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Abstract

In classical mathematics, the existence of a solution is often proven
indirectly, non-constructively, without an efficient method for construct-
ing the corresponding object. In many cases, we can extract an algorithm
from a classical proof: e.g., when an object is (non-constructively) proven
to be unique in a locally compact space (or when there are two such
objects with a known lower bound on the distance between them). In
many other practical situations, a (seemingly) natural formalization of
the corresponding practical problem leads to a non-compact set. In this
paper, we show that often, in such situations, we can extract efficient algo-
rithms from classical proofs — if we explicitly take into account (implicit)
knowledge about the situation. Specifically, we show that if we consis-
tently apply Heisenberg’s operationalism idea and define objects in terms
of directly measurable quantities, then we get a Girard-domain type rep-
resentation in which a natural topology is, in effect, compact — and thus,
uniqueness implies computability.

1 Introduction

In classical mathematics, the existence of a solution is often proven indirectly,
non-constructively, without an efficient method for constructing the correspond-
ing object. This non-constructivity was the main starting point for constructive



mathematics, in which “there exists an x such as P(x)” is only considered to
be true if we have an algorithm for constructing such an z.

Numerous papers have shown that in many cases, we can extract an al-
gorithm from a classical proof: e.g., when an object is (non-constructively)
proven to be unique in a locally compact space, or when there are two such
objects with a known lower bound on the distance between them, etc.; see, e.g.,
[20, 21, 22, 24, 25, 26, 33]; see also [36].

In many practical situations, we can use these results and get efficient al-
gorithms. However, in many other practical situations, a (seemingly) natural
formalization of the corresponding practical problem leads to a non-compact set.
In this paper, we show that often, in such situations, we can extract efficient
algorithms from classical proofs — if we explicitly take into account (implicit)
knowledge about the situation.

Standard metrics on real numbers, vectors, and other locally compact spaces
are usually directly physically motivated. On the other hand, on the (non-locally
compact) spaces of higher-order objects (such as the space of all operators), the
relation between standard metrics and physical meaning is indirect. We show
that if we consistently apply Heisenberg’s operationalism idea and define such
objects in terms of directly measurable quantities, then we get a Girard-domain
type representation [12, 13, 14, 41] in which a natural topology is, in effect,
compact — and thus, uniqueness implies computability.

The structure of this paper is as follows. We start by describing the prac-
tical need for such solutions (in Section 2) and of the algorithmic difficulty of
the corresponding general problem (in Section 3). In Section 4, we recall the
known results that for locally compact spaces, uniqueness implies algorithmic
computability. In Section 5, we formulate the main problem and briefly describe
how we plan to solve it. We start our solution with a general description of a
measuring instrument: Girard-domain inspired motivations are given in Section
6; Chapter 7 contains the resulting definitions and their relation with Girard
domains. Chapter 8 uses this formal definition of a measuring instrument to
present a general description of a physical quantity — or, to me more precise,
of the set of possible values of a physical quantity. A physically important
case when the indistinguishability relation is transitive is analyzed in Section
9. In Section 10, we show how to naturally describe functions between thus
defined quantities. Finally, Section 11 presents the main result of this paper:
that uniqueness implies computability. The final section contains conclusions
and plans for future work.

Some of these results were previously announced in [32, 30, 29].

2 Finding Solutions is Practically Important

In many real-life situations, we want to find the best decision, the best control
strategy, etc. The corresponding problems are naturally formalized as opti-
mization problems: we have a function f(z1,...,x,) of several variables, and
we want to find the values (z1,...,z,) for which this function attains the largest



(or the smallest) possible value.

Many numerical algorithms have been proposed for solving optimization
problems. Unfortunately, many of these algorithms often end up in a local
maximum instead of the desired global one.

e In some practical situations, e.g., in decision making, the use of local
maximum simply degrades the quality of the decision but is not, by itself,
disastrous.

e However, in some other practical situations, missing a global maximum or
minimum may be disastrous.

Let us give two examples:

e In chemical engineering, global minima of the energy function often de-
scribe the stable states of the system. If we miss such a global minimum,
the chemical reactor may go into an unexpected state, with possible seri-
ous consequences.

e In bioinformatics, the actual shape of a protein corresponds to the global
minimum of the energy function. If we find a local minimum instead, we
end up with a wrong protein geometry. As a result, if we use this wrong
geometry as a computer simulation for testing recommendations on the
medical use of chemicals, we may end up with medical recommendations
which harm a patient instead of curing him.

For such applications, it is desirable to use rigorous, automatically verified meth-
ods of global optimization, i.e., methods which never discard an actual global
maximum; for a survey of such methods, see, e.g., [16, 18].

In some real-life problems, we are not yet ready for optimization, e.g.,
because the problem has so many constraints that even finding some values
x = (x1,...,%,) of the parameters x; which satisfy all these constraints is an
extremely difficult task. For such problems, we arrive at the problem of satis-
fying given constraints, e.g., solving a given system of equations. In many such
problems, it is important not to miss a solution.

3 Finding Solutions is Algorithmically Difficult

How can we find this corresponding optimum or solution? In classical mathe-
matics, the existence of an optimum or of a solution is often proven indirectly,
non-constructively, without an efficient method for constructing the correspond-
ing object.

This non-constructivity was the main starting point for constructive mathe-
matics, in which “there exists an x such as P(x)” is only considered to be true
if we have an algorithm for constructing such an z; see, e.g., [1, 4, 6, 7, 8, 33,
34, 38].

The corresponding research has lead to many useful algorithms. However,
in general, the problem is algorithmically undecidable: it is not possible, given



a constructively defined system of equations, to even algorithmically whether
this system has a solution. For example, it is well known that no algorithm is
possible to check solvability of Diophantine equations, i.e., equations of the type
P(nq,...,n,) = 0, where P is a polynomial and ny,...,n, are integer-valued
variables. The solvability of this equation is clearly equivalent to the solvability
of the following equation with real-valued variables

k
flxy,...,o0) = P (xy,...,2,) +Zsin2(7r~xi) =0:
i=1

indeed, the only way for the left-hand side to be 0 is to have sin?(7 - ;) = 0
— meaning that all z; are integers — and to have P(xy,...,2) = 0. Thus,
solvability of systems of equations is indeed algorithmically undecidable.

Similarly, it is not algorithmically possible to tell whether the global mini-
mum of the function f is 0 or not. Thus, in general, global optimization is also
not algorithmic.

4 For (Locally) Compact Spaces, Uniqueness Im-
ply Algorithmic Computability: A Reminder

There is one important case in which the existence of a solution automatically
leads to its algorithmic computability: the case of unique solutions on a (lo-
cally) compact space; see, e.g., [20, 21, 22, 24, 26, 33]. In order to formulate the
corresponding result, we must recall some basic definitions of computable (“con-
structive”) real numbers, computable metric spaces, and computable functions;
see, e.g., [1, 4, 6, 7, 8, 33, 34, 38]. In addition to presenting definitions, we will
also recall motivations for these definitions. These motivations will be helpful
in our later discussions.

4.1 Computable real numbers and sequences

What is a computable real number? Real numbers are a good model for many
real-life quantities such as length, mass, time, etc. In real life, the values of
these quantities come from measurements. Measurements are never 100% ac-
curate; hence, each measurement result is an approzimate value of the real
number. Modern measuring instruments record these approximate values as
(binary-)rational value. It is therefore reasonable to assume that 1l these ap-
proximations are real numbers.

It makes sense to say that a real number is computable if whatever accuracy
we want, we can always (efficiently) get the approximation corresponding to
the desired accuracy. An accuracy of k digits means that the correspoding
approximation 7 is 27 F-close to the actual value z, i.e., that |z — r| < 27K,
Thus, we arrive at the following definition.



Definition 1 A real number x is called computable if there exists an algorithm
(program) that transforms an arbitrary natural number k into a rational number
ri which is 2 %-close to x. It is said that this algorithm computes the real
number x.

When we say that a computable real number is given, we mean that we are
given an algorithm that computes this real number.

Definition 2 A sequence of real numbers x1, o, ..., Ty, ... is called computable
if there exists an algorithm (program) that transforms arbitrary natural numbers
n and k into a rational number r,y, which is 2~ F-close to x,,. It is said that this
algorithm computes the sequence x,,.

When we say that a computable sequence of real numbers is given, we mean
that we are given an algorithm that computes this sequence.

4.2 Computable metric spaces and their computable points

A metric space (X,d) is a set on which we have a metric d, i.e., a function
which assigns, to every two points z,2’ € X, a real number d(z,z’) called a
distance between x and z’. How can we describe points of a computable metric
space? Let us recall that a computable real number is described by its (rational)
approximations. Similarly, it is reasonable to describe points of an arbitrary set
X by their approximations.

From the computational viewpoint, each approximation can be represented
in the computer, and thus, is encoded by a finite sequence of Os and 1s. There
are countably many such sequences, so we can describe these approximations
as a sequence I, ...,Ty,... of points of X. Every element of the set X can be
approximated, with arbitrary accuracy, by such approximations. Thus, every
point from the metric space can be represented as a limit of some subsequence of
{zn} —i.e., in topological terms, this subsequence must be dense in the original
space X.

Thus, we arrive at the following definition:

Definition 3 By a a computable metric space, we mean a triple (X,d,{z,}),
where (X, d) is a metric space, {x1,x2,...,Tn,...} is a dense subset of X, and
there exists an algorithm that, given two natural numbers i and j, computes the
distance d(z;, x;).

In other words, we have an algorithm that, given ¢, j, and an accuracy k,
computes the 2~ *-rational approximation to d(z;,z;). Similar to the previous
examples, when we say that a computable metric space is given, we mean that
we are given an algorithm that computes d(z;, x;).

In particular, the set of all real numbers with a standard metric d(z,2’) =
| — 2’| and all rational numbers as approximations {x,,} is a computable metric
space.



Similar to the definition of a computable real number, a computable point x
in a metric space can be defined by the existence of an algorithm which return
the corresponding approximations to x:

Definition 4 A point x € X of a computable metric space (X,d,{x,}) is called
computable if there exists an algorithm that transforms an arbitrary natural
number k into a natural number i for which d(x,x;) < 2=k It is said that this
algorithm computes the point x.

When we say that a computable point is given, we mean that we are given
an algorithm that computes this point.

It is easy to show that a distance between two computable points z and
y is computable: indeed, to compute the distance d(x,y) with an accuracy
27k, it is sufficient to compute the 2~ (**2)_approximations 7 and g to z and y,
and then compute the 2~ (*+1_approximation d to the distance d(Z,7). Then,
d(z,7) < 2=*+2) and d(y,7) < 2-*+?), hence

|d<xay) - d(%,gﬂ < 2_(k+2) + 2—(k+2) _ 2_(k+1).
Since ‘J_ d(z,y)| < 27(k+1), we thus have
|J— d(z,y)| < 9—(k+1) + 9—(k+1) _ 9=k

4.3 Computable functions

Many real-life quantities x,y are related by an (efficiently computable) func-
tional relation y = f(z). For example, the volume V of a cube is equal to the
cube of its linear size s: V = f(s) = s>. This means that, once we know the
linear size, we can compute the volume.

At every moment of time, we can only know an approximate value of the
actual quality € X. Thus, to be able to compute f(z) with a given accuracy

27% we must:
e be able to tell with what accuracy we need to know z, and then
e be able to use the corresponding approximation to compute f(x).
We thus arrive at the following definition.

Definition 5 A function f : X — X' from a computable metric space (X, d, {x,})
to a computable metric space (X',d',{x)}) is called computable if there exist
two algorithms Uy and ¢ with the following properties:

e the algorithm ¢ takes a natural number k and produces a natural number
¢ = (k) such that d(x,y) < 27 implies that d'(f(x), f(y)) < 27%;

o Uy takes two natural numbers n and k and produces a 2~k _approzimation
to f(xn), i-e., a point x, for which d'(z), f(x,)) < 27F.

In particular, one can easily show that for every computable point xg, the
function x — d(x, z9) — which maps every other point € X into a distance to
o — is a computable function.



4.4 Computable compact spaces

Let us recall that a metric space X is compact if and only if it is complete and
totally bounded; see, e.g., [19, 43]. Here, complete means that every converging
sequence of points X, i.e., every sequence y,, for which d(yn,ym) < 27" +27™
has a limit point in X, and totally bounded means that for every ¢ > 0, there
exists a finite e-net, i.e., a finite set of points {z1, ..., zy} such that every point
x € X is e-close to one of the points z;. It can be proven that:

e to check compactness, it is sufficient to check the existence of e-nets only
for some sequence of values ¢,, — 0, in particular, for ¢, = 27";

e it is always possible to select an e-net from the dense subset {z,} C X;
and

e to check that a given finite set F' is indeed an an e-net, it is sufficient to
check that every point x,, from the dense set is e-close to one of the points
of F.

Because of these results, the constructive analogues of the notion of compactness
is usually formulated as the possibility to constructively design an 2~*-net for
a given k:

Definition 6 A computable metric space (X,d,{x,}) is called a computable
compact space if there exists an algorithm that, given an arbitrary natural num-
ber k, returns a finite set of indices Fy, C {1,2,...,n,...} such that for every i
there is a f € Fy, for which d(z;,xs) < 27F.

An important feature of computable compact spaces X is that for every
computable function f : X — R from X to real numbers, it is possible to
efficiently compute its maximum and its minimum.

Indeed, to compute M f hax f(x) with the accuracy 27%, we must first use
the fact that f is computable and find with what accuracy 2~¢ we must compute
x to be able to estimate f(x) with the accuracy 2=(+1)  Then, we use the fact
that X is a computable compact space to find a finite Q_i—net. For each point

; from this net, we compute the 2~ (*+Y_approximation f(z;) to f(x;). Then,
M % max f(x;) is the desired 2 *-approximation to M = max f(z). Indeed,

since f(z;) > f(x;) — 2= *+D | we have

M = max f(z) > max f(z;) > max f(z;) — 2~ *+D) = M — 27 (1),
On the other hand, since the values x; form a 2~ %-net, for every value z, there
is an x; for which d(z,z;) < 27¢ and hence |f(x) — f(z;)| < 2-*+1D; hence,

f(z) < max f(z;) +2~*+D for all 2 and M = max f(z) < max f(z;) + 2~ F+D,
Here, f(x;) < f(x;) + 2~ *+D so

M < max f(z;) + 2~ *+D 4 2= (+D A7 4 9=k,



4.5 Uniqueness implies algorithmic computability

Now, we are ready to present the desired result.

Theorem 1 [20, 21, 22, 24, 26] There exists an algorithm U such that:

o U is applicable to an arbitrary computable function f : X — R that attains
its maximum on a computable compact space X at exactly one point x,

o for every such function f, the algorithm U computes the global mazimum
point x.

Proof. Let us start by explaining the main idea of this proof. We want to

compute the global maximum point, i.e., the value z;; for which f(xy) =

M max f(x). The main idea behind this proof is that since the function

f has a unique global maximum M, for every € > 0, the maximum M. of
f(z) over all the points which are at distance > & from zjp; is smaller than
M. Indeed, the set {z : d(z,zp) > €} is a closed subset of a compact set and
therefore compact itself. The maximum of a continuous function on a compact
set is always attained, so if M. = M, we would have a point whose distance
from z; is > € at which the maximum is also attained — thus contradicting the
uniqueness.

To use this idea, it is desirable to take a e-net zq,...,zxn, and compute the
maxima M; of the function f(x) over e-balls {z : d(x,z) < e} centered in
the corresponding points z;; these balls are also closed subset of a compact set
and thus, compact sets themselves. We compute these maxima with sufficient
accuracy to distinguish between M and M. < M, Then, the balls for which
the maximum is guaranteed to be smaller than for some other maximum are
excluded as not possible locations of a global maximum. After this computation,
all the balls which are completely located within the set {z : d(z,xp) > €}
will be dismissed. The only balls which can still contain global maximum are
the ones which contain some points p at a distance < & from the (unknown)
maximum location x ;. From d(p, z;) < € and d(p,zp) < &, we now conclude
that d(z;, xpr) < 2e. Thus, for all such balls,

d(zi,zj) < d(zi, xm) +d(zj,xm) < 4de.

We do not know beforehand what is the difference between M and M., so
we do not know with what accuracy we need to compute the corresponding
maxima. Thus, what we can do is compute these maxima M; with higher and
higher accuracy — until all the balls in which the maxima can still be located are
4e-close to each other. Once we achieved this objective, the center z; of each
remaining ball is 2e-close to the desired maximum location.

This general idea has to be slightly modified to become fully algorithmic.
The first — simple — reason why need a modification is that we cannot compute
the distance d(z;, ;) exactly, we can only compute each distance with a certain
accuracy — e.g., the same accuracy e. In this case, if d(z;,z;) < 4e, the e-
approximation to this distance is < 5e.



The second — more complex — reason for the modification is that we need
the balls to be computable compacts sets in order to be able to compute the
maxima M;. It is known, however, that while a closed subset of a compact
set is always compact, a computable closed subset of a computable compact is
not always a computable compact. Specifically, if g : X — R is a continuous
mapping from a compact space X into real numbers — e.g., g(z) = d(z, z) for a
given point 29 € X — then, for every real number o < max g(x), the pre-image
{z : g(x) > a} is also compact. The following computable version of this result
holds for computable functions (see, e.g., [6, 7]): if g : X — R is a computable
mapping from a computable compact space X into real numbers, then, for
every two rational numbers r < r’ < max g(z), we can algorithmically produce
a computable number « € [r, '] for which the pre-image {x : g(x) > a} is also
constructively compact (and the corresponding 2~ -nets are also algorithmically
produced).

In view of this result, for any given ¢ = 27%, we produce the e-net 21, ..., zx.
For each point z;, we find a value a; € [e, 2¢] for which the ball

B Y {z:d(z, z) < o}
of radius «; with a center in z; is a computable compact set.
For these sets, the fact that M; > M. means that the set

B; C{x:d(x,z) < 2¢}

contains a point which is e-close to xp; — and thus, that d(z;,zy) < 3e. So,
for every two such sets, we have d(z;,z;) < 6¢, and thus, an e-approximation

d(z, ;) to d(z;, zj) is smaller than or equal to 7e.

Since each set B; is a computable compact, we can compute the maximum

M; max{f(z) : © € B;} of the function f(z) over each ball B; with arbitrary

accuracy 27, i.e., we can compute rational numbers m;, which are 2~ *-close to
the actual M;.

If for some ¢ and j, we have m;; < mjg—2~2*€, this means that M; < M; and
thus, the global maximum cannot be attained at B;. Vice versa, if M; < M;,
this means that m; < mje — 2 - 2=¢ for sufficiently large ¢ and thus, after
computing M; and M; with a sufficient accuracy, we will be able to confirm
that M,; < Mj.

So, to find the desired approximation to x s, we repeatedly, for £ =1,2,.. .,
compute the values m;, and dismiss some balls until for all non-dismissed balls,
we have d(z;,z;) < Te, where d(z;, 2;) is the distance d(z;, z;) computed with
accuracy €. At this stage, z; is the desired 3e-approximation to ;.

We can perform this procedure for every e, hence we have an algorithm for
producing desired approximations to xp;. The theorem is proven.

Similar results hold for roots (solutions) of a system of equations:
Definition 7 By a computable system of equations we mean a system f1(x) =

0, ..., fu(x) =0, where each of the functions f; is a computable function on a
computable compact set X .



Theorem 2 [20, 21, 22, 24, 26] There exists an algorithm U such that:

e U is applicable to an arbitrary computable system of equations which has
exactly one solution, and

o for every such system of equations, the algorithm U computes its solution.

Proof. This theorem immediately follows from our optimization result if we
notice that the solution to the system is exactly the point x where a computable

function F(z) dof f2(z) + ...+ fZ(x) attains its minimum - or, equivalently,
where the negative function f(z) ©_p (x) attains its maximum.

Comment. It is worth mentioning that in both results, uniqueness is important.
For example, no algorithm U is possible:

e that is applicable to an arbitrary computable function f : X — R that
attains its maximum on a computable compact space X at exactly two
points z, and

e that computes one of the corresponding global maximum points x.
Similarly, no algorithm U is possible

e that is applicable to an arbitrary computable system of equations f; = 0,
.., fr = 0 that has exactly two solutions x on a computable compact
space X, and

e that computes one of the corresponding solutions x.

For proofs, see, e.g., [23, 24, 25, 26, 27, 28, 31, 33, 36].

5 Remaining Problem and What We Will Do

In many practical situations, we can efficiently apply the uniqueness-motivated
algorithms to practical problems; see, e.g., [22].

However, in many other practical situations, a (seemingly) natural formal-
ization of the corresponding practical problem leads to a non-compact set. For
example, many physical phenomena are described by fields, i.e., by functions.
The space of all functions is not locally compact.

In quantum physics, possible states of a quantum system form a Hilbert
space — which is not locally compact. Quantum observables are operators, and
the space of all operators is also not locally compact. It is desirable to extend
the uniqueness result to such situations. In this paper, we show that often, in
such situations, we can extract efficient algorithms from classical proofs — if we
explicitly take into account (implicit) knowledge about the situation. Specif-
ically, while the standard metrics on real numbers, vectors, and other locally
compact spaces are usually directly physically motivated, on the (non-locally
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compact) spaces of higher-order objects (such as the space of all operators), the
metric is more mathematically motivated.

We will show that if we consistently apply Heisenberg’s operationalism idea
and define such objects in terms of directly measurable quantities, then we get a
Girard-domain type representation [12, 13, 14, 41] in which a natural topology
is, in effect, compact — and thus, uniqueness implies computability.

Specifically, according to the operationalist idea, a quantity is what can be
measured by measuring instruments. Each measuring instrument is imprecise,
so based on a single instrument, we only have an approximate idea of the value of
the quantity. To get a more adequate description, we must consider a sequence
of more and more accurate measuring instruments. In the following sections,
we will see how these ideas lead to a definition.

6 Towards a Description of a Measuring Instru-
ment: Motivations

Plan. In accordance with the above description, let us start with a description
of a measuring instrument.

Every measuring device has only finitely many possible outcomes such as
marks on a scale (for an analog device) or digital (usually binary) outputs (for a
digital device). Not all the marks may be physically possible: for example, the
velocity cannot exceed the speed of light, etc. To distinguish between physically
possible and physically impossible marks, we need to have a theory that describes
both this device and the measured quantity. We will show that, under reasonable
assumptions, the existence of such a theory leads to an algorithm for producing
a complete list of all physically possible outcomes. This list is the first step in
describing a measuring device.

We have mentioned that measuring instruments are imprecise. Due to mea-
surement uncertainty, when we apply the same measuring device to the same
object twice, we may get different measurement results. Some pairs of possible
outcomes (z,y) can therefore appear when measuring the same object twice.
The information of which pairs can thus occur forms the second step in our
description.

We need a theory. The desired distinction between physically possible and
physically impossible marks — i.e., crudely speaking, between physically possible
and physically impossible values of the corresponding physical quantity — can
only come from physics. In other words, to be able to provide such a distinction,
we need a physical theory.

We need a theory that also described a measuring device. We need a
theory that would describe both the physical quantity (or quantities) measured
and/or influenced by the measuring device and the measuring device itself.

11



Why is it not enough to have a theory that describe the actual physical
quantity? Because the measured value depends not only on the quantity but
also on a measurement error introduced by the measuring device. For example,
if we measure the temperature with a measuring device that has an accuracy 1
degree, then, in principle, it is still physically possible to have the measurement
result —274 — when the actual measured temperature is close to the absolute
zero value —273; however, the measured value —280 is impossible.

On the other hand, a thermometer with an accuracy £10 degrees can produce
a reading of —280 — when the actual temperature is close to the absolute zero.

We want a theory that is “full” in some natural sense. Our ultimate
objective is to provide solutions to practical problems in which data processing
is needed, problems related to engineering and applied science. In engineering
and applied science, when we say that there is, say, a theory of flight, this usually
means that there is a reasonably full (not partial) description of what can fly and
what cannot. There may be some computational difficulties in deciding how well
a given complex airplane will fly, difficulties requiring the use of sophisticated
supercomputers, but in principle, the problem is solved.

In other words, in engineering and applied science, by a theory, we usually
mean a theory that is “full” in some natural sense. This is what we will mean
by a theory in this paper.

Comment. It is important to mention that in theoretical physics, the word
“theory” also has a different meaning. When we say that, e.g., Einstein produced
a theory of gravitation, it does not necessarily mean that his theory is capable
of solving all problems related to gravitation. It is known that physical theories
often have limitations beyond which they are not applicable; e.g., Einstein’s
theory of gravitation (General Theory of Relativity) cannot adequately describe
the gravitational interaction between quantum objects. In other words, theories
in fundamental physics are often partial.

There is a reason why in engineering, theories are usually full, while in
fundamental science, theories are usually partial: the class of objects that are
of interest for an engineering theory is much narrower than the class of objects
that is studied by fundamental physics, and it is much easier to come up with
a full theory for a smaller class of objects.

A seemingly natural definition of a full theory is not always adequate.
At first glance, it may look like a full theory is a one that provides an answer to
all relevant questions. This is exactly what is meant by a “decidable theory” in
mathematical logic: a theory in which, for every statement, either this statement
or its negation are deducible from the theory.

If we define fullness in this manner, then, for example, if we want to know
whether a given mark on a scale of the measuring device is physically possible,
then this theory should be able to tell us whether it is physically possible or
not.

12



Unfortunately, this seemingly natural definition does not always capture the
physical meaning of the notion of a full theory, the meaning that we are trying to
capture in this section. Let us explain the problem with the standard definition
on the example of a theory in which there is an upper (or lower) bound on the
physical quantity — e.g., the speed of light is the upper bound on velocity, and
the absolute zero temperature is the lower bound for temperature.

From the physical viewpoint, when we say that a theory is full, we mean, in
particular, that this theory should enable us to compute the exact value of this
bound b.

What does it mean to compute b? As we have mentioned, what people
usually understand by computing a real number is that for any given accuracy
27% we must be able to produce a rational number 7 that is 2~ *-close to b;
in other words, that we have an algorithm that, given k, produces a rational
number 7y, for which |r, — b < 27F.

A full theory should produce an algorithm for computing the bound b, i.e., b
should be a computable real number. Similarly, a full theory should compute the
exact upper bound A on the measurement error of this measuring instrument;
hence, A should also be a computable real number.

Once we know b and A, which marks are physically possible? Without
losing generality, let us consider the case of the upper bound. By definition of

the measurement error Az as the difference Az % 7 — 2 between the measured
and the actual values of the physical quantity, the measured value T can be
represented as the sum of the actual value x and the measurement error Ax.
Thus, the largest possible value of Z corresponds to the case when both x and
A attain their largest possible values. The largest possible value of x is b, and
the largest possible value of Az is A. Therefore, the largest possible value of =
is equal to b+ A.

It is known that the sum of computable real numbers is computable, so
b+ A is a computable real number. Suppose now that a given mark on scale
corresponds to the value v of the measured physical quantity; usually, this value
v is a rational number. Then, v physically possible if and only if v < b+ A.
Thus, to be able to tell whether a given mark on a scale is physically possible or
not, we must be able to tell whether a given computable number (in our case,
b+ A) is larger or equal than a given rational number (in our case, v).

Alas, it is known that this problem is, in general, not algorithmically solvable
[1, 4, 6, 7,8, 33, 34, 38]. So, we cannot simply assume that a “full” theory will
always tell us which marks are physically possible and which are not. Instead,
we must provide a new definition of a full theory and analyze what this definition
entails.

Before we do that, let us first describe what we mean by a “theory” in the
first place.

What exactly is a theory? In general, in mathematics, to describe a theory
means to describe a finite list of its basic statements (called azioms) and a finite
list of deduction rules that enable us to deduce new statements form the ones
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that we have already proven; see, e.g., [3, 9, 35, 39].

Once we have such a theory, we can algorithmically produce all the state-
ments deducible in this theory: we start with the axioms and apply deduction
rules again and again. In this way, we can first produce all the statements that
can be derived by a single application of deduction rules, then all the statements
that can be produce by two applications of deduction rules, etc. Eventually, each
deducible statement will thus be produced.

In theory of computing, a set whose elements can be enumerated by an
algorithm is called recursively enumerable (r.e., for short). So, when we say
that we have a theory, we mean that the set of all statements deduced from this
theory is r.e.

R.e. sets S are also called semi-decidable (see, e.g., [2, 35]) because the enu-
merating algorithm provides us with a “semi-decision” procedure for deciding
whether a given element = belongs to the set S: We simply generate all the
elements of the set S one by one, and compare the given element x with each
newly generated element from S. Once we find an element from S that is equal
to x, we stop and return the answer “yes”. Clearly, if this algorithm returns the
answer “yes”, it means that x € S; vice versa, if x € S , then this procedure
always returns the answer “yes”. This procedure is a “semi-decision” procedure
because whatever answer it produces is correct, and it is guaranteed to provide
a correct answer when the element x actually belongs to S, but it is not required
to produce any answer when z is not actually in S.

What kind of statements are we allowing? A physical theory usually
describes properties of physically possible states and their transitions: e.g., when
we describe the time changes, we must be sure that the energy is preserved, that
the moments are preserved, that the overall electric charge is preserved, etc.

If a transition from a given state s into another given state s’ is physically
impossible, we will eventually find it out — by testing all preservation properties.

On the other hand, if the transition is physically possible — in the sense that
all conserved quantities have the same values in s and s’ and therefore, hopefully,
there exists an operation that actually transforms s into s’ — then we may not
be able to deduce this possibility from the theory: there may be infinitely many
conserved quantities and during a finite period of time (no matter how long),
we can only test finitely many of them, leaving others un-tested.

Similarly, a theory usually describes conditions under which a mathemati-
cally defined state is physically possible: the velocity of all the particles cannot
exceed the speed of light, the electric charge of each particles must be equal
to a whole number of charge quanta, the temperature in each region cannot be
smaller than the absolute zero, etc. If a mathematically defined state s is phys-
ically impossible, we will eventually find it out — by testing all the conditions
that a physically possible state must satisfy.

On the other hand, if a mathematically defined state s is physically possi-
ble — in the sense that all the necessary conditions are satisfied and therefore,
hopefully, there exists an operation that actually generates this state s — then
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we may not be able to deduce this possibility from the theory: there may be
infinitely many conditions and and during a finite period of time (no matter
how long), we can only test finitely many of them, leaving others un-tested.

In our case, we talk about possible post-measurement states of a measuring
device. From this viewpoint, it is reasonable to assume that the set of statements
(potentially) covered by a theory includes statements of the type “an outcome
v is physically impossible”. (It may also happen that a particular theory is able
to deduce statements of the type “a mark v is possible” as well, but since we
want the most general description, we will not require these statements to be
covered by the theory.)

We want the theory to be correct; therefore, if the theory implies that an
outcome v is not physically possible, then v should indeed be a physically im-
possible outcome. Because of this, if a theory implies that an outcomes v is
physically impossible, we will call such an outcome provably impossible.

As a result, we conclude that the set of provably impossible outcomes is r.e.

(semi-decidable).

What exactly is a full theory. Intuitively, a physical theory is full if what-
ever is not prohibited by this theory actually occurs in real life.

In other words, we require that if something never happens in real life, the
theory must have an explanation for it not happening, i.e., in precise terms, the
theory entails the statement that this particular event never happens.

In other words, if some transformation is never observed, and there is no
known law that would prevent this transformation from happening, the physi-
cists usually imply that there must a (yet unknown) additional law that prevent
such transformations — i.e., in other words, that the existing theory is not full
in the physical sense; see, e.g., [10].

For example, from the viewpoint of the chemical composition, it is perfectly
OK for water to dissolve into hydrogen and oxygen: 2H20—2Hy + Os; however,
if we place water in a bowl, it will never dissolve by itself. A physicist will thus
conclude that since this dissolution never happens, there must be an explanation
for this — and there actually is such an explanation: the total energy of two
water molecules 2H50 is smaller than the sum of the energies of two hydrogen
molecules 2H5 and one oxygen molecule Og, so this transformation is prohibited
by the energy conservation law.

Another example: from the viewpoint of pure particle mechanics, nothing
prevents all the air molecules in a room to concentrate in one half of it, leaving
vacuum in the other half. However, this never happens. This means that we
must have a physical explanation why it never happens, and there is such an
explanation — the second law of thermodynamics that prohibits such transfor-
mations.

In short, physicists believe that if some event never happens, there must
be a theoretical explanation for this event never happening. So, if a theory T'
provides a full description of a given physical phenomenon, and some event e
never happens, this means that the theory T must entail a statement stating
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that this event e never happens.

How does this apply to measuring devices? Suppose, for example, that we
have a measuring device with a scale. Suppose that we use this measuring device
again and again and a certain mark never occurs as a result of this measurement.
Example: we measure velocity of different particles from the cosmic rays, and
the value v =400,000 km/s never occurs. Since this mark never occurs, a full
theory T must have an explanation for it, i.e., in precise terms, this theory T
must imply that this mark never occurs.

The existence of a full theory makes the set of all physically possible
outcomes algorithmically listable. Let us show that the existence of a full
theory T enables us to tell, for each outcome v, whether v is physically possible
or not.

We want to know whether v will occur in one of the measurements, or
whether it never happens.

If the outcome v never happens, then, according to our “definition” of a full
theory, T" must imply that v never happens. So, if we start with the axioms
of the theory T and generate all its conclusions one by one (as we described
earlier), we will eventually come up with the statement that v never happens.

If the outcome v will occur, then we can apply the measuring device to all
possible objects, and eventually, we will get v. How can we apply the measuring
device to all possible objects? We can describe each possible object of measure-
ment by a text in a natural language, a text instructing us how we can find
(or generate) this object. We can enumerate all such texts, and apply all such
instructions. To be more precise, we can apply the instructions from the first
such text for 1 hour, then the instructions from the first two texts for 2 hours,
etc. Eventually, we will thus implement each possible object.

So, if we apply the measuring instrument to different objects generated in
this way, we eventually get v. (If, by a measuring device, we mean a population
of sensors, then we must apply all possible sensors from this population to every
object.)

Let us now show how we can check whether v happens or not. We have two
algorithmic processes:

e the process that generates all possible statements proven in a theory T,
and

e the process that generates all possible objects of measurement.

To check whether an outcome v is possible or not, we simultaneously launch
both algorithmic processes and wait until v appears in one of them:

e If an outcome v never occurs (i.e., is physically impossible), then the
statement that v never occurs will appear in the first process;

e If an outcome v will occur (i.e., is physically possible), then v will appear
as a result of the second process.
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Thus, eventually, we will have v as a result of one of these processes — and
depending on which one, we will be able to tell whether this outcome v is
physically possible or not.

Comment. In mathematical terms, the existence of the first algorithmic process
means that the set of all physically impossible outcomes is r.e. (semi-decidable).
The existence of the second algorithmic process means that the set of all phys-
ically possible outcomes is also r.e. (semi-decidable). It is well known (see, e.g.,
[35]) that if a set is r.e. and its complement is r.e., then this set is algorith-
mically decidable, i.e., there exists an algorithm that checks, for each outcome
v, whether this outcome is physically possible or not. This is exactly what we
have just shown.

Conclusion: algorithmically listable set of physically possible out-
comes. We have shown that, under reasonable assumptions, the existence of
a full theory leads to an algorithm for producing a complete list of all physically
possible outcomes. This list is the first step in describing a measuring device.

Comment. Since we can always algorithmically check whether each outcome
is possible or not, we can always assume that the list of physically possible
outcomes is given from the very beginning. Thus, in the following text, we will
only consider physically possible outcomes.

How do we describe uncertainty: main idea. So, we have a set of possible
outcomes. On this level, how do we describe uncertainty? Due to measurement
uncertainty, when we apply the same measuring device to the same object twice,
we may get different measurement results.

This is a known fact for anyone who has ever measured anything with a real
measuring device, be it current or voltage or temperature.

For example, suppose that we measure temperature by using a measuring
device with an accuracy of +2 degrees. If the actual temperature is, say, 36.6,
then, due to measurement errors, the measurement result can take any value
from 36.6 —2 = 34.6 to 36.6 + 2 = 38.6. If this measuring instrument has marks
corresponding to 0, 1,2, ..., 100 degrees, then for the actual temperature of 36.6,
the only possible outcomes are the ones that lie within the interval [34.6, 38.6],
i.e., the marks 35, 36, 37, and 38.

Some pairs of outcomes are compatible (close), some are not. We have
already mentioned that due to measurement uncertainty, multiple measurement
of the same object can lead to different outcomes.

For example, if we measure temperature with the accuracy of 2 degrees, and
possible outcomes are 0, 1, 2, etc., then the outcome 0 can happen if the actual
temperature is in the interval [—2,2]; the outcome 1 can happen if the actual
temperature is in the interval [—1, 3], etc.
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When the outcomes are very different, e.g., 0 and 5, the corresponding in-
tervals [—2,2] and [3,7] do not intersect — which means that there is no actual
value for which repeated measurements would produce 0 and 5.

When the outcomes are close, e.g., 1 and 3, then the corresponding intervals
[—1,3] and [1,5] have a non-empty intersection — which means that there are
actual values for which repeated measurements can produce 1 and 3 — namely,
all the values from this intersection.

It is therefore natural to say that the physically possible outcomes = and y
are compatible, or close if for some object, multiple measurements can lead to x
and y. We will denote compatible outcomes by ~. For example, for the above
thermometer, 1 ~ 3 but 0 ¢ 5.

We can also say that in this case, the outcomes x ~ y are indistinguishable
by the given measuring device: if we got = as an outcome for one object, and y
as an outcome for another object, then we cannot guarantee that these objects
are different: they may be identical.

The existence of a full theory makes the set of all compatible pairs of
outcomes algorithmically listable. How do we tell which pairs of outcomes
are compatible and which are not? As in the description of possible outcomes,
the only way to distinguish between compatible and non-compatible pairs is
to have a physical theory that describes both the measured quantity and the
measuring device.

Similarly to the description of possible outcomes, we can argue that this
theory should be able to make predictions about incompatibility of different
pairs. We can also argue that this theory should be full in the sense that
if some pair (x,y) never occurs in a repeated measurement, then the theory
should have an explanation for it never occurring, i.e., the theory should entail
that this pair never occurs. If it does occur, then we will be able to see it in one
of the actual measurements.

Similarly to the description of possible outcomes, we can therefore conclude
that the set of all compatible pairs is decidable (algorithmically listable).

Conclusion: algorithmically listable set of compatible pairs of out-
comes. We have shown that, under reasonable assumptions, the existence of
a full theory leads to an algorithm for producing a complete list of all com-
patible pairs of outcomes. Thus, at the current (second) step of describing a
measuring device, we can describe it as a pair (X, ~), where X is a finite set (of
all physically possible outcomes), and ~ is a symmetric and reflexive relation
on X describing which outcomes are compatible.
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7 Resulting Description of a Measuring Instru-
ment and Its Relation to Binary Girard Do-
mains

From the mathematical viewpoint, a pair (X, ~) is nothing else but a finite
graph. In domain theory, graphs — also called webs — form the basis of binary
Girard domains; see, e.g., [12, 13, 14, 41]. From this viewpoint, we describe
measuring devices by using binary Girard domains.

Definition 8 A binary domain is a pair (X,~), where X is a finite set, and
~ is a symmetric reflexive relation on X.

This description is useful because many constructions relevant for measuring
instruments can be naturally described in terms of Girard domains — e.g., if we
consider a pair of independent measuring instruments (X,~) and (Y,~)" as
a single measuring device, then its set of possible outcomes is the Cartesian
product X x X’ and the corresponding compatibility relation (z,y) ~ (z/,y')
takes the form “z ~ 2’ and y ~' 3’ — i.e., we have a tensor product of the
corresponding binary Girard domains.

Comment. In graph terms, a graph in which vertices correspond to sets and
two vertices are connected by an edge if and only if the corresponding sets
intersect is called an intersection graph [15, 37]. For the case when sets are
intervals, the intersection graph is called an interval graph; see, e.g., [11].

Examples. Let us first show how the standard interval uncertainty fits into
this general picture. For example, suppose that we measure temperature with
the accuracy 1°, and the scale consists of the values X = {0,1,2,3...,T}.
Here, e.g., £ = 0 means that the actual temperature ¢ is in the interval [—1, 1];
50, a ~ b if the corresponding intervals [a — 1,a + 1] and [b — 1,b + 1] intersect,
ie., if |a —b] < 2.

An even simpler example comes from counting. Every actual counting
device has a limitation of how many objects we can count, so here, X =
{1,2,...,n,many}, where “many” means that we have exhausted this device,
and there are still objects to count. Here, a ~ b if and only if a = b.

Yet another example comes from “yes”-“no” questions; here, possible re-
sults are “false” (usually denoted by 0), “true” (usually denoted by 1), and
“unknown” (we will denote it by U). Here, X = {0,1,U}, and the relation ~
has the form 0 ~ U and U ~ 1. Indeed, if we do not know the truth value (U),
then, in reality, the answer may turn out to be “true” (hence U ~ 1) or “false”
(hence, U ~ 0). However, once we know the answer “true”, we cannot get the
answer “false”, hence 0 ¢ 1.
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8 From a Description of a Single Measuring In-
strument to a General Description of a Phys-
ical Quantity

A single measurement only leads to an approzimate value of the measured quan-
tity. To describe the actual value of the measured quantity, we must consider a
sequence of more and more accurate measuring instruments.

Let Xj describes results of first & measurements. Then, for every k < I,
there exists a natural “forgetful functor” my; : X; — Xj that simply erases the
results of the last | — k measurements.

What are he natural properties of this mapping? If o’ and b’ can occur at
the same object, i.e., if a’ ~' I/, then for this same object, the partial results
m(a") and w(b') are also possible, i.e., w(a’) ~ 7(b’). Similarly, if partial results a
and b can occur for the same object, i.e., if a ~ b, then by performing additional
measurements, we get some values a’ ~' V' for which 7(a’) = a and « (V') = b.
Thus, we arrive at the following definition.

Definition 9 Let (X,~) and (X', ~') be finite domains. A mapping 7 : X' —
X is called a projection if it satisfies the following two properties:

(i) if a' ~' b, then ww(a') ~ w(b');
(ii) if a ~ b, then 3a’, V" such that w(a') = a, (V') =b, and o’ ~' V.

A physical quantity can be described by a sequence of more and more accu-
rate measurements X 2! X5 i X3 "L A value of a quantity is described
by the measurement results x; € X; corresponding to different measurements —
these results have to all be compatible, i.e., we must have my(z;) = x for all
k<l

It is possible than two sequences

a=(ay,az,...,an,...)
and
b= (b1,b2,...,bpn,...)

describe the exact same value — when all intermediate results are compatible:
a; ~; b; for all i. (This is similar to the fact that 0.999...and 1.000...is the
same real number.)

We thus arrive at the following definition.

Definition 10

e By a (physical) quantity, we mean a sequence X of binary domains (X;, ~;

) with projections: X, X, P X, TR

o A quantity is called computable if there exists an algorithm which gener-
ates the corresponding domains and projections.
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By a value of a quantity X, we mean a sequence x = (x1,xa,...), where
x; € X; and m(x)) =z, for all k < 1.

A value x = (x1,2,...) of a computable quantity X is called computable
if there exists an algorithm which, given i, returns x;.

The set X of all values is called a projective limit of the sequence X;.

o Two values a,b € X are called indistinguishable if a; ~; b; for all i.

On the set X of possible values of the quantity, we can naturally define
neighborhoods and limits:

Definition 11

e By a neighborhood of a value x we mean a set N, (x) Lof {b|b ~, x} for
some integer n.

o If a™ is a sequence of elements form X, then we say that a®) tends to a
limit a (denoted a®) — a) if ¥nImVEk > m (aflk) ~p ).

Examples. It is easy to see that if we consider interval-related sets X; =
{=pi/ai,—(pi = 1)/, (i —1)/qi,pi/q;} (where k/q; ~; (k+1)/q;) with a
better and better accuracy (¢; — oo) and broader and broader span (p;/q; —
00), then the corresponding set X is the set of all real numbers (+ two extra
values —oco and +oo) with a natural topology.

If we start with n-dimensional “boxes”, we naturally end up with the set R™.

For “yes”-“no” questions, if one measurement does not lead to a definite
answer (i.e., if the answer is U), we can perform a more accurate measurement;
as a result, we may get a definite answer, i.e., we may get a sequence of answers
U0 or Ul, or we may still get “unknown” — i.e., the sequence UU. So, after
two measurements, we have 5 possible results: Xo = {0,1,U0,U1,UU}. In the
set Xo, all “yes” answers (0 and U0) can happen in the same state, so 0 ~ UO0;
it is also possible that in the same state, sometimes, the answer is “yes”, and
sometimes, the answer is still unknown, so 0 ~ UU and UQ ~ UU. The natural
projection from X, to X3 simply deleted the second answer: e.g., w2 1(U0) = U.
So, here:

(] X1: 0N1 U,UNl 1;
L X21 0N2 UO,ONQ [][]7 UONQ UU,1N2 Ul, 1N2 UU, U1N2 UU,

etc. Thus, the projective limit X consists of three different elements 0, 1, and
U, with the relation 0 ~ U and U ~ 1.
It is easy to show that in some sense, every such limit is compact:

Proposition 1 For every projective limit X, every sequence a'®) has a conver-
gent subsequence.
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Proof. Since the set X; is finite, and there are infinitely many elements a(*)
in the sequence, there exist at least one value x € X7 for which infinitely many
elements a®) have agk) = x. We can therefore consider a subsequence consisting
of such elements. Let us fix the first element in this new subsequence. There
are infinitely many elements in the remaining part of the subsequence, and only
finitely many elements in X,. Thus, we can select a sub-subsequence in which
all elements but one have the same value of as, etc. As a result, we get a
convergent subsequence.

Discussion. For example, for real numbers, instead of the set R, we have a
compactification R U {—o0, +00}.

Compactness is important for solving inverse problems; see, e.g., [40]. The
main reason why we have measurements is that we want to reconstruct the
actual values of the measured quantities. In general, we observe f(z) for some
continuous f : X — Y, and we want to reconstruct . For example, we want
to reconstruct an image x, but what we observe is an image f(z) distorted by
the inaccuracies of the lens. The problem is that even in the presence of noise,
when the mapping f is 1-1, the function f~! is often discontinuous, so a small
measurement error y can lead to a large error in reconstructing x. A known
solution is to restrict ourselves to compact sets X because for compact sets, the
inverse f~! to a continuous mapping is continuous as well.

The problem is that, e.g., the set X of all images is not compact under
standard mathematical metrics such as L? or L. Our result shows that this set
is compact if we consider a topology that naturally comes from measurements.

9 Physically Important Case when Indistinguisha-
bility is Transitive

From the physical viewpoint, it is desirable to require that that the “indistin-
guishability” relation ~ on the set X of possible values of a physical quantity is
an equivalence relation, i.e., that it is reflexive (a ~ a), symmetric, and transi-
tive.

The above defined relation is always reflexive and symmetric, but it is not
always transitive: e.g., for the “yes”-“no” measurements, 0 ~ U, U ~ 1, but
0 % 1. How can we describe sets with a transitive relation?

Proposition 2 For each quantity X, the following two conditions are equiva-
lent to each other:

o the indistinguishability relation ~ is transitive, i.e., for all a,b,c € X, if
a~bandb~c, then a ~ c;

o for every i, there exists a j for which, if a; ~; b; and b; ~; c;, then
a; ~; Cj.
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Proof. It is easy to prove that the second condition implies the first one.
Indeed, let a ~ b and b ~ ¢. We want to prove that a ~ c¢. By definition,
a ~ ¢ means that a; ~; ¢; for all 4. Let us pick any ¢ and prove that a; ~; ¢;.
Indeed, due to the second condition, there exists a j for which a; ~; b; and
b;j ~; c; imply that a; ~; ¢;. By definition of ~, the condition a ~ b means
that ap ~p by for all k, in particular, for k¥ = j. Thus, we have a; ~; b;, and
similarly, we have b; ~; ¢;, hence we can indeed conclude that a; ~; b;.

Let us now prove that the first condition implies the second one.

We will prove it by contradiction. Indeed, if no such j exists, this means

that for every 7, there exist values a(?), b0 and ¢U) for which a(]) ~; b(j)

bE-J ~j , but a 741 53 By taking a convergent subsequence, in the limit,
we get bequences a, b, and ¢, for which a ~ b, b ~ ¢, but a ¢ ¢ — specifically,
a; ’//1 C;.

Let us describe this construction in detail. The construction consists of Steps
1,2, ...0n each Step k, we will have a set of triples (a(j), b)), c(j)) corresponding
to all the values j from some infinite set of indices J C N. We start with the
class of all such triple Jy = N. At Step k, we define the values ag, by, and ¢
for this k, and further limit the class of the triples to the class Jj of all the
triples from Ji_; that are consistent with the selected values ay, by, and ¢ in
the sense that a,(j) = ay, bg) = by, and cg) = cp.

Let us now describe how exactly we can perform Step k. For each of the in-
finitely many triples (a¥),b\), ¢W)), j € Ji_1, the k-th projection (ak ,bg , ,(CJ))
is an element of the finite set Xj x Xj x Xy = X} of all possible triples of out-
comes of the device I.. Thus, at least one of these triples is repeated infinitely
many times in the sequence (a(ﬂ ) b el ) We will pick one of such infinitely re-
peated triples as the triple (ay, by, ck). This way, we guarantee that the selected
set Jj, is still infinite.

Let us show that the resulting mappings a, b, and ¢ indeed belong to the
set X, i.e., indeed satisfy the projection property. It is sufficient to prove it
for a. Indeed, on each Step k, we restrict ourselves to indices j € Ji for which

a,(cj) = aj,. Thus, on the next Step k + 1, we only consider such values a¥/). The

value ag41 selected on the next step is equal to a,(fll

By definition of X, we have 7rk+17k(akj_21) =ay ), hence 741k (ak+1) = ag.
Let us show that for the corresponding elements, a ~ b and b ~ c¢. It is
sufficient to prove it for a and b. We need to prove that for every k, we have

ar ~p br. Indeed, for every k, We selected the triple (ag,bk,cr) as a triple

for one of the indices j € Jj.

that appear in a sequence (ay ),b ) for infinitely many different indices
j € Jig—1. Since there are mﬁmtely many such mdlces at least one of these
indices j must be > k. For this j, we have ak = o and b, = b,(cj). By
definition of a triple (a¥),b(7) ), we have a ~j b . Since k < j, we can

thus conclude that 7 (a (J)) ~g T k(b(J))

Since a) and bU) are elements of the projective limit, the value ik (a; @G )) is
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equal to a,(cj), i.e., to ai. Similarly, ﬁj,k(ay)) = bk, so we indeed conclude that
Qap ~k bk for all k.

To complete the proof, we must now prove that a; %; ¢;. Indeed, according
to our construction, there exists a j for which a; = aE]), b; = bE]), and ¢; = CEJ).
By definition of the triples (a¥),b() ), for each of these triples, we have
al(-j) i bgj), hence a; #; ¢;.

The proposition is proven.

If indistinguishability is transitive, then from each i, we can algorith-
mically find j for which a; ~; b; and b; ~; ¢; imply a; ~; ¢;. The above
proof is not constructive: it proves the existence of the desired j not by explic-
itly constructing such a j but by reduction to a contradiction (i.e., by showing
that if such a j does not exist, then we get a contradiction).

We can show, however, that for computable quantities, there is an algorith-
mic way of finding such a j. First, it is easy to show that if this implication
is true for j < 4, it is thus true for all larger j as well. Thus, it is sufficient to
consider the case when j > 1.

In this case, the condition a; ~; ¢; can be described in terms of a; and c;,
as mji(a;) ~i mja(c)-

For each j, there are only finitely many possible pairs of triples (aj,b;,¢;) €
X j’, and the relations ~; and ~; are algorithmically decidable. Therefore, by
testing all possible triples, we can algorithmically check whether for this 7,
aj ~; b; and b; ~; c; indeed imply a; ~; ¢;.

If the implication is valid, we got our j. If not, we increase j by 1 and test
again, etc., until we find the desired value j.

10 Pre-Functions (Relations) and Functions

Once we have a description of the sets A and B as quantities (i.e., as projective
limits), how can we describe, in these terms, the set of all functions from A to
B? For example, if we know how to describe time ¢ and how to describe spatial
coordinate z, how can we then describe a trajectory x(t), i.e., a function that
maps t into x?

In physical terms, a function f : A — B means that, once we know an
approximation a, to a, we can find some approximation b,, = F(a,,) to b.
There are two natural requirements:

e that if the approximations a and a’ are compatible, i.e., if there is an
object which can lead to both measurement results a and a’, then the
corresponding values F'(a) and F(a’) should also be compatible — since
they can both come from this same object, and

e that if we add more information to a, we should get more information

about f(a).

Thus, we arrive at the following definitions:

24



Definition 12 We say that an approximation ay is more informative than an
approzimation a; (and denote it ar C a;) if a; = m x(ak)-

Definition 13 Let A and B be two quantities (projective limits). By a pre-
function
F:A— B,

we mean a mapping from UA,, to UB,, such that:
e a~a implies F(a) ~ F(a');
e ifaCd, then F(a) C F(a').

A pre-function F' : A — B between computable quantities A and B is called
computable if the mapping F' is computable.

We call this mapping a pre-function, not a function, because the results may
not converge: It is quite possible that for some element a = (a1, as,...,an,...),
the approximations a,, provide better and better approximations to a — until we
are left with a single element a — but we may still have F(a1) = F(az) = ... =
F(a,) = ... with several elements inside this common approximation F(a;). In
mathematical terms, such pre-functions are relations, not functions, since to the
same element a, we can put into correspondence several different values F'(a).

For a pre-function to be a function, we need to make sure that for every
element a € A, there is only element from B which can be viewed as the image
of F.

Definition 14 We say that a pre-function F' : A — B is a defined at an ele-
ment a = (a1,az,...,an,...) if from a sequence (F(a1), F(ag),...,F(an),...),

we can extract a subsequence which is an element of B, i.e., if for every m,

there exists an n such that b,, def F(a,) € By,. The resulting element b =

(by,b2,...,bm,...) is called the value of the pre-function F on an element a and
denoted by f(a).

Definition 15 We say that a pre-function F' : A — B is a function if it is
defined for all elements of A.

How can we describe pre-functions which are functions?

Proposition 3 A pre-function F' : A — B is a function if and only if for
every m, there exists an n such that for every a, € A,, we have F(a,) €
BpnUBpy1 U ..

Proof: by using compactness and reduction to a contradiction.

In other words, a pre-function is a function if for every desired accuracy level
m, we can determine beforehand with what accuracy we must compute a to get
F(a) with the desired accuracy. This is what is usually called continuity, so in
this description, every function is continuous in this sense.

25



Comment. Similar to transitivity, if a computable pre-function is a function,
then based on m, we can algorithmically find n for which a,, € A,, implies that
F(ay) gives the result with accuracy level m or higher.

Similarly to the computable functions on computable compacts, we can al-
gorithmically compute the maximum of each function f: X — R:

Proposition 4 There exists an algorithm that, given a computable quantity
(projective limit) X and a computable function F : X — R from X to real
numbers R, returns the maximum value M = max f(x) of this function.

Proof. First, we can show that the set of values f(z) of the function f is
bounded. Indeed, if this set was, e.g., unbounded from above, then for every
n, we would have values z(") for which f(a?(")) > n. From the sequence z(™,
we can extract a convergent subsequence z(™*) — z. For its limit z, we get
f(z) = lim f(z(™)) = 400, which contradicts our assumption that f(x) € R for
all x.

Since the range of the function f(x) is a bounded set, we can view the
corresponding values F'(xy) as simply rational numbers, and the relation a ~,, b
between these rational numbers as simply |a — b| < 27", Since the pre-function
F' is a function, for every given m, there exists n for which, for every z,, € X,,
the value F(x,) is at a level m or higher. Thus, for every x € X, we have
|f(xz)— F(z,)| <27™. Hence, the maximum of the corresponding finitely many
values f(z,), T, € X, is 27™-close to the maximum M = max f(z) over all
possible z € X.

So, to compute M with a given accuracy 27, we first algorithmically find
n for which F'(x,) is always of level m ro higher, and then take, as the desired

approximation M to M, the largest of the finitely many values F(x,) for all
Zp € X,,. The proposition is proven.

Comment. For functions with possibly infinite values, we can also algorithmi-
cally get a maximum — as a computable element of the corresponding projective
limit.

11 Main Result: Uniqueness Implies Computabil-
ity

Let us now prove that for newly defined sets of values of physical quantities,
uniqueness implies algorithmic computability.

Definition 16 Let F : X — R be a function from a quantity (projective limit)
X. We say that it attains a zero at a unique point if f(x) = f(«') = 0 implies
x~x.

Theorem 3 There exists an algorithm A which is applicable to an arbitrary
computable function F : X — R from a computable transitive quantity X to real
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numbers which attains a 0 at a unique point x, and which returns the “zero”
point z = A(F) € X for which f(z) =0.

Definition 17 Let F': X — R be a function from a quantity X. We say that

it attains a maximum at a unique point if f(xz) = f(a') = max f(y) implies
/

x e~z

Theorem 4 There exists an algorithm A which is applicable to an arbitrary
computable function F : X — R from a computable transitive quantity X to real
numbers which attains a mazrimum at a unique point x, and which returns the
point xpp = A(F) € X for which f(xzpr) = max f(z).

Proof. A function f(x) attains its maximum if and only if the auxiliary func-

tion f/(z) o f(z) — max f(y) attains a 0. Since the maximum max f(y) is
computable, we can thus reduce the second problem to the first one. So, it is
sufficient to consider the first problem — of finding a value z for which f(z) = 0.

Let us show how for a given k, we can find z with accuracy of level k, i.e.,
how we can find an approximation a for which a ~j z. Since X is transitive,
there exists an n such that a ~,, b and b ~,, ¢ imply that a ~j c.

The main idea of this proof is the same as for computable functions on a
computable compact set: that eventually, all the points with large enough values
will be concentrated in a small vicinity of the desired zero point. Let us describe
this idea in detail.

Uniqueness means that f(xz) = 0 implies  ~ z. In particular, f(z) = 0
implies that x ~, z. Let us prove that there exists an integer m such that
f(x) ~p 0 —1e., |f(z)] <27™ — implies © ~, z. Indeed, if no such m existed,
then we would have a sequence of elements z(™) for which f(2(™) ~,, 0 but
z(™) Ay z. From the sequence m(m), we can extract a convergent subsequence.
For the limit x of this subsequence, we would get f(z) = 0 but = #, z — a
contradiction.

Let m be the integer whose existence we have just proven. Since f is a
function, there exists an ¢ such that for every x, we have |f(z) — F(xy)| <
2=(m+1) _In particular, for = z, we have f(z) = 0 hence |F(z,)| < 2=(m+1),
Vice versa, if |F(z,)| < 27+ for some z, € X/, this means that

|f@)| < |f(x) = F(ze)| + |[F(ze)| <277

and hence, = ~,, z, i.e., xp ~, 2p.
So, there exists an ¢ for which there is a y, € X, that satisfies the following
two properties:

o |[F(ye)| <270+,

e 3, is n-close to every other z;, € X, for which |F(z,)| < 2=+ (ie.,
Ty ~n yﬁ)
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We can find this ¢ by trying all possible natural numbers £ =1,2, ...

For the found ¢, the above two properties hold for y, = z,, but they may
also hold for some other value yy # z¢. In this case, we have y, ~, z; and
z¢ ~y 2, hence, due to transitivity, y, ~, z. Thus, this gy, is indeed the desired
approximation to the root z. The theorem is proven.

Philosophical comment: optimism is justified. Let us summarize what we have
proven:

e the problem of finding a unique solution is algorithmically solvable, while
e if we have at least two solutions, no general algorithm is possible.

This result can be viewed as a foundation of optimism; see, e.g., [28, 33].

Let us illustrate this idea on the example of historical processes. It often
happens in history that a country is in a bad situation; it may be that a tyrant
is ruining it, it may be that the enemies are devastating it. As times goes by, the
situation gets gloomier and gloomier; it seems that there are fewer and fewer
chances of survival, and then, in the darkest hour, when there seems to be the
only easy-to-miss chance of survival, a miracle happens and this only possible
way out is indeed followed.

It often happens that the army wins only after it was almost defeated. It
often happens that the personal enlightment comes only after a person has
plunged into despair. It often happens that a proof of the theorem comes only
after unsuccessful attempts has almost led to despair. The above results explain
these “miracles”: according to these results, in general, it is much easier to find
a way out when there is the only way out left, than to find it when there were
still several possible.

This result teaches us to be optimistic: if the situation gets gloomier and
gloomier we should not despair but try harder, and then, hopefully, when there
will be only one way out left, we will find it!

12 Conclusions and Future Work

Conclusions. In many practical problems, we are interested in solving an
optimization problem or to solve a solution to a system of equations. Often,
the existence of a solution is proven indirectly, non-constructively, without an
efficient method for constructing the corresponding object. In many cases, we
can extract an algorithm from a classical proof: e.g., when an object is (non-
constructively) proven to be unique in a locally compact space (or when there
are two such objects with a known lower bound on the distance between them).
In many other practical situations, a (seemingly) natural formalization of the
corresponding practical problem leads to a non-compact set.

We have shown that if we consistently apply Heisenberg’s operationalism
idea and define objects in terms of directly measurable quantities, then we get
a Girard-domain type representation in which a natural topology is, in effect,
compact — and thus, uniqueness implies computability.
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First direction of future work: from “from-scratch” definitions to a
more systematic approach. In the above text, we assumed a “from-scratch”
approach to describing every set of possible values of a physical quantity. In
this approach, we need to know how exactly to measure this quantity.

Fundamental physical quantities are indeed usually defined in this way, by
describing the measurement procedures which enable us to estimate the values of
these quantities. However, many other physical quantities are defined indirectly,
in terms of already defined quantities. For example, a 3-D point can be described
as a triples of coordinates, an electric field can be described as a function that
maps a 3-D (or 4-D) into a value of the strength and direction of the filed at
this point, etc. For such indirectly defined quantities, it is desirable to avoid a
lengthy “from-scratch” procedure and to be able to instead utilize the (Girard
domain-related) descriptions of the related simpler quantities. The possibility of
such a utilization comes from the fact that in Girard domains, there are natural
descriptions of domain of pairs, domains of functions, etc.

We have already mentioned that in some cases, such a utilization is indeed
possible: e.g., for the set of pairs (Cartesian product), which is naturally rep-
resented by a tensor product of the corresponding domains. It is desirable to
generalize these examples into a systematic way of such utilization.

Second direction of future work: from general (possibly inefficient)
algorithms to efficient (practical) algorithms. In the above text, we were
interested in checking whether there is an algorithm for solving a given practical
problem. While it is known that in general, e.g., the optimization problem is
not algorithmically solvable, an algorithmic solution exists when the solution is
unique.

However, the existence of an algorithm does not mean that the problem is
always practically solvable: an algorithm may require un-realistic exponential
(or even hyper-exponential) computations time. It is therefore desirable not
only to prove the existence of an algorithm, but to try to come up with efficient
algorithms for solving the desired problems.

One can show that, e.g., the general problem of solving a system of polyno-
mial equations is NP-hard; it is even NP-hard for quadratic equations (see, e.g.,
[33] and references therein). Similarly, we can prove that the problem of finding
the unique solution to a system of equations (or the unique point where the
maximum is attained) is as complicated as the problem of finding the unique
satisfying vector for a given propositional formula. The latter problem (it is
usually denoted by USAT, from unique satisafiability) is known to be “almost”
NP-hard in the sense that every other problem from the class NP can be prob-
abilistically reduced to USAT; so if we were able to solve all the instances of
USAT in polynomial time, we would have a probabilistic polynomial-time algo-
rithm that solves almost all instances of all problems from the class NP; see,
e.g., [17, 42]. Note, however, that in [5], arguments are given that this problem
may not be NP-hard.
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Third direction of future work: from binary domains (graphs) to
simplicial complexes. To get a better description of a measuring instrument,
it may be desirable to know not only which pairs are “compatible”, but also
which triples etc. can comes from the same object. If a ~ b, b ~ ¢, and a ~ ¢,
then for some measuring instruments, all three values are possible outcomes for
some object, while for others, no single object can lead to these three outcomes.

Informally, let us say that a set S C X is compatible if for some object, all
values from S are possible. Then, a measuring instrument can be represented as
a pair (X,S), where X C S C 2% is the class of all compatible sets. Clearly, if
a set S is compatible then each subset of S is compatible too. In mathematical
terms, such a pair is called a simplicial complex: X is the set of vertices, and
S is the set of faces. In precise terms, a simplicial complex is defined as a pair
(X,S), where X C S C 2%,

It is therefore desirable to extend all our following results to such simplicial
complexes.
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