., in the interval [0, DL].

e Yet another source of interval uncertainty is discretized data: if we experiment
on the fish and watch it daily, and a fish is alive on Day 5 but dead on Day 6, then
all we know about its lifetime is that it is in the interval [5,6].

Expert estimates often come as intervals.

The need to keep privacy in statistical (e.g., medical) databases also often leads
to the fact that instead of recording, e.g., exact age, what we only record is the
interval [40,50].

In all these situations, the algorithms from [10, 22, 21] can be used.

9 Conclusions

Traditional statistical approach to processing measurement errors Ax; is based on
the assumption that we have a full information about the probability distributions for
these errors. Typically, it is assumed that these errors are independent and normally
distributed, with known means and standard deviations.

In practice, however, we often only have a partial information about the cor-
responding probability distributions. For example, sometimes, we only know the
upper bound A; on the (absolute values of the) measurement errors, i.e., we only
know that Ax; belongs to the interval [—A;, A;]. In this case, a usual engineering ap-
proach is to select, from several possible distributions, the most “reasonable one”
— e.g., the uniform distribution on [—A;, A;]. We show that this selection sometimes
drastically underestimates the error of indirect measurements. To get more adequate
estimates, we must use robust statistical techniques, i.e., techniques which take into
account all the probability distributions which are consistent with our knowledge.
For the case of interval uncertainty, such techniques are called interval computa-
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tions. In this chapter, we overviewed interval computations techniques and more
general techniques of robust statistics.
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